1
|
Shi Z, Sun H, Tian X, Song X, Fan J, Sun S, Wang J, Zhang J, Wang J. Extracellular vesicles containing miR-181a-5p as a novel therapy for experimental autoimmune encephalomyelitis-induced demyelination. Int Immunopharmacol 2024; 135:112326. [PMID: 38796967 DOI: 10.1016/j.intimp.2024.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system. Recent research has revealed that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), containing specific miRNAs, possess immunomodulatory properties and have demonstrated therapeutic potential in the treatment of MS. This study aimed to investigate the role MSC-EVs, containing microRNA-181a-5p (miR-181a-5p) in both experimental autoimmune encephalomyelitis (EAE), an established animal model of MS, and lipopolysaccharide-stimulated BV2 microglia. We evaluated clinical symptoms and inflammatory responses in EAE mice following intrathecal injections of MSC-EVs. MSC-EVs containing miR-181a-5p were co-cultured with microglia to explore their impact on inflammation and cell pyroptosis. We validated the interaction between miR-181a-5p and its downstream regulators and conducted in vivo verification by injecting manipulated EVs containing miR-181a-5p into EAE mice. Our results demonstrated that MSC-EVs, containing miR-181a-5p reduced the clinical symptoms of EAE mice. Furthermore, we observed downregulation of miR-181a-5p in EAE model mice, and its expression was restored after treatment with MSC-EVs, which corresponded to suppressed microglial inflammation and pyroptosis. Additionally, EVs containing miR-181a-5p mitigated spinal cord injury and demyelination in EAE mice. Mechanistically, ubiquitin-specific protease 15 (USP15) exhibited high expression in EAE mice, and miR-181a-5p was specifically targeted and bound to USP15, thereby regulating the RelA/NEK7 axis. In conclusion, MSC-EVs containing miR-181a-5p inhibit microglial inflammation and pyroptosis through the USP15-mediated RelA/NEK7 axis, thus alleviating the clinical symptoms of EAE. These findings present a potential therapeutic approach for the treatment of MS.
Collapse
Affiliation(s)
- Zhong Shi
- Ophthalmology Department, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xinyi Tian
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao 266002, Shandong, China
| | - Xiujuan Song
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jingyi Fan
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Shichao Sun
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jinli Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jing Zhang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China.
| |
Collapse
|
2
|
Fan J, Han Y, Sun H, Sun S, Wang Y, Guo R, Guo J, Tian X, Wang J, Wang J. Mesenchymal stem cell-derived exosomal microRNA-367–3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2. Biomed Pharmacother 2023; 162:114593. [PMID: 37001184 DOI: 10.1016/j.biopha.2023.114593] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory demyelinating disorder of the central nervous system. Accumulating evidence has underscored the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (BMSC-Exos) containing bioactive compounds in MS. Herein, the current study sought to characterize the mechanism of BMSC-Exos harboring miR-367-3p both in BV2 microglia by Erastin-induced ferroptosis and in experimental autoimmune encephalomyelitis (EAE), a typical animal model of MS. Exosomes were firstly isolated from BMSCs and identified for further use. BV2 microglia were co-cultured with miR-367-3p-containing BMSC-Exos, followed by an assessment of cell ferroptosis. Mechanistic exploration was furthered by the interaction of miR-367-3p and its downstream regulators. Lastly, BMSC-Exos harboring miR-367-3p were injected into EAE mice for in vivo validation. BMSC-Exos carrying miR-367-3p restrained microglial ferroptosis in vitro. Mechanistically, miR-367-3p could bind to Enhancer of zeste homolog 2 (EZH2) and restrain EZH2 expression, leading to the over-expression of solute carrier family 7 member 11 (SLC7A11). Meanwhile, over-expression of SLC7A11 resulted in Glutathione Peroxidase 4 (GPX4) activation and ferroptosis suppression. Ectopic expression of EZH2 in vitro negated the protective effects of BMSC-Exos. Furthermore, BMSC-Exos containing miR-367-3p relieved the severity of EAE by suppressing ferroptosis and restraining EZH2 expression in vivo. Collectively, our findings suggest that BMSC-Exos carrying miR-367-3p brings about a significant decline in microglia ferroptosis by repressing EZH2 and alleviating the severity of EAE in vivo, suggesting a possible role of miR-367-3p overexpression in the treatment strategy of EAE. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Collapse
|
3
|
Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther 2023; 14:66. [PMID: 37024925 PMCID: PMC10079493 DOI: 10.1186/s13287-023-03287-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are widely utilized in cell therapy because of their robust immunomodulatory and regenerative properties. Their paracrine activity is one of the most important features that contribute to their efficacy. Recently, it has been demonstrated that the production of various factors via extracellular vesicles, especially exosomes, governs the principal efficacy of MSCs after infusion in experimental models. Compared to MSCs themselves, MSC-derived exosomes (MSC-Exos) have provided significant advantages by efficiently decreasing unfavorable adverse effects, such as infusion-related toxicities. MSC-Exos is becoming a promising cell-free therapeutic tool and an increasing number of clinical studies started to assess the therapeutic effect of MSC-Exos in different diseases. In this review, we summarized the ongoing and completed clinical studies using MSC-Exos for immunomodulation, regenerative medicine, gene delivery, and beyond. Additionally, we summarized MSC-Exos production methods utilized in these studies with an emphasis on MSCs source, MSC-Exos isolation methods, characterization, dosage, and route of administration. Lastly, we discussed the current challenges and future directions of exosome utilization in different clinical studies as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Noha M AboQuella
- International Graduate Program Medical Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
4
|
Wang J, Sun H, Guo R, Guo J, Tian X, Wang J, Sun S, Han Y, Wang Y. Exosomal miR-23b-3p from bone mesenchymal stem cells alleviates experimental autoimmune encephalomyelitis by inhibiting microglial pyroptosis. Exp Neurol 2023; 363:114374. [PMID: 36907352 DOI: 10.1016/j.expneurol.2023.114374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system and is marked by inflammation and damage to the myelin sheath surrounding nerve fibers. Recent studies have highlighted the therapeutic value of exosomes (Exos) obtained from bone marrow mesenchymal stem cells (BMSCs) in MS treatment. These BMSC-Exos contain biologically active molecules that show promising results in preclinical evaluations. The aim of this study was to investigate the mechanism of BMSC-Exos containing miR-23b-3p in both LPS-stimulated BV2 microglia and in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Exos were isolated from BMSCs, and their effects were evaluated in vitro by co-culturing with BV2 microglia. The interaction between miR-23b-3p and its downstream targets was also explored. The efficacy of BMSC-Exos was further verified in vivo by injecting the Exos into EAE mice. The results showed that BMSC-Exos containing miR-23b-3p reduced microglial pyroptosis in vivo by specifically binding to and suppressing the expression of NEK7. In vivo, BMSC-Exos containing miR-23b-3p alleviated the severity of EAE by decreasing microglial inflammation and pyroptosis via the repression of NEK7. These findings provide new insights into the therapeutic potential of BMSC-Exos containing miR-23b-3p for MS.
Collapse
Affiliation(s)
- Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ruoyi Guo
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiangyuan Guo
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Xinyi Tian
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinli Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shichao Sun
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yusen Han
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ying Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders. Int J Mol Sci 2022; 23:ijms23073829. [PMID: 35409188 PMCID: PMC8998258 DOI: 10.3390/ijms23073829] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune demyelinating diseases-including multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein-associated disease, acute disseminated encephalomyelitis, and glial fibrillary acidic protein (GFAP)-associated meningoencephalomyelitis-are a heterogeneous group of diseases even though their common pathology is characterized by neuroinflammation, loss of myelin, and reactive astrogliosis. The lack of safe pharmacological therapies has purported the notion that cell-based treatments could be introduced to cure these patients. Among stem cells, mesenchymal stem cells (MSCs), obtained from various sources, are considered to be the ones with more interesting features in the context of demyelinating disorders, given that their secretome is fully equipped with an array of anti-inflammatory and neuroprotective molecules, such as mRNAs, miRNAs, lipids, and proteins with multiple functions. In this review, we discuss the potential of cell-free therapeutics utilizing MSC secretome-derived extracellular vesicles-and in particular exosomes-in the treatment of autoimmune demyelinating diseases, and provide an outlook for studies of their future applications.
Collapse
|
6
|
He J, Huang Y, Liu J, Lan Z, Tang X, Hu Z. The Efficacy of Mesenchymal Stem Cell Therapies in Rodent Models of Multiple Sclerosis: An Updated Systematic Review and Meta-Analysis. Front Immunol 2021; 12:711362. [PMID: 34512632 PMCID: PMC8427822 DOI: 10.3389/fimmu.2021.711362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023] Open
Abstract
Studies have demonstrated the potential of mesenchymal stem cell (MSC) administration to promote functional recovery in preclinical studies of multiple sclerosis (MS), yet the effects of MSCs on remyelination are poorly understood. We wished to evaluate the therapeutic effects of MSCs on functional and histopathological outcomes in MS; therefore, we undertook an updated systematic review and meta-analysis of preclinical data on MSC therapy for MS. We searched mainstream databases from inception to July 15, 2021. Interventional studies of therapy using naïve MSCs in in vivo rodent models of MS were included. From each study, the clinical score was extracted as the functional outcome, and remyelination was measured as the histopathological outcome. Eighty-eight studies published from 2005 to 2021 met the inclusion criteria. Our results revealed an overall positive effect of MSCs on the functional outcome with a standardized mean difference (SMD) of −1.99 (95% confidence interval (CI): −2.32, −1.65; p = 0.000). MSCs promoted remyelination by an SMD of −2.31 (95% CI: −2.84, −1.79; p = 0.000). Significant heterogeneity among studies was observed. Altogether, our meta-analysis indicated that MSC administration improved functional recovery and promoted remyelination prominently in rodent models of MS.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Abdelgawad M, Bakry NS, Farghali AA, Abdel-Latif A, Lotfy A. Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Res Ther 2021; 12:469. [PMID: 34419143 PMCID: PMC8379570 DOI: 10.1186/s13287-021-02542-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs), through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracellular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases. In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for cell surface modification, nanotechnology applications, and combination therapies.
Collapse
Affiliation(s)
- Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Nourhan Saied Bakry
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA. .,College of Medicine, University of Kentucky, Lexington, KY, 40506-0046, USA.
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
8
|
Lotfy A, Elgamal A, Burdzinska A, Swelum AA, Soliman R, Hassan AA, Shiha G. Stem cell therapies for autoimmune hepatitis. Stem Cell Res Ther 2021; 12:386. [PMID: 34233726 PMCID: PMC8262021 DOI: 10.1186/s13287-021-02464-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis is a chronic inflammatory hepatic disorder which may cause liver fibrosis. Appropriate treatment of autoimmune hepatitis is therefore important. Adult stem cells have been investigated as therapies for a variety of disorders in latest years. Hematopoietic stem cells (HSCs) were the first known adult stem cells (ASCs) and can give rise to all of the cell types in the blood and immune system. Originally, HSC transplantation was served as a therapy for hematological malignancies, but more recently researchers have found the treatment to have positive effects in autoimmune diseases such as multiple sclerosis. Mesenchymal stem cells (MSCs) are ASCs which can be extracted from different tissues, such as bone marrow, adipose tissue, umbilical cord, and dental pulp. MSCs interact with several immune response pathways either by direct cell-to-cell interactions or by the secretion of soluble factors. These characteristics make MSCs potentially valuable as a therapy for autoimmune diseases. Both ASC and ASC-derived exosomes have been investigated as a therapy for autoimmune hepatitis. This review aims to summarize studies focused on the effects of ASCs and their products on autoimmune hepatitis.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006, Warsaw, Poland
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.,Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Reham Soliman
- Tropical Medicine Department, Faculty of Medicine, Port Said University, Port Said, Egypt.,Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Ayman A Hassan
- Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt. .,Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|