1
|
Chen Y, Zhang Z, Chen Y, Liu P, Yi S, Fan C, Zhao W, Liu J. Investigating the shared genetic links between hypothyroidism and psychiatric disorders: a large-scale genomewide cross-trait analysis. J Affect Disord 2025; 369:312-320. [PMID: 39353512 DOI: 10.1016/j.jad.2024.08.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Associations between thyroid diseases and psychiatric disorders have been mainly described before. However, the genetic mechanism behind hypothyroidism and psychiatric disorders remains unexplained. METHODS We examined the genetic architecture of hypothyroidism and 8 psychiatric disorders. Firstly, the global and local genetic relationship between the paired traits was explored. Secondly, cross-trait analysis was performed to investigate the genomic loci and genes between psychiatric disorders and hypothyroidism. Thirdly, the significant expression of these genes and the causal relationships were investigated. Lastly, enrichment analysis was conducted on these genes to explore their biological mechanisms. RESULTS We observed significant positive genetic correlations between psychiatric disorders and hypothyroidism. The cross-trait meta-analysis identified 62 shared genetic loci between hypothyroidism and psychiatric disorders. The colocalization analysis additionally revealed 15 potential pleiotropic loci with a posterior probabilities.H4 (PP·H4) value >0.7. We also found 2308 genes shared between both traits, which were highly enriched in biological pathways such as immune cell differentiation and autoimmune diseases, as well as in tissue structures like the frontal cortex and cerebral cortex. Especially, many pleiotropic genes were significantly expressed for multiple pairwise traits, such as BCL11B, RERE, and SUOX. Lastly, the Latent causal variable model (LCV) analysis did not find any causal components in the genetic structure between them. LIMITATIONS The limitations of this study include that the conclusions were drawn from a European population. CONCLUSIONS These findings not only deepens our understanding of their biological mechanisms but also has significant implications for the intervention and treatment of these diseases.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Zhiyi Zhang
- Fujian University of Traditional Chinese Medicine, 1#, Qiuyang Road, Fuzhou, Fujian Province 350122, People's Republic of China.
| | - Yongyi Chen
- Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Ping Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Chunhua Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China; Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China; Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| |
Collapse
|
2
|
Sharma SK, Mohanty BP, Singh V, Bansal MP, Singhal NK, Sharma SK, Sandhir R. Trace elements dyshomeostasis in liver and brain of weanling mice under altered dietary selenium conditions. J Trace Elem Med Biol 2023; 80:127305. [PMID: 37778095 DOI: 10.1016/j.jtemb.2023.127305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND A balanced diet containing selenium (Se) and other trace elements is essential for normal development and growth. Se has been recognized as an essential trace element; however, its interaction with other elements has not been fully investigated. In the present study, sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), Se and rubidium (Rb), were analysed in liver and brain regions under altered dietary Se intake in weanling mice to identify major discriminatory elements. METHODS The study investigated the effects of different levels of Se intake on the elemental composition in liver and brain tissues of weaned mice. After 24 weeks of feeding with Se adequate, deficient, and excess diets, elemental analysis was performed on the harvested tissues using Inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis that included analysis of covariance (ANCOVA), correlation coefficient analysis, principal component analysis, and partial least squares discriminant analysis were performed. RESULTS The ANCOVA showed statistically significant changes and correlations among the analysed elements under altered dietary Se status. The multivariate analysis showed differential changes in elements in liver and brain regions. The results suggest that long-term dietary Se alternations lead to dyshomeostasis in trace elements that are required in higher concentrations compared to Se. It was observed that changes in the Fe, Co, and Rb levels were similar in all the tissues studied, whereas the changes in Mg, Cr, and Mn levels were different among the tissues under altered dietary Se status. Additionally, the changes in Rb levels correlated with the dietary Se intake but had no relation with the tissue Se levels. CONCLUSIONS The findings suggest interactions between Mg, Cr, Mn, Fe, Co, and Se under altered Se status may impact cellular functions during postnatal development. However, the possible biological significance of alterations in Rb levels under different dietary Se paradigms needs to be further explored.
Collapse
Affiliation(s)
| | | | - Vishal Singh
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar 140306, India
| | | | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar 140306, India
| | | | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Yang H, Zhang J, Yang M, Xu L, Chen W, Sun Y, Zhang X. Catalase and interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J Psychiatr 2023; 79:103400. [PMID: 36521406 DOI: 10.1016/j.ajp.2022.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress (OS) and neuroinflammatory pathways play an important role in the pathophysiology of schizophrenia. The present study investigated the relationship between OS, inflammatory cytokines, and clinical features in male patients with treatment-resistant schizophrenia (TRS). METHOD We measured plasma OS parameters, including manganese-superoxide dismutase (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD), total-SOD (T-SOD), malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px); and serum inflammatory cytokines, including interleukin (IL)- 1α, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN)-γ, from 80 male patients with chronic schizophrenia (31 had TRS and 49 had chronic stable schizophrenia (CSS)), and 42 healthy controls. The severity of psychotic symptoms was evaluated using the Positive and Negative Syndrome Scale (PANSS). RESULTS Compared with healthy controls, plasma Mn-SOD, CuZn-SOD, T-SOD, GSH-Px, and MDA levels were significantly lower, while CAT and serum IL-6 levels were higher in both TRS and CSS male patients (all P < 0.05). Significant differences in the activities of CAT (F = 6.068, P = 0.016) and IL-6 levels (F = 6.876, P = 0.011) were observed between TRS and CSS male patients after analysis of covariance. Moreover, a significant positive correlation was found between IL-6 levels and PANSS general psychopathology subscores (r = 0.485, P = 0.006) and between CAT activity and PANSS total scores (r = 0.409, P = 0.022) in TRS male patients. CAT and IL-6 levels were predictors for TRS. Additionally, in chronic schizophrenia patients, a significant positive correlation was observed between IL-6 and GSH-Px (r = 0.292, P = 0.012), and the interaction effect of IL-6 and GSH-Px was positively associated with PANSS general psychopathology scores (r = 0.287, P = 0.014). CONCLUSION This preliminary study indicated that variations in OS and inflammatory cytokines may be involved in psychopathology for patients with chronic schizophrenia, especially in male patients with TRS.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China; Medical College of Yangzhou University, Yangzhou 225003, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Yujun Sun
- Department of Psychiatry, Kunshan Mental Health Center, Kunshan 215311, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, PR China.
| |
Collapse
|
4
|
Yang X, Yang H, Li N, Li C, Liang W, Zhang X. Increased serum homocysteine in first episode and drug-naïve individuals with schizophrenia: sex differences and correlations with clinical symptoms. BMC Psychiatry 2022; 22:759. [PMID: 36463129 PMCID: PMC9719155 DOI: 10.1186/s12888-022-04416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Accumulating evidence shows that homocysteine (Hcy) is implicated in the pathophysiology of schizophrenia, and plays an important role in clinical characteristics. This study evaluated the relationships between Hcy levels and clinical features in first-episode, Chinese Han, drug-naïve (FEDN) patients with schizophrenia. METHODS FEDN individuals (119 with schizophrenia and 81 healthy controls matched for age, sex, education, and body mass index (BMI)) were enrolled. The serum Hcy levels were determined by enzyme cycle assay experiments. Severities of clinical symptoms were rated on the Positive and Negative Syndrome Scale (PANSS). RESULTS FEDN individuals with schizophrenia had higher Hcy levels compared with healthy controls (F = 46.865, P < 0.001). Correlation analysis and multiple stepwise regression analyses showed that serum Hcy levels in FEDN schizophrenia individuals were positively correlated with PANSS general psychopathology subscale (r = 0.294, P = 0.001) and PANSS total score (r = 0.273, P = 0.003). No significant association was found between Hcy and age, BMI, PANSS positive subscale, and the PANSS negative subscale (all, P > 0.05). Male individuals had significantly higher serum Hcy levels than female individuals (F = 7.717, P = 0.006) after controlling for confounding factors (F = 0.759, P = 0.011). CONCLUSIONS Serum Hcy levels were increased in FEDN individuals with schizophrenia, and Hcy levels may be involved in pathophysiological mechanisms. Sex differences in Hcy levels were observed, with higher levels in male FEDN individuals compared to females.
Collapse
Affiliation(s)
- Xu Yang
- Department of Psychiatry, Beijing Hui Long Guan Hospital, Peking University Hui Long Guan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, People's Republic of China
| | - Na Li
- Department of Pathology, Beijing Kingmed Clinical Laboratory, Affiliated Peking University, Beijing, 100015, People's Republic of China
| | - Chunyu Li
- Clinical Laboratory, Beijing Hui Long Guan Hospital, Peking University Hui Long Guan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Weiye Liang
- Department of Psychiatry, Beijing Hui Long Guan Hospital, Peking University Hui Long Guan Clinical Medical School, Beijing, 100096, People's Republic of China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China.
| |
Collapse
|
5
|
Gilbert AK, Newton TD, Hettiaratchi MH, Pluth MD. Reactive sulfur and selenium species in the regulation of bone homeostasis. Free Radic Biol Med 2022; 190:148-157. [PMID: 35940516 PMCID: PMC9893879 DOI: 10.1016/j.freeradbiomed.2022.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) are important modulators of physiological signaling and play important roles in bone tissue regulation. Both reactive sulfur species (RSS) and reactive selenium species (RSeS) are involved in ROS signaling, and recent work suggests RSS and RSeS involvement in the regulation of bone homeostasis. For example, RSS can promote osteogenic differentiation and decrease osteoclast activity and differentiation, and the antioxidant activity of RSeS play crucial roles in balancing bone remodeling. Here, we outline current research progress on the application of RSS and RSeS in bone disease and regeneration. Focusing on these investigations, we highlight different methods, tools, and sources of RSS and RSeS, and we also highlight future opportunities for delivery of RSS and RSeS in biological environments relating to bone.
Collapse
Affiliation(s)
- Annie K Gilbert
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Turner D Newton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Marian H Hettiaratchi
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States.
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
6
|
Li Z, Liu M, Chen C, Pan Y, Cui X, Sun J, Zhao F, Cao Y. Simultaneous determination of serum homocysteine, cysteine and methionine in patients with schizophrenia by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2022; 36:e5366. [PMID: 35274340 DOI: 10.1002/bmc.5366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder affecting approximately 1% of the population worldwide. Disturbances of the homocysteine metabolism are important factors in the pathophysiology of schizophrenia. In this research, a novel validated LC-MS/MS quantification procedure was developed to investigate three significant compounds of homocysteine metabolism, homocysteine, cysteine and methionine in patients with schizophrenia and healthy controls. Sample preparation involved a reduction with dithiothreitol followed by protein precipitation, and the chromatographic runtime was 2 min. The LC-MS/MS method was validated according to CLSI C62-A and Chinese Guidance for Liquid Chromatography and Mass Spectrometry Clinical Application. The performance of the method was excellent with a coefficient of variation for precision in the range 0.5%-6.9%, an accuracy from 90.4% to 101.6%. In addition, the practical applicability of the method was demonstrated by applying it in the routine sample analysis for the schizophrenic patient. Increased homocysteine levels and decreased cysteine levels were observed in the patient with schizophrenia. These results indicate that the activity of transsulfuration pathway may play a key role in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Zhenguo Li
- The Second Hospital of Dalian Medical University, Dalian, P. R. China
| | - Mingli Liu
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Chunwu Chen
- Shenyang Mental Health Center, Shenyang, P. R. China
| | - Yongqiang Pan
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Xueting Cui
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Jian Sun
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Furong Zhao
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, P. R. China.,Dalian Institute of Chemical Physics. Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
7
|
Homocysteine in Schizophrenia: Independent Pathogenetic Factor with Prooxidant Activity or Integral Marker of Other Biochemical Disturbances? SCHIZOPHRENIA RESEARCH AND TREATMENT 2021; 2021:7721760. [PMID: 34707909 PMCID: PMC8545596 DOI: 10.1155/2021/7721760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 01/21/2023]
Abstract
A wide range of studies have demonstrated that hyperhomocysteinemia is associated with the risk of schizophrenia, but currently available assumptions about the direct involvement of homocysteine (Hcy) in the pathogenesis of schizophrenia are hypothetical. It is possible that in vivo Hcy is only a marker of folate metabolism disturbances (which are involved in methylation processes) and is not a pathogenetic factor per se. Only one study has been conducted in which associations of hyperhomocysteinemia with oxidative stress in schizophrenia (oxidative damage to protein and lipids) have been found, and it has been suggested that the oxidative stress may be induced by the elevated Hcy in schizophrenic patients. But the authors did not study the level of reduced glutathione (GSH), as well as possible causes of hyperhomocysteinemia-disturbances of folate metabolism. The aim of this work is to analyze the association of Hcy levels with the following: (1) redox markers in schizophrenia GSH, markers of oxidative damage of proteins and lipids, and the activity of antioxidant enzymes in blood serum; (2) with the level of folate and cobalamin (В12); and (3) with clinical features of schizophrenia measured using the Positive and Negative Syndrome Scale (PANSS). 50 patients with schizophrenia and 36 healthy volunteers, matched by sex and age, were examined. Hcy in patients is higher than in healthy subjects (p = 0.0041), and this may be due to the lower folate level in patients (p = 0.0072). In patients, negative correlation was found between the level of Hcy both with the level of folate (ρ = -0.38, p = 0.0063) and with the level of B12 (ρ = -0.36, p = 0.0082). At the same time, patients showed higher levels of oxidative modification of serum proteins (p = 0.00046) and lower catalase (CAT) activity (p = 0.014). However, Hcy is not associated with the studied markers of oxidative stress in patients. In the group of patients with an increased level of Hcy (>10 μmol/l, n = 42) compared with other patients (n = 8), some negative symptoms (PANSS) were statistically significantly more pronounced: difficulty in abstract thinking (N5, p = 0.019), lack of spontaneity and flow in conversation (N6, p = 0.022), stereotyped thinking (N7, p = 0.013), and motor retardation (G7, p = 0.050). Thus, in patients with schizophrenia, hyperhomocysteinemia caused by deficiency of folate and B12 is confirmed and can be considered a marker of disturbances of vitamin metabolism. The redox imbalance is probably not directly related to hyperhomocysteinemia and is hypothetically caused by other pathological processes or by an indirect effect of Hcy, for example, on the enzymatic antioxidant defence system (CAT activity), which requires further exploration. Further study of the role of Hcy in the pathogenesis of schizophrenia is relevant, since the proportion of patients with hyperhomocysteinemia is high and correlations of its level with negative symptoms of schizophrenia are noted.
Collapse
|
8
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|