1
|
Statsenko Y, Kuznetsov NV, Ljubisaljevich M. Hallmarks of Brain Plasticity. Biomedicines 2025; 13:460. [PMID: 40002873 PMCID: PMC11852462 DOI: 10.3390/biomedicines13020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral plasticity is the ability of the brain to change and adapt in response to experience or learning. Its hallmarks are developmental flexibility, complex interactions between genetic and environmental influences, and structural-functional changes comprising neurogenesis, axonal sprouting, and synaptic remodeling. Studies on brain plasticity have important practical implications. The molecular characteristics of changes in brain plasticity may reveal disease course and the rehabilitative potential of the patient. Neurological disorders are linked with numerous cerebral non-coding RNAs (ncRNAs), in particular, microRNAs; the discovery of their essential role in gene regulation was recently recognized and awarded a Nobel Prize in Physiology or Medicine in 2024. Herein, we review the association of brain plasticity and its homeostasis with ncRNAs, which make them putative targets for RNA-based diagnostics and therapeutics. New insight into the concept of brain plasticity may provide additional perspectives on functional recovery following brain damage. Knowledge of this phenomenon will enable physicians to exploit the potential of cerebral plasticity and regulate eloquent networks with timely interventions. Future studies may reveal pathophysiological mechanisms of brain plasticity at macro- and microscopic levels to advance rehabilitation strategies and improve quality of life in patients with neurological diseases.
Collapse
Affiliation(s)
- Yauhen Statsenko
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Milos Ljubisaljevich
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Peterson L, Nguyen J, Ghani N, Rodriguez-Echemendia P, Qiao H, Guwn SY, Man HY, Kantak KM. Molecular mechanisms underlying sex and treatment-dependent differences in an animal model of cue-exposure therapy for cocaine relapse prevention. Front Neurosci 2024; 18:1425447. [PMID: 39176383 PMCID: PMC11339646 DOI: 10.3389/fnins.2024.1425447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Environmental enrichment combined with the glycine transporter-1 inhibitor Org24598 (EE+ORG) during cocaine-cue extinction (EXT) inhibited reacquisition of 1.0 mg/kg cocaine self-administration in male but not female rats in a previous investigation. In this investigation, we determined if this treatment benefit in males required EXT training and ascertained the molecular basis for the observed sex difference in treatment efficacy. Nine groups of male rats trained to self-administer 1.0 mg/kg cocaine or receiving yoked-saline underwent EXT or NoEXT with or without EE and/or ORG. Next, they underwent reacquisition of cocaine self-administration or were sacrificed for molecular analysis of 9 protein targets indicative of neuroplasticity in four brain regions. Two groups of female rats trained to self-administer 1.0 mg/kg cocaine also underwent EXT with or without EE + ORG and were sacrificed for molecular analysis, as above. EE + ORG facilitated the rate of EXT learning in both sexes, and importantly, the therapeutic benefit of EE + ORG for inhibiting cocaine relapse required EXT training. Males were more sensitive than females to neuroplasticity-inducing effects of EE + ORG, which prevented reductions in total GluA1 and PSD95 proteins selectively in basolateral amygdala of male rats trained to self-administer cocaine and receiving EXT. Females were deficient in expression of multiple protein targets, especially after EE + ORG. These included total GluA1 and PSD95 proteins in basolateral amygdala, and total TrkB protein in basolateral amygdala, dorsal hippocampus, and ventromedial prefrontal cortex. Together, these results support the clinical view that sex-specific pharmacological and behavioral treatment approaches may be needed during cue exposure therapy to inhibit cocaine relapse.
Collapse
Affiliation(s)
- Lucy Peterson
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
| | - Jonathan Nguyen
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Naveed Ghani
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Hui Qiao
- Department of Biology, Boston University, Boston, MA, United States
| | - Sun Young Guwn
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States
| | - Kathleen M. Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
3
|
Hara K, Yoshida H, Tanaka D. Effect of electrode attachment location for transcutaneous electrical nerve stimulation for pain relief in lumbar vertebral body fractures. J Phys Ther Sci 2024; 36:415-419. [PMID: 39092416 PMCID: PMC11290860 DOI: 10.1589/jpts.36.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/04/2024] [Indexed: 08/04/2024] Open
Abstract
[Purpose] This study aimed to investigate the effect of the location of electrode attachment in transcutaneous electrical nerve stimulation on pain relief in patients with lumbar vertebral body fractures. [Participants and Methods] This study included 59 patients with lumbar vertebral body fractures, who were randomly assigned to receive transcutaneous electrical nerve stimulation to the lumbar region, lower limbs, or upper limbs, or no treatment, over a 4-week period. Pain, activities of daily living, and pain catastrophizing were assessed. [Results] Compared with the control group, transcutaneous electrical nerve stimulation to the lumbar region or lower limbs significantly reduced pain levels in the first 2 weeks. Although, activities of daily living and pain catastrophizing improved over time, no significant differences were observed between the groups. [Conclusion] Transcutaneous electrical nerve stimulation provides pain relief to patients during the early stages of lumbar vertebral body fractures. However, it had no effect on the activities of daily living, pain catastrophizing, or long-term pain-relief. For lumbar vertebral body fracture pain relief, transcutaneous electrical nerve stimulation electrodes should be attached to the lumbar region or lower limbs.
Collapse
Affiliation(s)
- Kanshu Hara
- Department of Rehabilitation, Kuroishi General Hospital:
1-70 Kitami, Kuroishi, Aomori 036-0541, Japan
- Department of Comprehensive Rehabilitation Science,
Hirosaki University Graduate School of Health Sciences, Japan
| | - Hideki Yoshida
- Department of Comprehensive Rehabilitation Science,
Hirosaki University Graduate School of Health Sciences, Japan
| | - Dai Tanaka
- Department of Orthopedic Surgery, Kuroishi General
Hospital, Japan
| |
Collapse
|
4
|
Otsuka H, Sasaki-Hamada S, Ishibashi H, Oka JI. Hippocampal acetylcholine receptor activation-dependent long-term depression in streptozotocin-induced diabetic rats. Neurosci Lett 2024; 822:137650. [PMID: 38253285 DOI: 10.1016/j.neulet.2024.137650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Cholinergic innervation of the hippocampus correlates with memory formation. In a well-established animal model of type 1 diabetes mellitus, obtained by injecting young adult rats with streptozotocin (STZ), reductions have been reported in the expression of acetylcholine receptors and choline acetyltransferase. In this study, we showed that long-term synaptic depression (LTD) induced by carbachol (CCh), a nonselective cholinergic receptor agonist, at Schaffer collateral-CA1 synapses in hippocampal slices was significantly weaker in streptozotocin-induced diabetic rats (STZ rats) than in age-matched control rats. No significant change was observed in the paired-pulse ratio between before and 80 min after the application of CCh in control and STZ rats. Moreover, CCh-induced LTD in control and STZ rats was not affected by an NMDA receptor antagonist. Although the application of CCh down-regulated the surface expression of GluA2 in the hippocampus of control rats, but not STZ rats. Therefore, the present results suggest that acetylcholine receptor-mediated LTD in STZ rats requires the internalization of AMPA receptors on the postsynaptic surface and their intracellular effects in the hippocampus.
Collapse
Affiliation(s)
- Hayuma Otsuka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Kanagawa 252-0373, Japan.
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan.
| |
Collapse
|
5
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
6
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
7
|
Siegert A, Diedrich L, Antal A. New Methods, Old Brains-A Systematic Review on the Effects of tDCS on the Cognition of Elderly People. Front Hum Neurosci 2021; 15:730134. [PMID: 34776903 PMCID: PMC8578968 DOI: 10.3389/fnhum.2021.730134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The world's population is aging. With this comes an increase in the prevalence of age-associated diseases, which amplifies the need for novel treatments to counteract cognitive decline in the elderly. One of the recently discussed non-pharmacological approaches is transcranial direct current stimulation (tDCS). TDCS delivers weak electric currents to the brain, thereby modulating cortical excitability and activity. Recent evidence suggests that tDCS, mainly with anodal currents, can be a powerful means to non-invasively enhance cognitive functions in elderly people with age-related cognitive decline. Here, we screened a recently developed tDCS database (http://tdcsdatabase.com) that is an open access source of published tDCS papers and reviewed 16 studies that applied tDCS to healthy older subjects or patients suffering from Alzheimer's Disease or pre-stages. Evaluating potential changes in cognitive abilities we focus on declarative and working memory. Aiming for more standardized protocols, repeated tDCS applications (2 mA, 30 min) over the left dorso-lateral prefrontal cortex (LDLPFC) of elderly people seem to be one of the most efficient non-invasive brain stimulation (NIBS) approaches to slow progressive cognitive deterioration. However, inter-subject variability and brain state differences in health and disease restrict the possibility to generalize stimulation methodology and increase the necessity of personalized protocol adjustment by means of improved neuroimaging techniques and electrical field modeling.
Collapse
Affiliation(s)
- Anna Siegert
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Ellrich J. Cortical stimulation in pharmacoresistant focal epilepsies. Bioelectron Med 2020; 6:19. [PMID: 32984441 PMCID: PMC7517676 DOI: 10.1186/s42234-020-00054-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
Pharmacoresistance and adverse drug events designate a considerable group of patients with focal epilepsies that require alternative treatments such as neurosurgical intervention and neurostimulation. Electrical or magnetic stimulations of cortical brain areas for the treatment of pharmacoresistant focal epilepsies emerged from preclinical studies and experience through intraoperative neurophysiological monitoring in patients. Direct neurostimulation of seizure onset zones in neocortical brain areas may specifically affect neuronal networks involved in epileptiform activity without remarkable adverse influence on physiological cortical processing in immediate vicinity. Noninvasive low-frequency transcranial magnetic stimulation and cathodal transcranial direct current stimulation are suggested to be anticonvulsant; however, potential effects are ephemeral and require effect maintenance by ongoing stimulation. Invasive responsive neurostimulation, chronic subthreshold cortical stimulation, and epicranial cortical stimulation cover a broad range of different emerging technologies with intracranial and epicranial approaches that still have limited market access partly due to ongoing clinical development. Despite significant differences, the present bioelectronic technologies share common mode of actions with acute seizure termination by high-frequency stimulation and long-term depression induced by low-frequency magnetic or electrical stimulation or transcranial direct current stimulation.
Collapse
Affiliation(s)
- Jens Ellrich
- Medical Faculty, University of Erlangen-Nuremberg, Erlangen, Germany.,Precisis AG, Heidelberg, Germany
| |
Collapse
|
9
|
Neyman S, Braunewell KH, O'Connell KE, Dev KK, Manahan-Vaughan D. Inhibition of the Interaction Between Group I Metabotropic Glutamate Receptors and PDZ-Domain Proteins Prevents Hippocampal Long-Term Depression, but Not Long-Term Potentiation. Front Synaptic Neurosci 2019; 11:13. [PMID: 31057390 PMCID: PMC6482240 DOI: 10.3389/fnsyn.2019.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023] Open
Abstract
The group I metabotropic glutamate (mGlu) receptor subtypes, mGlu1 and mGlu5, strongly regulate hippocampal synaptic plasticity. Both harbor PSD-95/discs-large/ZO-1 (PDZ) motifs at their extreme carboxyl terminals, which allow interaction with the PDZ domain of Tamalin, regulate the cell surface expression of group I mGlu receptors, and may modulate their coupling to signaling proteins. We investigated the functional role of this interaction in hippocampal long-term depression (LTD). Acute intracerebral treatment of adult rats with a cell-permeable PDZ-blocking peptide (pep-mGluR-STL), designed to competitively inhibit the interaction between Tamalin and group 1 mGlu receptors, prevented expression of LTD in the hippocampal CA1 region without affecting long-term potentiation (LTP) or basal synaptic transmission. Pep-mGluR-STL prevented facilitation by the group I mGlu receptor agonist, (S)-3,5-Dihydroxyphenylglycine (DHPG), and the mGlu5 agonist, (R,S)-2-chloro-5-Hydroxyphenylglycine (CHPG), of short-term depression (STD) into LTD, suggesting that Tamalin preferentially acts by mediating signaling through mGlu5. These data support that Tamalin is essential for the persistent expression of LTD and that it subserves the effective signaling of group 1 mGlu receptors.
Collapse
Affiliation(s)
- Sergey Neyman
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Karl-Heinz Braunewell
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Kara E O'Connell
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
10
|
Tan X, Tu Z, Han W, Song X, Cheng L, Chen H, Tu S, Li P, Liu W, Jiang L. Anticonvulsant and Neuroprotective Effects of Dexmedetomidine on Pilocarpine-Induced Status Epilepticus in Rats Using a Metabolomics Approach. Med Sci Monit 2019; 25:2066-2078. [PMID: 30892279 PMCID: PMC6437718 DOI: 10.12659/msm.912283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Status epilepticus (SE) is the most extreme form of seizure. It is a medical and neurological emergency that requires prompt and appropriate treatment and early neuroprotection. Dexmedetomidine (DEX) is mainly used for its sedative, analgesic, anxiolytic, and neuroprotective effects with light respiratory depression. The purpose of this study was to comprehensively analyze the metabolic events associated with anticonvulsion and neuroprotection of DEX on pilocarpine-induced status epilepticus rats by LC-MS/MS-based on metabolomics methods combined with histopathology. Material/Methods In this research, rats were divided into 3 groups: a normal group, an SE group, and an SE+DEX group. Hippocampus of rats from each group were collected for further LC-MS/MS-based metabolomic analysis. We collected brains for HE staining and Nissl staining. Multivariate analysis and KEGG enrichment analysis were performed. Results Results of metabolic profiles of the hippocampus tissues of rats proved that dexmedetomidine relieved rats suffering from the status epilepticus by restoring the damaged neuromodulatory metabolism and neurotransmitters, reducing the disturbance in energy, improving oxidative stress, and alleviating nucleic acid metabolism and amino acid in pilocarpine-induced status epilepticus rats. Conclusions This integral metabolomics research provides an extremely effective method to access the therapeutic effects of DEX. This research will further development of new treats for status epilepticus and provide new insights into the anticonvulsive and neuroprotective effects of DEX on status epilepticus.
Collapse
Affiliation(s)
- Xingqin Tan
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Zhenzhen Tu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wei Han
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Xiaojie Song
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Li Cheng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Hengsheng Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Shengfen Tu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Pan Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wei Liu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Li Jiang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
11
|
Swift KM, Gross BA, Frazer MA, Bauer DS, Clark KJD, Vazey EM, Aston-Jones G, Li Y, Pickering AE, Sara SJ, Poe GR. Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory. Curr Biol 2018; 28:3599-3609.e4. [PMID: 30393040 DOI: 10.1016/j.cub.2018.09.054] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 11/15/2022]
Abstract
Sleep is critical for proper memory consolidation. The locus coeruleus (LC) releases norepinephrine throughout the brain except when the LC falls silent throughout rapid eye movement (REM) sleep and prior to each non-REM (NREM) sleep spindle. We hypothesize that these transient LC silences allow the synaptic plasticity that is necessary to incorporate new information into pre-existing memory circuits. We found that spontaneous LC activity within sleep spindles triggers a decrease in spindle power. By optogenetically stimulating norepinephrine-containing LC neurons at 2 Hz during sleep, we reduced sleep spindle occurrence, as well as NREM delta power and REM theta power, without causing arousals or changing sleep amounts. Stimulating the LC during sleep following a hippocampus-dependent food location learning task interfered with consolidation of newly learned locations and reconsolidation of previous locations, disrupting next-day place cell activity. The LC stimulation-induced reduction in NREM sleep spindles, delta, and REM theta and reduced ripple-spindle coupling all correlated with decreased hippocampus-dependent performance on the task. Thus, periods of LC silence during sleep following learning are essential for normal spindle generation, delta and theta power, and consolidation of spatial memories.
Collapse
Affiliation(s)
- Kevin M Swift
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brooks A Gross
- Integrative Biology and Physiology Department and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle A Frazer
- Integrative Biology and Physiology Department and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David S Bauer
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyle J D Clark
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, New Brunswick, NJ 08854, USA
| | - Yong Li
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Susan J Sara
- Center for Interdisciplinary Research in Biology, College de France, Paris 75005, France; Child and Adolescent Psychiatry, New York University Medical School, New York, NY 10003, USA
| | - Gina R Poe
- Integrative Biology and Physiology Department and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Item-Place Encoding Through Hippocampal Long-Term Depression. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Manahan-Vaughan D. Special Considerations When Using Mice for In Vivo Electrophysiology and Long-Term Studies of Hippocampal Synaptic Plasticity During Behavior. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin Cell Dev Biol 2017; 77:51-62. [PMID: 28969983 DOI: 10.1016/j.semcdb.2017.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Joseph P Albanesi
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
16
|
Abstract
It is possible that one of the essential functions of sleep is to take out the garbage, as it were, erasing and "forgetting" information built up throughout the day that would clutter the synaptic network that defines us. It may also be that this cleanup function of sleep is a general principle of neuroscience, applicable to every creature with a nervous system.
Collapse
|
17
|
Fraize N, Hamieh AM, Joseph MA, Touret M, Parmentier R, Salin PA, Malleret G. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting. ACTA ACUST UNITED AC 2017; 24:86-94. [PMID: 28096498 PMCID: PMC5238719 DOI: 10.1101/lm.043505.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022]
Abstract
Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus.
Collapse
Affiliation(s)
- Nicolas Fraize
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, 69007 Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, 69007 Lyon, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, 69007 Lyon, France
| | - Al Mahdy Hamieh
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, 69007 Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, 69007 Lyon, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, 69007 Lyon, France
| | - Mickaël Antoine Joseph
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, 69007 Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, 69007 Lyon, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, 69007 Lyon, France
| | - Monique Touret
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, 69007 Lyon, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, 69007 Lyon, France.,Neurooncology and Neuroinflammation team, Lyon Neuroscience Research Center (CRNL), 69007 Lyon, France
| | - Régis Parmentier
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, 69007 Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, 69007 Lyon, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, 69007 Lyon, France
| | - Paul Antoine Salin
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, 69007 Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, 69007 Lyon, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, 69007 Lyon, France
| | - Gaël Malleret
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, 69007 Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, 69007 Lyon, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, 69007 Lyon, France
| |
Collapse
|
18
|
Briand LA, Deutschmann AU, Ellis AS, Fosnocht AQ. Disrupting GluA2 phosphorylation potentiates reinstatement of cocaine seeking. Neuropharmacology 2016; 111:231-241. [PMID: 27622930 DOI: 10.1016/j.neuropharm.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022]
Abstract
Addiction is associated with changes in synaptic plasticity mediated, in part, by alterations in the trafficking and stabilization of AMPA receptors at synapses within the nucleus accumbens. Exposure to cocaine can lead to protein kinase C-mediated phosphorylation of GluA2 AMPA subunits and this phosphorylation event leads to the internalization of GluA2-containing AMPARs, which are calcium-impermeable. However, it is not clear whether this internalization is necessary for the expression of addictive phenotypes. Utilizing a mouse with a point mutation within the GluA2 subunit c-terminus, the current study demonstrates that disrupting PKC-mediated GluA2 phosphorylation potentiates reinstatement of both cue-induced cocaine seeking and cocaine conditioned reward without affecting operant learning, food self-administration or cocaine sensitization. Electrophysiological recordings revealed increased GluA2-mediated AMPA transmission as evidenced by increased sEPSC amplitude without any changes in sEPSC frequency or rectification. In support of this increase in GluA2 activity mediating the augmented cocaine reinstatement, we found that accumbal overexpression of GluA2 recapitulated this behavioral effect in wildtype mice while not altering reinstatement behavior in the GluA2 K882A knock-in mice. In addition, disrupting GluA2 phosphorylation was associated with blunted long-term depression in the nucleus accumbens, mimicking the anaplasticity seen following cocaine self-administration. Taken together these results indicate that disrupting GluA2 phosphorylation and increasing GluA2-mediated transmission in the nucleus accumbens leads to increased vulnerability to cocaine relapse. Further, these results indicate that modulating GluA2-containing AMPAR trafficking can contribute to addictive phenotypes in the absence of alterations in GluA2-lacking receptors. These results highlight the GluA2 phosphorylation site as a novel target for the development of cocaine addiction therapeutics.
Collapse
Affiliation(s)
- Lisa A Briand
- Department of Psychology, Temple University, USA; Neuroscience Program, Temple University, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Craniofacial nociceptive processing in patients ( n = 25) suffering from unilateral cluster headache was assessed by laser-evoked cortical potentials (LEPs). Latencies and amplitudes of late (N2, P2) and middle-latency (N1) LEPs were measured in chronic (CCH, n = 9) and episodic cluster headache (ECH, n = 17). In CCH patients on headache side N1c occurred later and P2 amplitude was smaller than on the healthy control side. In active periods of ECH patients P2 latency was shorter on the headache side. In remission periods of ECH patients the N2P2 ratio was lower on the headache side. In 19 out of 26 examinations in 25 headache patients LEP deviated from normative data in healthy controls ( n = 10) without any specific pattern of altered parameters. LEPs document pathological changes in craniofacial nociception in cluster headache. However, there seems to be no pathognomonic deviation pattern that enables reliable diagnosis of cluster headache and application of LEPs in further studies of pathophysiological mechanisms.
Collapse
Affiliation(s)
- J Ellrich
- Department of Neurosurgery, Experimental Neurosurgery Section, RWTH Aachen University, Aachen, Germany.
| | | | | | | |
Collapse
|
20
|
Sleep Spindles as Facilitators of Memory Formation and Learning. Neural Plast 2016; 2016:1796715. [PMID: 27119026 PMCID: PMC4826925 DOI: 10.1155/2016/1796715] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/13/2016] [Indexed: 01/08/2023] Open
Abstract
Over the past decades important progress has been made in understanding the mechanisms of sleep spindle generation. At the same time a physiological role of sleep spindles is starting to be revealed. Behavioural studies in humans and animals have found significant correlations between the recall performance in different learning tasks and the amount of sleep spindles in the intervening sleep. Concomitant neurophysiological experiments showed a close relationship between sleep spindles and other sleep related EEG rhythms as well as a relationship between sleep spindles and synaptic plasticity. Together, there is growing evidence from several disciplines in neuroscience for a participation of sleep spindles in memory formation and learning.
Collapse
|
21
|
Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci U S A 2016; 113:E1382-91. [PMID: 26903620 DOI: 10.1073/pnas.1525586113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.
Collapse
|
22
|
Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb Cortex 2016; 26:1349-64. [PMID: 26804338 PMCID: PMC4785955 DOI: 10.1093/cercor/bhv330] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
23
|
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficiency of maternally inherited UBE3A, an ubiquitin E3 ligase. Despite recent progress in understanding the mechanism underlying UBE3A imprinting, there is no effective treatment. Further investigation of the roles played by UBE3A in the central nervous system (CNS) is needed for developing effective therapies. AREA COVERED This review covers the literature related to genetic classifications of AS, recent discoveries regarding the regulation of UBE3A imprinting, alterations in cell signaling in various brain regions and potential therapeutic approaches. Since a large proportion of AS patients exhibit comorbid autism spectrum disorder (ASD), potential common molecular bases are discussed. EXPERT OPINION Advances in understanding UBE3A imprinting provide a unique opportunity to induce paternal UBE3A expression, thus targeting the syndrome at its 'root.' However, such efforts have yielded less-than-expected rescue effects in AS mouse models, raising the concern that activation of paternal UBE3A after a critical period cannot correct all the CNS defects that developed in a UBE3A-deficient environment. On the other hand, targeting abnormal downstream cell signaling pathways has provided promising rescue effects in preclinical research. Thus, combined reinstatement of paternal UBE3A expression with targeting abnormal signaling pathways should provide better therapeutic effects.
Collapse
Affiliation(s)
- Xiaoning Bi
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Jiandong Sun
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Angela X Ji
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Michel Baudry
- b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
24
|
Sun J, Zhu G, Liu Y, Standley S, Ji A, Tunuguntla R, Wang Y, Claus C, Luo Y, Baudry M, Bi X. UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis. Cell Rep 2015; 12:449-61. [PMID: 26166566 DOI: 10.1016/j.celrep.2015.06.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 06/07/2015] [Indexed: 11/17/2022] Open
Abstract
Gated solely by activity-induced changes in intracellular calcium, small-conductance potassium channels (SKs) are critical for a variety of functions in the CNS, from learning and memory to rhythmic activity and sleep. While there is a wealth of information on SK2 gating, kinetics, and Ca(2+) sensitivity, little is known regarding the regulation of SK2 subcellular localization. We report here that synaptic SK2 levels are regulated by the E3 ubiquitin ligase UBE3A, whose deficiency results in Angelman syndrome and overexpression in increased risk of autistic spectrum disorder. UBE3A directly ubiquitinates SK2 in the C-terminal domain, which facilitates endocytosis. In UBE3A-deficient mice, increased postsynaptic SK2 levels result in decreased NMDA receptor activation, thereby impairing hippocampal long-term synaptic plasticity. Impairments in both synaptic plasticity and fear conditioning memory in UBE3A-deficient mice are significantly ameliorated by blocking SK2. These results elucidate a mechanism by which UBE3A directly influences cognitive function.
Collapse
Affiliation(s)
- Jiandong Sun
- Western University of Health Sciences, Pomona, CA 91766, USA
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
| | - Yan Liu
- Western University of Health Sciences, Pomona, CA 91766, USA
| | - Steve Standley
- Western University of Health Sciences, Pomona, CA 91766, USA
| | - Angela Ji
- Western University of Health Sciences, Pomona, CA 91766, USA
| | | | - Yubin Wang
- Western University of Health Sciences, Pomona, CA 91766, USA
| | - Chad Claus
- Western University of Health Sciences, Pomona, CA 91766, USA
| | - Yun Luo
- Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michel Baudry
- Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xiaoning Bi
- Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
25
|
Bhardwaj SK, Ryan RT, Wong TP, Srivastava LK. Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice. Front Behav Neurosci 2015; 9:72. [PMID: 25859193 PMCID: PMC4374471 DOI: 10.3389/fnbeh.2015.00072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
The expression of dysbindin-1, a protein coded by the risk gene dtnbp1, is reduced in the brains of schizophrenia patients. Evidence indicates a role of dysbindin-1 in dopaminergic and glutamatergic transmission. Glutamatergic transmission and plasticity at excitatory synapses is critically regulated by G-protein coupled metabotropic glutamate receptor (mGluR) family members, that have been implicated in schizophrenia. Here, we report a role of dysbindin-1 in hippocampal group 1 mGluR (mGluRI) function in mice. In hippocampal synaptoneurosomal preparations from sandy (sdy) mice, that have a loss of function mutation in dysbindin-1 gene, we observed a striking reduction in mGluRI agonist [(S)-3, 5-dihydroxyphenylglycine] (DHPG)-induced phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2). This mGluR-ERK1/2 deficit occurred in the absence of significant changes in protein levels of the two members of the mGluRI family (i.e., mGluR1 and mGluR5) or in another mGluRI signaling pathway, i.e., protein kinase C (PKC). Aberrant mGluRI-ERK1/2 signaling affected hippocampal synaptic plasticity in the sdy mutants as DHPG-induced long-term depression (LTD) at CA1 excitatory synapses was significantly reduced. Behavioral data suggest that the mGluRI hypofunction may underlie some of the cognitive abnormalities described in sdy mice as the administration of CDPPB (3-cyano-N-(1, 3-diphenyl-1H-pyrazol-5-yl benzamide), a positive allosteric modulator of mGluR5, rescued short-term object recognition and spatial learning and memory deficits in these mice. Taken together, our data suggest a novel role of dysbindin-1 in regulating mGluRI functions.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Psychiatry and Integrated Programme in Neuroscience, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Richard T Ryan
- Department of Psychiatry and Integrated Programme in Neuroscience, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Tak Pan Wong
- Department of Psychiatry and Integrated Programme in Neuroscience, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Lalit K Srivastava
- Department of Psychiatry and Integrated Programme in Neuroscience, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| |
Collapse
|
26
|
Lamb YN, McKay NS, Thompson CS, Hamm JP, Waldie KE, Kirk IJ. Brain-derived neurotrophic factor Val66Met polymorphism, human memory, and synaptic neuroplasticity. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2014; 6:97-108. [PMID: 26263066 DOI: 10.1002/wcs.1334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 10/20/2014] [Accepted: 11/07/2014] [Indexed: 11/09/2022]
Abstract
Some people have much better memory than others, and there is compelling evidence that a considerable proportion of this variation in memory ability is genetically inherited. A form of synaptic plasticity known as long-term potentiation (LTP) is the principal candidate mechanism underlying memory formation in neural circuits, and it might be expected, therefore, that a genetic influence on the degree of LTP might in turn influence memory abilities. Of the genetic variations thought to significantly influence mnemonic ability in humans, the most likely to have its effect via LTP is a single nucleotide polymorphism affecting brain-derived neurotrophic factor [BDNF (Val66Met)]. However, although it is likely that BDNF influences memory via a modulation of acute plasticity (i.e., LTP), BDNF also has considerable influence on structural development of neural systems. Thus, the influence of BDNF (Val66Met) on mnemonic performance via influences of brain structure as well as function must also be considered. In this brief review, we will describe the phenomenon of LTP and its study in non-human animals. We will discuss the relatively recent attempts to translate this work to studies in humans. We will describe how this has enabled investigation of the effect of the BDNF polymorphism on LTP, on brain structure, and on memory performance.
Collapse
Affiliation(s)
- Yvette N Lamb
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Nicole S McKay
- School of Psychology, University of Auckland, Auckland, New Zealand
| | | | - Jeffrey P Hamm
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Karen E Waldie
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Ian J Kirk
- School of Psychology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Barmashenko G, Buttgereit J, Herring N, Bader M, Ozcelik C, Manahan-Vaughan D, Braunewell KH. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats. Front Mol Neurosci 2014; 7:95. [PMID: 25520616 PMCID: PMC4249455 DOI: 10.3389/fnmol.2014.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning.
Collapse
Affiliation(s)
- Gleb Barmashenko
- Guest Group, In vitro-Electrophysiology Laboratory, Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | - Jens Buttgereit
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité Medical Faculty Berlin, Germany ; Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Neil Herring
- Max Delbrück Center for Molecular Medicine Berlin, Germany ; Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre - BHF Centre of Research Excellence, University of Oxford Oxford, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Cemil Ozcelik
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité Medical Faculty Berlin, Germany ; Max Delbrück Center for Molecular Medicine Berlin, Germany
| | | | - Karl H Braunewell
- Guest Group, In vitro-Electrophysiology Laboratory, Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
28
|
Petrini L, Hennings K, Li X, Negro F, Arendt-Nielsen L. A human experimental model of episodic pain. Int J Psychophysiol 2014; 94:496-503. [DOI: 10.1016/j.ijpsycho.2014.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/07/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022]
|
29
|
Wiescholleck V, Manahan-Vaughan D. Antagonism of D1/D5 receptors prevents long-term depression (LTD) and learning-facilitated LTD at the perforant path-dentate gyrus synapse in freely behaving rats. Hippocampus 2014; 24:1615-22. [PMID: 25112177 DOI: 10.1002/hipo.22340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 11/11/2022]
Abstract
Hippocampal synaptic plasticity, in the form of long-term potentiation (LTP) and long-term depression (LTD), enables spatial memory formation, whereby LTP and LTD are likely to contribute different elements to the resulting spatial representation. Dopamine, released from the ventral tegmental area particularly under conditions of reward, acts on the hippocampus, and may specifically influence the encoding of information into long-term memory. The dentate gyrus (DG), as the "gateway" to the hippocampus is likely to play an important role in this process. D1/D5 dopamine receptors are importantly involved in the regulation of synaptic plasticity thresholds in the CA1 region of the hippocampus and determine the direction of change in synaptic strength that occurs during novel spatial learning. Here, we explored whether D1/D5-receptors influence LTD that is induced in the DG following patterned afferent stimulation of the perforant path of freely behaving adult rats, or influence LTD that occurs in association with spatial learning. We found that LTD that is induced by afferent stimulation, and LTD that is facilitated by learning about novel landmark configurations, were both prevented by D1/D5-receptor antagonism, whereas agonist activation of the D1/D5-receptor had no effect on basal tonus or short-term depression. Other studies have reported that in the DG, D1/D5-receptor agonism or antagonism do not affect LTP, but agonism prevents depotentiation. These findings suggest that the dopaminergic system, acting via D1/D5-receptors, influences information gating by the DG and modulates the direction of change in synaptic strength that underlies information storage in this hippocampal substructure. Information encoded by robust forms of LTD is especially dependent on D1/D5-receptor activation. Thus, dopamine acting on D1/D5-receptors is likely to support specific experience-dependent encoding, and may influence the content of hippocampal representations of experience.
Collapse
|
30
|
Fole A, Miguens M, Higuera-Matas A, Alguacil LF, Ambrosio E, Del Olmo N. Cocaine facilitates protein synthesis-dependent LTP: the role of metabotropic glutamate receptors. Eur Neuropsychopharmacol 2014; 24:621-9. [PMID: 24268515 DOI: 10.1016/j.euroneuro.2013.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/10/2013] [Accepted: 10/25/2013] [Indexed: 11/27/2022]
Abstract
Cocaine addiction alters synaptic plasticity in many brain areas involved in learning and memory processes, including the hippocampus. Long-term potentiation (LTP) is one of the best studied examples of hippocampal synaptic plasticity and it is considered as one of the molecular basis of learning and memory. We previously demonstrated that in the presence of cocaine, a long lasting form of hippocampal LTP is induced by a single pulse of high frequency stimulation, which in normal conditions evokes only an early form of LTP. In this study, we further explore the molecular basis of this modulation of synaptic plasticity by cocaine. By performing pharmacological experiments on hippocampal slices, we were able to show that cocaine converts early LTP to a form of LTP dependent on protein synthesis, probably through the cAMP-dependent protein kinase and extracellular signal-regulated kinase signaling cascades. We also found that metabotropic glutamate receptors are involved in this phenomenon. These studies further clarify the molecular machinery used by cocaine to alter synaptic plasticity and modulate learning and memory processes.
Collapse
Affiliation(s)
- A Fole
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - M Miguens
- Departamento de Psicología Básica I, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - A Higuera-Matas
- Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - L F Alguacil
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; Unidad de Investigación Traslacional, Hospital de Ciudad Real, Spain
| | - E Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - N Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
31
|
Vanderheyden WM, Poe GR, Liberzon I. Trauma exposure and sleep: using a rodent model to understand sleep function in PTSD. Exp Brain Res 2014; 232:1575-84. [PMID: 24623353 DOI: 10.1007/s00221-014-3890-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/18/2014] [Indexed: 01/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by intrusive memories of a traumatic event, avoidance behavior related to cues of the trauma, emotional numbing, and hyper-arousal. Sleep abnormalities and nightmares are core symptoms of this disorder. In this review, we propose a model which implicates abnormal activity in the locus coeruleus (LC), an important modifier of sleep-wake regulation, as the source of sleep abnormalities and memory abnormalities seen in PTSD. Abnormal LC activity may be playing a key role in symptom formation in PTSD via sleep dysregulation and suppression of hippocampal bidirectional plasticity.
Collapse
|
32
|
Disruption of glutamate receptor-interacting protein in nucleus accumbens enhances vulnerability to cocaine relapse. Neuropsychopharmacology 2014; 39:759-69. [PMID: 24126453 PMCID: PMC3895254 DOI: 10.1038/npp.2013.265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022]
Abstract
Trafficking and stabilization of AMPA receptors at synapses in response to cocaine exposure is thought to be critical for expression of cocaine addiction and relapse. Glutamate receptor-interacting protein (GRIP) is a neuronal scaffolding protein that stabilizes GluA2 AMPARs at synapses but its role in cocaine addiction has not been examined. The current study demonstrates that conditional deletion of GRIP within the nucleus accumbens potentiates cue-induced reinstatement of cocaine seeking without affecting operant learning, locomotor activity, or reinstatement of natural reward seeking. This is the first study to demonstrate a role for accumbal GRIP in behavior. Electrophysiological recordings revealed increased rectification of AMPAR-mediated currents in the nucleus accumbens and increased AMPAR sensitivity to the GluA2-lacking AMPAR antagonist, 1-naphthylacetyl spermine, indicative of an increased contribution of GluA2-lacking calcium-permeable AMPARs. In addition, accumbal GRIP deletion was associated with blunted long-term depression, similar to what is seen following cocaine self-administration. Taken together, these results indicate that GRIP may modulate addictive phenotypes through its regulation of synaptic AMPARs by controlling their subunit composition and susceptibility to LTD. These effects are associated with changes in vulnerability to cocaine relapse and highlight GRIP as a novel target for the development of cocaine addiction therapeutics.
Collapse
|
33
|
Hansen N, Manahan-Vaughan D. Locus Coeruleus Stimulation Facilitates Long-Term Depression in the Dentate Gyrus That Requires Activation of β-Adrenergic Receptors. Cereb Cortex 2014; 25:1889-96. [PMID: 24464942 PMCID: PMC4459289 DOI: 10.1093/cercor/bht429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path–DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
34
|
Abstract
In the last decades a substantial knowledge about sleep mechanisms has been accumulated. However, the function of sleep still remains elusive. The difficulty with unraveling sleep's function may arise from the lack of understanding of how the multitude of processes associated with waking and sleep-from gene expression and single neuron activity to the whole brain dynamics and behavior-functionally and mechanistically relate to each other. Therefore, novel conceptual frameworks, which integrate and take into account the variety of phenomena occurring during waking and sleep at different levels, will likely lead to advances in our understanding of the function of sleep, above and beyond what merely descriptive or correlative approaches can provide. One such framework, the synaptic homeostasis hypothesis, focuses on wake- and sleep-dependent changes in synaptic strength. The core claim of this hypothesis is that learning and experience during wakefulness are associated with a net increase in synaptic strength. In turn, the proposed function of sleep is to provide synaptic renormalization, which has important implications with respect to energy needs, intracranial space, metabolic supplies, and, importantly, enables further plastic changes. In this article we review the empirical evidence for this hypothesis, which was obtained at several levels-from gene expression and cellular excitability to structural synaptic modifications and behavioral outcomes. We conclude that although the mechanisms behind the proposed role of sleep in synaptic homeostasis are undoubtedly complex, this conceptual framework offers a unique opportunity to provide mechanistic and functional explanation for many previously disparate observations, and define future research strategies.
Collapse
|
35
|
Gonzalez J, Morales IS, Villarreal DM, Derrick BE. Low-frequency stimulation induces long-term depression and slow onset long-term potentiation at perforant path-dentate gyrus synapses in vivo. J Neurophysiol 2013; 111:1259-73. [PMID: 24335215 DOI: 10.1152/jn.00941.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of homosynaptic long-term depression (LTD) is thought to mediate a crucial role in sustaining memory function. Our in vivo investigations of LTD expression at lateral (LPP) and medial perforant path (MPP) synapses in the dentate gyrus (DG) corroborate prior demonstrations that PP-DG LTD is difficult to induce in intact animals. In freely moving animals, LTD expression occurred inconsistently among LPP-DG and MPP-DG responses. Interestingly, following acute electrode implantation in anesthetized rats, low-frequency stimulation (LFS; 900 pulses, 1 Hz) promotes slow-onset LTP at both MPP-DG and LPP-DG synapses that utilize distinct induction mechanisms. Systemic administration of the N-methyl-d-aspartate (NMDA) receptor antagonist (+/-)-cyclopiperidine-6-piperiperenzine (CPP; 10 mg/kg) 90 min before LFS selectively blocked MPP-DG but not LPP-DG slow onset LTP, suggesting MPP-DG synapses express a NMDA receptor-dependent slow onset LTP whereas LPP-DG slow onset LTP induction is NMDA receptor independent. In experiments where paired-pulse LFS (900 paired pulses, 200-ms paired-pulse interval) was used to induce LTD, paired-pulse LFS of the LPP resulted in rapid onset LTP of DG responses, whereas paired-pulse LFS of the MPP induced slow onset LTP of DG responses. Although LTD observations were very rare following acute electrode implantation in anesthetized rats, LPP-DG LTD was demonstrated in some anesthetized rats with previously implanted electrodes. Together, our data indicate in vivo PP-DG LTD expression is an inconsistent phenomenon that is primarily observed in recovered animals, suggesting perturbation of the dentate through surgery-related tissue trauma influences both LTD incidence and LTP induction at PP-DG synapses in vivo.
Collapse
Affiliation(s)
- Jossina Gonzalez
- Department of Biology, Neurosciences Research Institute, University of Texas, San Antonio, Texas
| | | | | | | |
Collapse
|
36
|
Mukherjee S, Manahan-Vaughan D. Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology 2013; 66:65-81. [DOI: 10.1016/j.neuropharm.2012.06.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/27/2022]
|
37
|
Cui Z, Feng R, Jacobs S, Duan Y, Wang H, Cao X, Tsien JZ. Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep 2013; 3:1036. [PMID: 23301157 PMCID: PMC3539144 DOI: 10.1038/srep01036] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3–5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30907, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci 2012; 6:85. [PMID: 23248592 PMCID: PMC3522088 DOI: 10.3389/fnbeh.2012.00085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/17/2012] [Indexed: 11/24/2022] Open
Abstract
Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity.
Collapse
Affiliation(s)
- Arne Buschler
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
39
|
Villamar MF, Santos Portilla A, Fregni F, Zafonte R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation 2012; 15:326-38. [PMID: 22882244 DOI: 10.1111/j.1525-1403.2012.00474.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To review the use of noninvasive brain stimulation (NBS) as a therapeutic tool to enhance neuroplasticity following traumatic brain injury (TBI). MATERIALS AND METHODS Based on a literature search, we describe the pathophysiological events following TBI and the rationale for the use of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in this setting. RESULTS The pathophysiological mechanisms occurring after TBI vary across time and therefore require differential interventions. Theoretically, given the neurophysiological effects of both TMS and tDCS, these tools may: 1) decrease cortical hyperexcitability acutely after TBI; 2) modulate long-term synaptic plasticity as to avoid maladaptive consequences; and 3) combined with physical and behavioral therapy, facilitate cortical reorganization and consolidation of learning in specific neural networks. All of these interventions may help decrease the burden of disabling sequelae after brain injury. CONCLUSIONS Evidence from animal and human studies reveals the potential benefit of NBS in decreasing the extent of injury and enhancing plastic changes to facilitate learning and recovery of function in lesioned neural tissue. However, this evidence is mainly theoretical at this point. Given safety constraints, studies in TBI patients are necessary to address the role of NBS in this condition as well as to further elucidate its therapeutic effects and define optimal stimulation parameters.
Collapse
Affiliation(s)
- Mauricio Fernando Villamar
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
40
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
41
|
Long-term depression of pain-related cerebral activation in healthy man: An fMRI study. Eur J Pain 2012; 14:615-24. [DOI: 10.1016/j.ejpain.2009.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 09/21/2009] [Accepted: 10/12/2009] [Indexed: 11/20/2022]
|
42
|
Electrical low-frequency stimulation induces long-term depression of sensory and affective components of pain in healthy man. Eur J Pain 2012; 14:359-65. [DOI: 10.1016/j.ejpain.2009.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 11/24/2022]
|
43
|
Hagena H, Manahan-Vaughan D. Learning-facilitated synaptic plasticity at CA3 mossy fiber and commissural-associational synapses reveals different roles in information processing. Cereb Cortex 2011; 21:2442-9. [PMID: 21493717 PMCID: PMC3183418 DOI: 10.1093/cercor/bhq271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subregion-dependent differences in the role of the hippocampus in information processing exist. Recently, it has emerged that a special relationship exists between the expression of persistent forms of synaptic plasticity in hippocampal subregions and the encoding of different types of spatial information. Little is known about this type of information processing at CA3 synapses. We report that in freely behaving rats, long-term potentiation (LTP) is facilitated at both mossy fiber (mf)-CA3 and commissural-associational (AC)-CA3 synapses by exploration of a novel (empty) environment. Exploration of large spatial landmarks facilitates long-term depression (LTD) at mf-CA3 synapses and impairs synaptic depression at AC-CA3 synapses. Novel exploration of small environmental features does not facilitate LTD at mf synapses but facilitates persistent LTD at AC synapses. Thus, depending on the quality of the information synaptic plasticity at AC-CA3 and mf-CA3 synapses is differentially modulated. These data suggest that expression of LTP as a result of environmental change is a common property of hippocampal synapses. However, LTD at mf synapses or AC synapses may subserve distinct and separate functions within the CA3 region.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty
- International Graduate School for Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty
- International Graduate School for Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
44
|
Bidirectional synaptic plasticity and spatial memory flexibility require Ca2+-stimulated adenylyl cyclases. J Neurosci 2011; 31:10174-83. [PMID: 21752993 DOI: 10.1523/jneurosci.0009-11.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When certain memory becomes obsolete, effective suppression of the previously established memory is essential for animals to adapt to the changing environment. At the cellular level, reversal of synaptic potentiation may be important for neurons to acquire new information and to prevent synaptic saturation. Here, we investigated the function of Ca(2+)-stimulated cAMP signaling in the regulation of bidirectional synaptic plasticity and spatial memory formation in double knock-out mice (DKO) lacking both type 1 and 8 adenylyl cyclases (ACs). In anesthetized animals, the DKO mutants showed defective long-term potentiation (LTP) after a single high-frequency stimulation (HFS) or two spaced HFSs at 100 Hz. However, DKO mice showed normal LTP after a single HFS at 200 Hz or two compressed HFSs at 100 Hz. Interestingly, reversal of synaptic potentiation as well as de novo synaptic depression was impaired in DKO mice. In the Morris water maze, DKO mice showed defective acquisition and memory retention, although the deficits could be attenuated by overtraining or compressed trainings with a shorter intertrial interval. In the reversal platform test, DKO animals were impaired in both relearning and old memory suppression. Furthermore, the extinction of the old spatial memory was not efficient in DKO mice. These data demonstrate that Ca(2+)-stimulated AC activity is important not only for LTP and spatial memory formation but also for the suppression of both previously established synaptic potentiation and old spatial memory.
Collapse
|
45
|
|
46
|
Gβγ and the C terminus of SNAP-25 are necessary for long-term depression of transmitter release. PLoS One 2011; 6:e20500. [PMID: 21633701 PMCID: PMC3102109 DOI: 10.1371/journal.pone.0020500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/04/2011] [Indexed: 11/19/2022] Open
Abstract
Background Short-term presynaptic inhibition mediated by G protein-coupled receptors involves a direct interaction between G proteins and the vesicle release machinery. Recent studies implicate the C terminus of the vesicle-associated protein SNAP-25 as a molecular binding target of Gβγ that transiently reduces vesicular release. However, it is not known whether SNAP-25 is a target for molecular modifications expressing long-term changes in transmitter release probability. Methodology/Principal Findings This study utilized two-photon laser scanning microscopy for real-time imaging of action potential-evoked [Ca2+] increases, in single Schaffer collateral presynaptic release sites in in vitro hippocampal slices, plus simultaneous recording of Schaffer collateral-evoked synaptic potentials. We used electroporation to infuse small peptides through CA3 cell bodies into presynaptic Schaffer collateral terminals to selectively study the presynaptic effect of scavenging the G-protein Gβγ. We demonstrate here that the C terminus of SNAP-25 is necessary for expression of LTD, but not long-term potentiation (LTP), of synaptic strength. Using type A botulinum toxin (BoNT/A) to enzymatically cleave the 9 amino acid C-terminus of SNAP-25 eliminated the ability of low frequency synaptic stimulation to induce LTD, but not LTP, even if release probability was restored to pre-BoNT/A levels by elevating extracellular [Ca2+]. Presynaptic electroporation infusion of the 14-amino acid C-terminus of SNAP-25 (Ct-SNAP-25), to scavenge Gβγ, reduced both the transient presynaptic inhibition produced by the group II metabotropic glutamate receptor stimulation, and LTD. Furthermore, presynaptic infusion of mSIRK, a second, structurally distinct Gβγ scavenging peptide, also blocked the induction of LTD. While Gβγ binds directly to and inhibit voltage-dependent Ca2+ channels, imaging of presynaptic [Ca2+] with Mg-Green revealed that low-frequency stimulation only transiently reduced presynaptic Ca2+ influx, an effect not altered by infusion of Ct-SNAP-25. Conclusions/Significance The C-terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, is a binding target for Gβγ necessary for both transient transmitter-mediated presynaptic inhibition, and the induction of presynaptic LTD.
Collapse
|
47
|
Wu P, Xue YX, Ding ZB, Xue LF, Xu CM, Lu L. Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory. J Neurochem 2011; 118:113-25. [DOI: 10.1111/j.1471-4159.2011.07277.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Chu HY, Wu Q, Zhou S, Cao X, Zhang A, Jin GZ, Hu GY, Zhen X. SKF83959 suppresses excitatory synaptic transmission in rat hippocampus via a dopamine receptor-independent mechanism. J Neurosci Res 2011; 89:1259-66. [DOI: 10.1002/jnr.22653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/24/2023]
|
49
|
Dumas TC. Postnatal alterations in induction threshold and expression magnitude of long-term potentiation and long-term depression at hippocampal synapses. Hippocampus 2010; 22:188-99. [PMID: 21069779 DOI: 10.1002/hipo.20881] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2010] [Indexed: 11/05/2022]
Abstract
Activity-dependent synaptic plasticity refines neural networks during development and subserves information processing in adulthood. Previous research has revealed postnatal alterations in synaptic plasticity at nearly all forebrain synapses, suggesting different forms of synaptic plasticity may contribute to network development and information processing. To assess possible relationships between modifications in synaptic plasticity and maturation of cognitive ability, we examined excitatory synaptic function in area CA1 of the mouse hippocampus ∼3 weeks of age, when hippocampal-dependent learning and memory abilities first emerge. Long-term potentiation (LTP) and depression (LTD) of synaptic efficacy were observed in slices from juvenile animals younger than 3 weeks of age. Both pre- and postsynaptic mechanisms supported LTP and LTD in juveniles. After the third postnatal week, the magnitude of LTP was reduced and the threshold for postsynaptic induction was reduced, but the threshold for presynaptic induction was increased. The reduced threshold for postsynaptic LTP appeared to be due, partly, to an increase in baseline excitatory synaptic strength, which likely permitted greater postsynaptic depolarization during induction. Low frequency stimulation did not induce LTD at this more mature stage, but it blocked subsequent induction of LTP, suggesting metaplastic differences across age groups. Late postnatal modifications in activity-dependent synaptic plasticity might reflect attenuation of mechanisms more closely tied to network formation (presynaptic potentiation and pre- and postsynaptic depression) and unmasking of mechanisms underlying information processing and storage (associative postsynaptic potentiation), which likely impact the integrative capacity of the network and regulate the emergence of adult-like cognitive abilities.
Collapse
Affiliation(s)
- Theodore C Dumas
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.
| |
Collapse
|
50
|
Yilmaz-Rastoder E, Miyamae T, Braun AE, Thiels E. LTP- and LTD-inducing stimulations cause opposite changes in arc/arg3.1 mRNA level in hippocampal area CA1 in vivo. Hippocampus 2010; 21:1290-301. [PMID: 20824728 DOI: 10.1002/hipo.20838] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2010] [Indexed: 12/23/2022]
Abstract
Immediate early genes (IEGs) typically are the first genetic responders to a variety of cellular activations. The IEG that encodes activity-regulated cytoskeleton-associated protein (arc/arg3.1) has attracted much interest because its mRNA is transported to and translated near activated synapses. Moreover, arc has been implicated in both long-term potentiation (LTP) and long-term depression (LTD). However, little is known about the time course of altered arc expression during LTP and LTD. Here we characterized arc mRNA levels in area CA1 of the adult rat hippocampus in vivo after LTP- and LTD-inducing stimulations that were identical, except for the temporal patterning of the stimulation pulses. We observed a persistent increase in arc mRNA level during LTP. In contrast, during LTD, arc mRNA level first was decreased and then transiently increased relative to control level. These findings demonstrate that arc mRNA is regulated differently during LTP and LTD, and they provide evidence for stimulation-induced downregulation of mRNA availability during LTD. Findings of abbreviated LTD when transcription was inhibited indicate that the prolonged maintenance of the type of N-methyl-D-aspartate receptor-dependent LTD studied here requires de novo transcription. Furthermore, lack of evidence for a LTD-associated change in the mRNA level of the IEG zif268 demonstrates that the decrease in arc mRNA during LTD is not a general genetic response. Thus, the regulation of arc expression not only differs between LTP and LTD, but also diverges from that of other IEGs implicated in activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Eser Yilmaz-Rastoder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|