1
|
de Oliveira-Júnior BA, Marques DB, Rossignoli MT, Prizon T, Leite JP, Ruggiero RN. Multidimensional behavioral profiles associated with resilience and susceptibility after inescapable stress. Sci Rep 2024; 14:9699. [PMID: 38678053 PMCID: PMC11055923 DOI: 10.1038/s41598-024-59984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Clinical depression is characterized by multiple concurrent symptoms, manifesting as a complex heterogeneous condition. Although some well-established classical behavioral assessments are widespread in rodent models, it remains uncertain whether rats also display stress-induced depression-related phenotypes in a multidimensional manner, i.e., simultaneous alterations in multiple behavioral tests. Here, we investigated multivariate patterns and profiles of depression-related behavioral traits in male Wistar rats subjected to inescapable footshocks (IS) or no-shocks (NS), followed by a comprehensive battery of behavioral tests and ethological characterization. We observed generalized stronger intra-test but weaker inter-test correlations. However, feature clustering of behavioral measures successfully delineated variables linked to resilience and susceptibility to stress. Accordingly, a noteworthy covariation pattern emerged, characterized by increased open field locomotion, reduced time in the elevated plus maze open arms, lower sucrose preference, and increased shuttle box escape failures that consistently differentiated IS from NS. Surprisingly there is little contribution from forced swim. In addition, individual clustering revealed a diversity of behavioral profiles, naturally separating NS and IS, including subpopulations entirely characterized by resilience or susceptibility. In conclusion, our study elucidates intricate relationships among classical depression-related behavioral measures, highlighting multidimensional individual variability. Our work emphasizes the importance of a multivariate framework for behavioral assessment in animal models to understand stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benedito Alves de Oliveira-Júnior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Tong T, Cheng B, Tie S, Zhan G, Ouyang D, Cao J. Exploring the mechanism of Epimedii folium and notoginseng radix against vascular dementia based on network pharmacology and molecular docking analysis: pharmacological mechanisms of EH-PN for VD. Medicine (Baltimore) 2022; 101:e31969. [PMID: 36451386 PMCID: PMC9704979 DOI: 10.1097/md.0000000000031969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To explore the mechanism of Epimedii Folium (HF) and Notoginseng Radix (NR) intervention in vascular dementia (VD). This study used the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database to collect the active ingredients and potential drug targets of HF and NR, the Uniprot database to convert drug target names into gene names, GeneCards, Drugbank, Therapeutic Target Database, and Online Mendelian Inheritance in Man database to collect the potential disease targets of VD, and then combined them with the drug targets to construct the HF-NR-VD protein-protein interaction (PPI) network by Search Tool for the Retrieval of Interacting (STRING). Cytoscape (version 3.7.1) was used to perform cluster analysis of the PPI network. Metascape database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The potential interaction of the main components of the HF-NR couplet medicine with core disease targets was revealed by molecular docking simulations. There were 23 predicted active ingredients in HF and NR, and 109 common drug targets that may be involved in the treatment of VD. Through PPI network analysis, 30 proteins were identified as core proteins owing to their topological importance. GO functional analysis revealed that the primary biological processes were mainly related to inflammation, apoptosis, and the response to oxidative stress. KEGG pathway enrichment analysis revealed that TNF and PI3K/Akt signaling pathways may occupy the core status in the anti-VD system. Molecular docking results confirmed that the core targets of VD had a high affinity for the main compounds of the HF-NR couplet medicine. We demonstrated the multi-component, multi-target, and multi-pathway characteristics of HF-NR couplet medicine for the treatment of VD and provided a foundation for further clinical application and experimental research.
Collapse
Affiliation(s)
- Tianhao Tong
- Hunan University of Chinese Medicine, Changsha, China
| | - Bin Cheng
- Xiangtan County Hospital of Traditional Chinese Medicine, Xiangtan, China
| | - Songyan Tie
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Dan Ouyang
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Jianzhong Cao, Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, No. 300, Xueshi Road, Yuelu District, Changsha 410208, Hunan, China (e-mail: )
| |
Collapse
|
3
|
Gao T, Zhang Z, Yang Y, Zhang H, Li N, Liu B. Impact of RIM-BPs in neuronal vesicles release. Brain Res Bull 2021; 170:129-136. [PMID: 33581313 DOI: 10.1016/j.brainresbull.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Accurate signal transmission between neurons is accomplished by vesicle release with high spatiotemporal resolution in the central nervous system. The vesicle release occurs mainly in the active zone (AZ), a unique area on the presynaptic membrane. Many structural proteins expressed in the AZ connect with other proteins nearby. They can also regulate the precise release of vesicles through protein-protein interactions. RIM-binding proteins (RIM-BPs) are one of the essential proteins in the AZ. This review summarizes the structures and functions of three subtypes of RIM-BPs, including the interaction between RIM-BPs and other proteins such as Bassoon and voltage-gated calcium channel, their significance in stabilizing the AZ structure in the presynaptic region and collecting ion channels, and ultimately regulating the fusion and release of neuronal vesicles.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Yunong Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
4
|
Yi JH, Jeon J, Kwon H, Cho E, Yun J, Lee YC, Ryu JH, Park SJ, Cho JH, Kim DH. Rubrofusarin Attenuates Chronic Restraint Stress-Induced Depressive Symptoms. Int J Mol Sci 2020; 21:E3454. [PMID: 32414166 PMCID: PMC7278964 DOI: 10.3390/ijms21103454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to examine whether rubrofusarin, an active ingredient of the Cassia species, has an antidepressive effect in chronic restraint stress (CRS) mouse model. Although acute treatment using rubrofusarin failed, chronic treatment using rubrofusarin ameliorated CRS-induced depressive symptoms. Rubrofusarin treatment significantly reduced the number of Fluoro-Jade B-positive cells and caspase-3 activation within the hippocampus of CRS-treated mice. Moreover, rubrofusarin treatment significantly increased the number of newborn neurons in the hippocampus of CRS-treated mice. CRS induced activation of glycogen synthase kinase-3β and regulated development and DNA damage responses, and reductions in the extracellular-signal-regulated kinase pathway activity were also reversed by rubrofusarin treatment. Microglial activation and inflammasome markers, including nod-like receptor family pyrin domain containing 3 and adaptor protein apoptosis-associated speck-like protein containing CARD, which were induced by CRS, were ameliorated by rubrofusarin. Synaptic plasticity dysfunction within the hippocampus was also rescued by rubrofusarin treatment. Within in vitro experiments, rubrofusarin blocked corticosterone-induced long-term potentiation impairments. These were blocked by LY294002, which is an Akt inhibitor. Finally, we found that the antidepressant effects of rubrofusarin were blocked by an intracerebroventricular injection of LY294002. These results suggest that rubrofusarin ameliorated CRS-induced depressive symptoms through PI3K/Akt signaling.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 169148, Korea;
| | - Jieun Jeon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| |
Collapse
|
5
|
Mutlu O, Páleníček T, Pinterová N, Šíchová K, Horáček J, Holubová K, Höschl C, Stuchlík A, Erden F, Valeš K. Effects of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides on MK-801-induced schizophrenia models. Fundam Clin Pharmacol 2018; 32:589-602. [DOI: 10.1111/fcp.12386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/21/2018] [Accepted: 06/01/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Oguz Mutlu
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
- Pharmacology Department; Kocaeli University Medical Faculty; Kocaeli 41380 Turkey
| | - Tomáš Páleníček
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
| | - Nikola Pinterová
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
| | - Klára Šíchová
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
| | - Kristina Holubová
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; videnska 1083 Prague 4 14220 Czech Republic
| | - Cyril Höschl
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
| | - Aleš Stuchlík
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; videnska 1083 Prague 4 14220 Czech Republic
| | - Faruk Erden
- Pharmacology Department; Kocaeli University Medical Faculty; Kocaeli 41380 Turkey
| | - Karel Valeš
- National Institute of Mental Health; Topolova 748 Klecany 250 67 Czech Republic
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; videnska 1083 Prague 4 14220 Czech Republic
| |
Collapse
|
6
|
Commons KG, Cholanians AB, Babb JA, Ehlinger DG. The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem Neurosci 2017; 8:955-960. [PMID: 28287253 PMCID: PMC5518600 DOI: 10.1021/acschemneuro.7b00042] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The forced swim test (FST) measures coping strategy to an acute inescapable stress and thus provides unique insight into the neural limb of the stress response. Stress, particularly chronic stress, is a contributing factor to depression in humans and depression is associated with altered response to stress. In addition, drugs that are effective antidepressants in humans typically promote active coping strategy in the FST. As a consequence, passive coping in the FST has become loosely equated with depression and is often referred to as "depression-like" behavior. This terminology oversimplifies complex biology and misrepresents both the utility and limitations of the FST. The FST provides little construct- or face-validity to support an interpretation as "depression-like" behavior. While stress coping and the FST are arguably relevant to depression, there are likely many factors that can influence stress coping strategy. Importantly, there are other neuropsychiatric disorders characterized by altered responses to stress and difficulty in adapting to change. One of these is autism spectrum disorder (ASD), and several mouse genetic models of ASD exhibit altered stress-coping strategies in the FST. Here we review evidence that argues a more thoughtful consideration of the FST, and more precise terminology, would benefit the study of stress and disorders characterized by altered response to stress, which include but are not limited to depression.
Collapse
Affiliation(s)
- Kathryn G. Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Aram B. Cholanians
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jessica A. Babb
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel G. Ehlinger
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice. Alcohol 2017; 58:139-151. [PMID: 28027852 DOI: 10.1016/j.alcohol.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Alcohol abuse is a complex disorder, which is confounded by other factors, including stress. In the present study, we examined gene expression in the hippocampus of BXD recombinant inbred mice after exposure to ethanol (NOE), stress (RSS), and the combination of both (RSE). Mice were given an intraperitoneal (i.p.) injection of 1.8 g/kg ethanol or saline, and subsets of both groups were exposed to acute restraint stress for 15 min or controls. Gene expression in the hippocampus was examined using microarray analysis. Genes that were significantly (p < 0.05, q < 0.1) differentially expressed were further evaluated. Bioinformatic analyses were predominantly performed using tools available at GeneNetwork.org, and included gene ontology, presence of cis-regulation or polymorphisms, phenotype correlations, and principal component analyses. Comparisons of differential gene expression between groups showed little overlap. Gene Ontology demonstrated distinct biological processes in each group with the combined exposure (RSE) being unique from either the ethanol (NOE) or stress (RSS) group, suggesting that the interaction between these variables is mediated through diverse molecular pathways. This supports the hypothesis that exposure to stress alters ethanol-induced gene expression changes and that exposure to alcohol alters stress-induced gene expression changes. Behavior was profiled in all groups following treatment, and many of the differentially expressed genes are correlated with behavioral variation within experimental groups. Interestingly, in each group several genes were correlated with the same phenotype, suggesting that these genes are the potential origins of significant genetic networks. The distinct sets of differentially expressed genes within each group provide the basis for identifying molecular networks that may aid in understanding the complex interactions between stress and ethanol, and potentially provide relevant therapeutic targets. Using Ptp4a1, a candidate gene underlying the quantitative trait locus for several of these phenotypes, and network analyses, we show that a large group of differentially expressed genes in the NOE group are highly interrelated, some of which have previously been linked to alcohol addiction or alcohol-related phenotypes.
Collapse
|
8
|
Formoso K, Garcia MD, Frasch AC, Scorticati C. Evidence for a role of glycoprotein M6a in dendritic spine formation and synaptogenesis. Mol Cell Neurosci 2016; 77:95-104. [DOI: 10.1016/j.mcn.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022] Open
|
9
|
Bachis A, Forcelli P, Masliah E, Campbell L, Mocchetti I. Expression of gp120 in mice evokes anxiety behavior: Co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala. Brain Behav Immun 2016; 54:170-177. [PMID: 26845379 PMCID: PMC4828280 DOI: 10.1016/j.bbi.2016.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 01/28/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6 months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety.
Collapse
Affiliation(s)
- Alessia Bachis
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center Washington DC 20057
| | - Patrick Forcelli
- Department of Pharmacology and Physiology, Georgetown University Medical Center Washington DC 20057
| | - Eliezer Masliah
- Departments of Pathology and Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lee Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center Washington DC 20057,Department of Pharmacology and Physiology, Georgetown University Medical Center Washington DC 20057
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
10
|
Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism. Psychoneuroendocrinology 2016; 66:11-21. [PMID: 26771945 DOI: 10.1016/j.psyneuen.2015.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 01/19/2023]
Abstract
Stress is generally a beneficial experience that motivates an organism to action to overcome the stressful challenge. In particular situations, when stress becomes chronic might be harmful and devastating. The hypothalamus is a critical coordinator of stress and the metabolic response; therefore, disruptions in this structure may be a significant cause of the hormonal and metabolic disturbances observed in depression. Chronic stress induces adverse changes in the morphology of neural cells that are often associated with a deficiency of neurotrophic factors (NTFs); additionally, many studies indicate that insufficient NTF synthesis may participate in the pathogenesis of depression. The aim of the present study was to determine the expression of the nerve growth factor (NGF) in the hypothalamus of male rats subjected to chronic mild stress (CMS) or to prenatal stress (PS) and to PS in combination with an acute stress event (AS). It has been found that chronic mild stress, but not prenatal stress, acute stress or a combination of PS with AS, decreased the concentration of the mature form of NGF (m-NGF) in the rat hypothalamus. A discrepancy between an increase in the Ngf mRNA and a decrease in the m-NGF levels suggested that chronic mild stress inhibited NGF maturation or enhanced the degradation of this factor. We have shown that NGF degradation in the hypothalamus of rats subjected to chronic mild stress is matrix metalloproteinase-dependent and related to an increase in the active forms of some metalloproteinases (MMP), including MMP2, MMP3, MMP9 and MMP13, while the NGF maturation process does not seem to be changed. We suggested that activated MMP2 and MMP9 potently cleave the mature but not the pro- form of NGF into biologically inactive products, which is the reason for m-NGF decomposition. In turn, the enhanced expression of Ngf in the hypothalamus of these rats is an attempt to overcome the reduced levels of m-NGF. Additionally, the decreased level of m-NGF together with the increased level of pro-NGF can decrease TrkA-mediated neuronal survival signalling and enhance the action of pro-NGF on the p75(NTR) receptor, respectively, to evoke pro-apoptotic signalling. This hypothesis is supported by elevated levels of the caspase-3 mRNA in the hypothalamus of rats subjected to chronic mild stress.
Collapse
|
11
|
Kim HY, Jeong HJ, Kim HM. Antidepressant-like effect of Ikwitang involves modulation of monoaminergic systems. Mol Med Rep 2016; 13:2815-20. [PMID: 26821328 DOI: 10.3892/mmr.2016.4809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 12/15/2015] [Indexed: 11/05/2022] Open
Abstract
Depression is a chronic mental disorder. Inflammatory reactions have an important function in the pathophysiology of depression. Ikwitang (IW) has been used to treat fever and inflammatory diseases, however, its effect on depression has not been previously investigated. Therefore, the present study evaluated the possible antidepressant‑like effect of IW using a forced swimming test (FST) in mice. IW was orally administered for 14 days. On the 14 day, IW was administered 1 h prior to the FST. The immobility durations of the IW groups (0.01, 0.1 and 1 g/kg) were significantly decreased, compared with those of the distilled water (D.W.) groups. The reduction of immobility duration by IW was associated with significant increases in the levels of serotonin, noradrenaline and estrogen receptor‑β in the brain. IW significantly increased the levels of brain‑derived neurotrophic factor and phosphorylated extracellular signal‑regulated kinases, compared with the D.W. groups. In addition, the levels of inflammatory cytokines were significantly reduced following IW administration in the hippocampus and serum. In conclusion, the results of the present study suggested that the antidepressant effect of IW may be associated with the modulation of monoaminergic systems and inflammatory reactions.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Technology, Inflammatory Disease Research Center, Hoseo University, Asan, Chungnam 336‑795, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| |
Collapse
|
12
|
Ciobica A, Balmus IM, Padurariu M. IS OXYTOCIN RELEVANT FOR THE AFFECTIVE DISORDERS? ACTA ENDOCRINOLOGICA-BUCHAREST 2016; 12:65-71. [PMID: 31258803 DOI: 10.4183/aeb.2016.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxytocin is a complex molecule involved in a variety of biological processes at both the central and the peripheral level. Although its role was initially associated almost exclusively with birth and breastfeeding, recent studies are suggesting that in fact oxytocin could be involved in many other physiological and pathological processes. In this way, lately there is a growing interest towards a possible involvement of oxytocin in many etiopathogenic and psychopathological processes, as for example in the affective disorders, where the roles of oxytocin are not yet clearly understood. In this paper we shortly describe the main aspects regarding the relevance of oxytocin administration or its mechanisms in the affective disorders, as well as its relations with the hypothalamic-pituitary-adrenal axis and cortisol secretion. It seems that although the researches on the importance of oxytocin in the affective disorders are rather at the beginning, an increasing number of evidence is supporting the involvement of oxytocin in the pathogenic processes of these psychiatric disorders. Still, the studies covering this topic are still in their early days, and the results that are trying to understand if there is a major role of oxytocin in affective disorders are not consistent enough to draw definitive conclusions and establish with certainty where the place of oxytocin in the affective disorders pathology is.
Collapse
Affiliation(s)
- A Ciobica
- "Alexandru Ioan Cuza" University, Iaşi, Romania.,Center of Biomedical Research of the Romanian Academy, Iaşi Branch, Iaşi, Romania
| | - I M Balmus
- "Alexandru Ioan Cuza" University, Iaşi, Romania
| | - M Padurariu
- "Gr. T. Popa" University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
13
|
Li B, Wang B, Chen M, Li G, Fang M, Zhai J. Expression and interaction of TNF-α and VEGF in chronic stress-induced depressive rats. Exp Ther Med 2015; 10:863-868. [PMID: 26622406 DOI: 10.3892/etm.2015.2641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 05/08/2015] [Indexed: 12/30/2022] Open
Abstract
The incidence of depression increases annually but the pathogenesis is not yet fully understood. The aim of the present study was to explore the expression and interaction of tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) in chronic stress-induced depressive rats. A total of 20 adult healthy Sprague Dawley rats (180-220 g) were randomly divided into the control and experimental depression groups. The depression model was established with a chronic stress method, and the success of model construction was assessed through weigh measurements and the sugar consumption and open-field tests. The expression of TNF-α and VEGF was detected using the reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blotting and immunohistochemistry. Compared with the control group, the weight of the rats in the experimental group was found to be reduced (P<0.05). The open-field test showed significant differences in the horizontal and vertical motion of the rats between the two groups, and the rats in the experimental group exhibited a significantly reduced ability to adapt to a new environment (P<0.05). Furthermore, the sensitivity of the rats in the experimental group to reward stimulation was decreased. The relative mRNA expression levels of TNF-α and VEGF in the hippocampus of the experimental group were lower than those in the control group, and western blot analysis revealed that the protein expression of VEGF and TNF-α was reduced in the experimental group. Neurons of the experimental group exhibited reduced immunohistochemical staining compared with neurons from the normal hippocampus in the control group. In conclusion, the present study investigated the association between the occurrence of depression and TNF-α and VEGF at the mRNA and protein levels using RT-qPCR, western blotting, immunohistochemistry and animal behavior experiments. The results provide a fundamental basis for follow-up clinical research.
Collapse
Affiliation(s)
- Baohua Li
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Bin Wang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Min Chen
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Gongying Li
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Maosheng Fang
- Wuhan Mental Health Center, Wuhan, Hubei 430022, P.R. China
| | - Jinguo Zhai
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
14
|
Chengfeng S, Wei L, Xinxing W, Lei W, Rui Z, Lingjia Q. Hyperhomocysteinemia is a result, rather than a cause, of depression under chronic stress. PLoS One 2014; 9:e106625. [PMID: 25286230 PMCID: PMC4186820 DOI: 10.1371/journal.pone.0106625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Background Although the accumulation of homocysteine (Hcy) has been implicated in the pathogenesis of depression, whether Hcy is directly involved and acts as the primary cause of depressive symptoms remains unclear. The present study was designed to clarify whether increased Hcy plays an important role in stress-induced depression. Results We employed the chronic unpredictable mild stress model (CUMS) of depression for 8 weeks to observe changes in the plasma Hcy level in the development of depression. The results showed that Wistar rats exposed to a series of mild, unpredictable stressors for 4 weeks displayed depression-like symptoms such as anhedonia (decreased sucrose preferences) and a decreased 5-Hydroxy Tryptophan (5-HT) concentration in the hippocampus. At the end of 8 weeks, the plasma Hcy level increased in the CUMS rats. The anti-depressant sertraline could decrease the plasma Hcy level and improve the depression-like symptoms in the CUMS rats. RhBHMT, an Hcy metabolic enzyme, could decrease the plasma Hcy level significantly, although it could not improve the depressive symptoms in the CUMS rats. Conclusions The results obtained from the experiments did not support the hypothesis that the increased Hcy concentration mediated the provocation of depression in CUMS rats, and the findings suggested that the increased Hcy concentration in the plasma might be the result of stress-induced depression.
Collapse
Affiliation(s)
- Shen Chengfeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Liu Wei
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Wang Xinxing
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Institute of Health & Environmental Medicine, Tianjin, China
- * E-mail: (QL); (WX)
| | - Wu Lei
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Zhan Rui
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qian Lingjia
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QL); (WX)
| |
Collapse
|
15
|
Formoso K, Billi SC, Frasch AC, Scorticati C. Tyrosine 251 at the C-terminus of neuronal glycoprotein M6a is critical for neurite outgrowth. J Neurosci Res 2014; 93:215-29. [PMID: 25242528 DOI: 10.1002/jnr.23482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/12/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
Neuronal glycoprotein M6a is involved in neuronal plasticity, promoting neurite and filopodia outgrowth and, likely, synaptogenesis. Polymorphisms in the human M6a gene GPM6A have recently been associated with mental illnesses such as schizophrenia, bipolar disorders, and claustrophobia. Nevertheless, the molecular bases underlying these observations remain unknown. We have previously documented that, to induce filopodia formation, M6a depends on the association of membrane lipid microdomains and the activation of Src and mitogen-activated protein kinase kinases. Here, in silico analysis of the phosphorylation of tyrosine 251 (Y251) at the C-terminus of M6a showed that it could be a target of Src kinases. We examined whether phosphorylation of M6a at Y251 affects neurite and filopodia outgrowth and the targets involved in its signal propagation. This work provides evidence that the Src kinase family and the phosphatidylinositide 3-kinase (PI3K), but not Ras, participate in M6a signal cascade leading to neurite/filopodia outgrowth in hippocampal neurons and murine neuroblastoma N2a cells. Phosphorylation of M6a at Y251 is essential only for neurite outgrowth by the PI3K/AKT-mediated pathway and, moreover, rescues the inhibition caused by selective Src inhibitor and external M6a monoclonal antibody treatment. Thus, we suggest that phosphorylation of M6a at Y251 is critical for a specific stage of neuronal development and triggers redundant signaling pathways leading to neurite extension.
Collapse
Affiliation(s)
- Karina Formoso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Malki K, Keers R, Tosto MG, Lourdusamy A, Carboni L, Domenici E, Uher R, McGuffin P, Schalkwyk LC. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC Med 2014; 12:73. [PMID: 24886127 PMCID: PMC4046519 DOI: 10.1186/1741-7015-12-73] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either 'reactive' or 'endogenous' subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of 'reactive' or 'endogenous' subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of 'reactive' and 'endogenous' depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. METHODS Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic 'stress' protocols (maternal separation and Unpredictable Chronic Mild Stress) to model 'reactive' depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of 'endogenous' depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. RESULTS In the mouse 'reactive' model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the 'endogenous' rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. CONCLUSIONS Our results suggest that 'endogenous' and 'reactive' subtypes of depression are associated with largely distinct changes in gene-expression. However, they also suggest that the molecular signature of 'reactive' depression caused by early stressors differs considerably from that of 'reactive' depression caused by late stressors. A small set of genes was consistently dysregulated across each paradigm and in post-mortem brain tissue of depressed patients suggesting a final common pathway to the disorder. These genes included the VAMP-2 gene, which has previously been associated with Axis-I disorders including MDD, bipolar depression, schizophrenia and with antidepressant treatment response. We also discuss the implications of our findings for disease classification, personalized medicine and case-control studies of MDD.
Collapse
Affiliation(s)
- Karim Malki
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Robert Keers
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Maria Grazia Tosto
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychology, University of York, York, UK
| | | | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Enrico Domenici
- Center of Excellence for Drug Discovery in Neuroscience, GlaxoSmithKline Medicines Research Centre, Verona, Italy
- Current address: Pharma Research and Early Development, F. Hoffmann–La Roche, Basel, Switzerland
| | - Rudolf Uher
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Peter McGuffin
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Leonard C Schalkwyk
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| |
Collapse
|
17
|
Protective effects of phosphodiesterase 2 inhibitor on depression- and anxiety-like behaviors: involvement of antioxidant and anti-apoptotic mechanisms. Behav Brain Res 2014; 268:150-158. [PMID: 24694839 DOI: 10.1016/j.bbr.2014.03.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
Stress occurs in everyday life, but the relationship between stress and the onset or development of depression/anxiety remains unknown. Increasing evidence suggests that the impairment of antioxidant defense and the neuronal cell death are important in the process of emotional disorders. Chronic stress impairs the homeostasis of antioxidants/oxidation, which results in the aberrant stimulation of the cell cycle proteins where cGMP-PKG signaling is thought to have an inhibitory role. Phosphodiesterase 2 (PDE2) is linked to cGMP-PKG signaling and highly expressed in the limbic brain regions including hippocampus and amygdala, which may play important roles in the treatment of depression and anxiety. To address the possible effects of PDE2 inhibitors on depression-/anxiety-like behaviors and the underlying mechanisms, Bay 60-7550 (0.75, 1.5 and 3 mg/kg, i.p.) was administered 30 min before chronic stress. The results suggested that Bay 60-7550 not only restored the behavioral changes but also regulated Cu/Zn superoxide dismutase (SOD) levels differentially in hippocampus and amygdala, which were increased in the hippocampus while decreased in the amygdala. It was also significant that Bay 60-7550 regulated the abnormalities of pro- and anti-apoptotic components, such as Bax, Caspase 3 and Bcl-2, and the indicator of PKG signaling characterized by pVASP(ser239), in these two brain regions. The results suggested that Bay 60-7550 is able to alleviate oxidative stress and mediate part of the apoptotic machinery in neuronal cells possibly through SOD-cGMP/PKG-anti-apoptosis signaling and that inhibition of PDE2 may represent a novel therapeutic target for psychiatric disorders, such as depression and anxiety.
Collapse
|
18
|
Lin P, Wang C, Xu B, Gao S, Guo J, Zhao X, Huang H, Zhang J, Chen X, Wang Q, Zhou W. The VGF-derived peptide TLQP62 produces antidepressant-like effects in mice via the BDNF/TrkB/CREB signaling pathway. Pharmacol Biochem Behav 2014; 120:140-8. [PMID: 24631486 DOI: 10.1016/j.pbb.2014.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 11/19/2022]
Abstract
Recent studies demonstrate that the neuropeptide VGF (nonacronymic)-derived peptide is regulated in the hippocampus by antidepressant therapies. Brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), cAMP response element-binding protein (CREB) signaling, and monoamine transmitter pathways mediate the behavioral effects of antidepressants, but it is not known if these pathways also contribute to the antidepressant-like effects of VGF-derived peptide TLQP62. Here the antidepressant-like effects of TLQP62 were evaluated by measuring immobility time in the forced swimming and tail suspension tests (FST and TST) following acute microinjection of the TLQP62 (0.25, 0.5 and 1 nmol/side) into the hippocampal CA1 regions. This treatment dose-dependently reduced immobility in the FST and TST compared to phosphate-buffered saline (PBS) infusion without affecting locomotor activity in the open field test (OFT). In addition, daily intrahippocampal microinfusion of TLQP62 (1 nmol/side/day; 21 days) also upregulated the expression of BDNF and the phosphorylation of CREB (pCREB) and TrkB (pTrkB) without altering CREB or TrkB. Blocking tissue plasminogen activator (tPA) by microinfusion of tPASTOP or TrkB activation by microinfusion of K252a 60 min prior to TLQP62 infusion almost completely abolished TLQP62-induced antidepressant-like effects, BDNF upregulation, and CREB/TrkB phosphorylation. In contrast, none of these effects were diminished by pretreatment with the non-specific 5-HT receptor antagonist metergoline, the selective 5-HT1A receptor antagonist NAN-190, the 5-HT synthase inhibitor parachlorophenylalanine, the selective α1-adrenoceptor antagonist prazosin, the β receptor antagonist propranolol, or the D2 receptor antagonist raclopride. Moreover, our study was also to investigate the antidepressant-like effects of TLQP62 (50, 250 and 500 nmol/kg; i.p.) on depression-related behaviors in comparison with fluoxetine (10mg/kg; i.p.). While TLQP62 and fluoxetine showed similar antidepressant-like behavioral effects in the FST of mice. Our present results strongly suggest that activation of BDNF/TrkB/CREB signaling may be involved in the antidepressant-like effects of TLQP62.
Collapse
Affiliation(s)
- Peipei Lin
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Chuang Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China.
| | - Bing Xu
- No. 97 Hospital, Xuzhou, Jiangsu 221000, PR China
| | - Siyun Gao
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Jiejie Guo
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Xin Zhao
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Huihui Huang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Junfang Zhang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Xiaowei Chen
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Qinwen Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Wenhua Zhou
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
19
|
Gumuslu E, Mutlu O, Sunnetci D, Ulak G, Celikyurt IK, Cine N, Akar F, Savlı H, Erden F. The Antidepressant Agomelatine Improves Memory Deterioration and Upregulates CREB and BDNF Gene Expression Levels in Unpredictable Chronic Mild Stress (UCMS)-Exposed Mice. Drug Target Insights 2014; 8:11-21. [PMID: 24634580 PMCID: PMC3948735 DOI: 10.4137/dti.s13870] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/19/2014] [Accepted: 02/06/2014] [Indexed: 01/05/2023] Open
Abstract
Agomelatine, a novel antidepressant with established clinical efficacy, acts as an agonist of melatonergic MT1 and MT2 receptors and as an antagonist of 5-HT2C receptors. The present study was undertaken to investigate whether chronic treatment with agomelatine would block unpredictable chronic mild stress (UCMS)-induced cognitive deterioration in mice in passive avoidance (PA), modified elevated plus maze (mEPM), novel object recognition (NOR), and Morris water maze (MWM) tests. Moreover, the effects of stress and agomelatine on brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) messenger ribonucleic acid (mRNA) levels in the hippocampus was also determined using quantitative real-time polymerase chain reaction (RT-PCR). Male inbred BALB/c mice were treated with agomelatine (10 mg/kg, i.p.), melatonin (10 mg/kg), or vehicle daily for five weeks. The results of this study revealed that UCMS-exposed animals exhibited memory deterioration in the PA, mEPM, NOR, and MWM tests. The chronic administration of melatonin had a positive effect in the PA and +mEPM tests, whereas agomelatine had a partial effect. Both agomelatine and melatonin blocked stress-induced impairment in visual memory in the NOR test and reversed spatial learning and memory impairment in the stressed group in the MWM test. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in UCMS-exposed mice, and these alterations were reversed by chronic agomelatine or melatonin treatment. Thus, agomelatine plays an important role in blocking stress-induced hippocampal memory deterioration and activates molecular mechanisms of memory storage in response to a learning experience.
Collapse
Affiliation(s)
- Esen Gumuslu
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Oguz Mutlu
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Deniz Sunnetci
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Guner Ulak
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Ipek K Celikyurt
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Naci Cine
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Furuzan Akar
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Hakan Savlı
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Faruk Erden
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| |
Collapse
|
20
|
Gavioli EC, Calo' G. Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 2013; 140:10-25. [PMID: 23711793 DOI: 10.1016/j.pharmthera.2013.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) were identified in the mid 90s as a novel peptidergic system structurally related to opioids. A growing body of preclinical evidence suggests that blockade of NOP receptors evokes antidepressant-like actions. These have been explored using a range of compounds (peptide and non peptide antagonists), across different species (rat and mouse) and assays (behavioral despair and chronic mild stress) suggesting a robust and consistent antidepressant-like effect. Moreover, rats and mice knockout for the NOP receptor gene display an antidepressant-like phenotype in behavioral despair assays. Electrophysiological, immunohistochemical and neurochemical studies point to an important role played by monoaminergic systems, particularly 5-HTergic, in mediating the antidepressant-like properties of NOP antagonists. However other putative mechanisms of action, including modulation of the CRF system, circadian rhythm and a possible neuroendocrine-immune control might be involved. A close relationship between the N/OFQ-NOP receptor system and stress responses is well described in the literature. Stressful situations also alter endocrine, behavioral and neurochemical parameters in rats and chronic administration of a NOP antagonist restored these alterations. Interestingly, clinical findings showed that plasma N/OFQ levels were significantly altered in major and post-partum depression, and bipolar disease patients. Collectively, data in the literature support the notion that blockade of NOP receptor signaling could be a novel and interesting strategy for the development of innovative antidepressants.
Collapse
Affiliation(s)
- Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 59078-970 Natal-RN, Brazil.
| | | |
Collapse
|
21
|
Bethea CL, Phu K, Reddy AP, Cameron JL. The effect of short-term stress on serotonin gene expression in high and low resilient macaques. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:143-53. [PMID: 23357537 PMCID: PMC3654014 DOI: 10.1016/j.pnpbp.2013.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/21/2022]
Abstract
Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. When stressed with a paradigm of relocation and diet for 60 days, or 2 menstrual cycles, highly stress resilient monkeys continue to ovulate during both stress cycles (HSR); medium stress resilient monkeys ovulate once (MSR) and stress sensitive monkeys do not ovulate for the entire 60 days (SS). This study examines serotonin-related gene expression in monkeys with different sensitivity to stress and exposed to 5 days of moderate stress. Monkeys were first characterized as HSR, MSR or SS. After resumption of menstrual cycles, each monkey was re-stressed for 5 days in the early follicular phase. The expression of 3 genes pivotal to serotonin neural function was assessed in the 3 groups of monkeys (n=4-5/group). Tryptophan hydroxylase 2 (TPH2), the serotonin reuptake transporter (SERT), and the 5HT1A autoreceptor mRNAs expression were determined at 4 morphological levels of the dorsal raphe nucleus with in situ hybridization (ISH) using digoxigenin-incorporated riboprobes. In addition, cFos was examined with immunohistochemistry. Positive pixel area and/or cell number were measured. All data were analyzed with ANOVA (3 groups) and with a t-test (2 groups). After 5 days of stress, TPH2, SERT, 5HT1A and cFos were significantly lower in the SS group than the HSR group (p<0.05, all). This pattern of expression was the same as the pattern observed in the absence of stress in previous studies. Therefore, the ratio of the HSR/SS expression of each serotonergic gene was calculated in the presence and absence of stress. There was little or no difference in the ratio of HSR/SS gene expression in the presence or absence of stress. Moreover, cFos expression indicates that overall, cell activation in the dorsal raphe nucleus and periaquaductal gray is lower in SS than HSR animals. These data suggest that the serotonin system may set the sensitivity or resilience of the individual, but serotonin-related gene expression may not rapidly respond to moderate stress in nonhuman primates.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | |
Collapse
|
22
|
Bernstein HG, Klix M, Dobrowolny H, Brisch R, Steiner J, Bielau H, Gos T, Bogerts B. A postmortem assessment of mammillary body volume, neuronal number and densities, and fornix volume in subjects with mood disorders. Eur Arch Psychiatry Clin Neurosci 2012; 262:637-46. [PMID: 22350534 DOI: 10.1007/s00406-012-0300-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/28/2012] [Indexed: 11/29/2022]
Abstract
Mammillary bodies are relay nuclei within limbic and extralimbic connections. Whereas other subcortical brain structures have been found to be altered in depression, no current information exists regarding the pathomorphology of mammillary bodies in affective disorders. We studied the postmortem brains of 19 human subjects with mood disorders (9 with major depressive disorder and 10 with bipolar I disorder) and 20 control individuals and assessed the mammillary body and fornix volumes, number of neurons and neuronal densities. We found that male control subjects have significantly larger mammillary bodies compared with females. In addition, control subjects of both sexes with the diagnosis/cause of death of "heart failure/insufficiency" had significantly smaller mammillary body volumes compared with non-psychiatric patients who died from other causes. When estimating the mammillary bodies volumes of patients with depression compared with control subjects, a significant reduction of the left mammillary body volume was found in patients with bipolar disorder, but not in patients with major depression. However, significant depression-associated mammillary body volume reductions were found between the control subjects who did not die of heart failure and patients with major depression and bipolar disorder. Moreover, the MB volumes of control subjects who died of heart failure were in the range exhibited by subjects with depression. There was no significant influence of suicidal behavior on mammillary volumes observed. Moreover, no significant group differences in the total neuronal number or neuronal density were found between the controls, subjects with major depression and subjects with bipolar disorder. Furthermore, the fornix volumes were significantly reduced only in the control subjects with heart failure. Taken together, these results show that the mammillary bodies are compromised in depression.
Collapse
|
23
|
McEwen BS. The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev Neurobiol 2012; 72:878-90. [PMID: 21898852 DOI: 10.1002/dneu.20968] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adult brain is capable of considerable structural and functional plasticity and the study of hormone actions in brain has contributed to our understanding of this important phenomenon. In particular, stress and stress-related hormones such as glucocorticoids and mineralocorticoids play a key role in the ability of acute and chronic stress to cause reversible remodeling of neuronal connections in the hippocampus, prefrontal cortex, and amygdala. To produce this plasticity, these hormones act by both genomic and non-genomic mechanisms together with ongoing, experience-driven neural activity mediated by excitatory amino acid neurotransmitters, neurotrophic factors such as brain derived neurotrophic factor, extracellular molecules such as neural cell adhesion molecule, neuropeptides such as corticotrophin releasing factor, and endocannabinoids. The result is a dynamic brain architecture that can be modified by experience. Under this view, the role of pharmaceutical agents, such as antidepressants, is to facilitate such plasticity that must also be guided by experiences.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA.
| |
Collapse
|
24
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
25
|
Carlini VP, Poretti MB, Rask-Andersen M, Chavan RA, Ponzio MF, Sawant RS, de Barioglio SR, Schiöth HB, de Cuneo MF. Differential effects of fluoxetine and venlafaxine on memory recognition: possible mechanisms of action. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:159-67. [PMID: 22449479 DOI: 10.1016/j.pnpbp.2012.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 12/11/2022]
Abstract
Serotonin-specific reuptake inhibitors (SSRI) and serotonin-norepinephrine reuptake inhibitors (SNRI) are antidepressant drugs commonly used to treat a wide spectrum of mood disorders (Wong and Licinio, 2001). Although they have been clinically used for more than 50 years, the molecular and cellular basis for the action of SSRIs and SNRIs is not clear. Considering that the changes in gene expression involved in the action of antidepressant drugs on memory have not been identified, in this study we investigated the impact of chronic treatment with a SSRI (fluoxetine) and a SNRI (venlafaxine) on the mRNA expression of genes related to memory cascade in the mouse hippocampus, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), nitric oxide synthase 1 (NOS1), neurotrophic tyrosine kinase receptor type 2 (TrKB), mitogen-activated protein kinases (MAPK/ERK) and serotonin transporter (SERT). Animals treated with fluoxetine 10 mg/Kg/day for 28 days showed a significant decrease in the percentage of time spent in the novel object recognition test (p≤0.005) and induced MAPK1/ERK2 down-regulation (p=0.005). Our results suggest that the effect on cognition could probably be explained by fluoxetine interference in the MAPK/ERK memory pathway. In contrast, chronic treatment with venlafaxine did not reduce MAPK1/ERK2 expression, suggesting that MAPK1/ERK2 down-regulation is not a common effect of all antidepressant drugs. Further studies are needed to examine the effect of chronic fluoxetine treatment on the ERK-CREB system, and to determine whether there is a causal relationship between the disruption of the ERK-CREB system and the effect of this antidepressant on memory performance.
Collapse
Affiliation(s)
- Valeria Paola Carlini
- Cátedra de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU, Córdoba, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Macrophage migration inhibitory factor mediates the antidepressant actions of voluntary exercise. Proc Natl Acad Sci U S A 2012; 109:13094-9. [PMID: 22826223 DOI: 10.1073/pnas.1205535109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Voluntary exercise is known to have an antidepressant effect. However, the underlying mechanism for this antidepressant action of exercise remains unclear, and little progress has been made in identifying genes that are directly involved. We have identified macrophage migration inhibitory factor (MIF) by analyzing existing mRNA microarray data and confirmed the augmented expression of selected genes under two experimental conditions: voluntary exercise and electroconvulsive seizure. A proinflammatory cytokine, MIF is expressed in the central nervous system and involved in innate and adaptive immune responses. A recent study reported that MIF is involved in antidepressant-induced hippocampal neurogenesis, but the mechanism remains elusive. In our data, tryptophan hydroxylase 2 (Tph2) and brain-derived neurotrophic factor (Bdnf) expression were induced after MIF treatment in vitro, as well as during both exercise and electroconvulsive seizure in vivo. This increment of Tph2 was accompanied by increases in the levels of total serotonin in vitro. Moreover, the MIF receptor CD74 and the ERK1/2 pathway mediate the MIF-induced Tph2 and Bdnf gene expression as well as serotonin content. Experiments in Mif(-/-) mice revealed depression-like behaviors and a blunted antidepressant effect of exercise, as reflected by changes in Tph2 and Bdnf expression in the forced swim test. In addition, administration of recombinant MIF protein produced antidepressant-like behavior in rats in the forced swim test. Taken together, these results suggest a role of MIF in mediating the antidepressant action of exercise, probably by enhancing serotonin neurotransmission and neurotrophic factor-induced neurogenesis in the brain.
Collapse
|
27
|
Bethea CL, Lima FB, Centeno ML, Weissheimer KV, Senashova O, Reddy AP, Cameron JL. Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J Chem Neuroanat 2011; 41:200-18. [PMID: 21683135 DOI: 10.1016/j.jchemneu.2011.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 10/24/2022]
Abstract
This chapter reviews the neurobiological effects of stress sensitivity and s-citalpram (CIT) treatment observed in our nonhuman primate model of functional hypothalamic amenorrhea (FHA). This type of infertility, also known as stress-induced amenorrhea, is exhibited by cynomolgus macaques. In small populations, some individuals are stress-sensitive (SS) and others are highly stress-resilient (HSR). The SS macaques have suboptimal secretion of estrogen and progesterone during normal menstrual cycles. SS monkeys also have decreased serotonin gene expression and increased CRF expression compared to HSR monkeys. Recently, we found that CIT treatment improved ovarian steroid secretion in SS monkeys, but had no effect in HSR monkeys. Examination of the serotonin system revealed that SS monkeys had significantly lower Fev (fifth Ewing variant, rodent Pet1), TPH2 (tryptophan hydroxylase 2), 5HT1A autoreceptor and SERT (serotonin reuptake transporter) expression in the dorsal raphe than SR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. In contrast, SS monkeys tended to have a higher density of CRF fiber innervation of the dorsal raphe than HSR monkeys, and CIT significantly decreased the CRF fiber density in SS animals. In addition, CIT increased CRF-R2 gene expression in the dorsal raphe. We speculate that in a 15-week time frame, the therapeutic effect of S-citalopram may be achieved through a mechanism involving extracellular serotonin inhibition of CRF and stimulation of CRF-R2, rather than alteration of serotonin-related gene expression.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | | | | | | | |
Collapse
|
28
|
Scorticati C, Formoso K, Frasch AC. Neuronal glycoprotein M6a induces filopodia formation via association with cholesterol-rich lipid rafts. J Neurochem 2011; 119:521-31. [PMID: 21426347 DOI: 10.1111/j.1471-4159.2011.07252.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A neuronal integral membrane glycoprotein M6a has been suggested to be involved in a number of biological processes, including neuronal remodeling and differentiation, trafficking of mu-opioid receptors, and Ca(2+) transportation. Moreover, pathological situations such as chronic stress in animals and depression in humans have been associated with alterations in M6a sequence and expression. The mechanism of action of M6a is essentially unknown. In this work, we analyze the relevance of M6a distribution in plasma membrane, namely its lipid microdomain targeting, for its biological function in filopodia formation. We demonstrate that M6a is localized in membrane microdomains compatible with lipid rafts in cultured rat hippocampal neurons. Removal of cholesterol from neuronal membranes with methyl-β-cyclodextrin decreases M6a-induced filopodia formation, an effect that is reversed by the addition of cholesterol. Inhibition of Src kinases and MAPK prevents filopodia formation in M6a-over-expressing neurons. Src-deficient SYF cells over-expressing M6a fail to promote filopodia formation. Taken together, our findings reveal that the association of M6a with lipid rafts is important for its role in filopodia formation and Src and MAPK kinases participate in M6a signal propagation.
Collapse
Affiliation(s)
- Camila Scorticati
- Instituto de Investigaciones Biotecnológicas (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.
| | | | | |
Collapse
|
29
|
Neeley EW, Berger R, Koenig JI, Leonard S. Strain dependent effects of prenatal stress on gene expression in the rat hippocampus. Physiol Behav 2011; 104:334-9. [PMID: 21382392 DOI: 10.1016/j.physbeh.2011.02.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/30/2011] [Accepted: 02/21/2011] [Indexed: 12/22/2022]
Abstract
Multiple animal models have been developed to recapitulate phenotypes of the human disease, schizophrenia. A model that simulates many of the cognitive and sensory deficits of the disorder is the use of random variable prenatal stress (PS) in the rat. These deficits suggest a molecular origin in the hippocampus, a brain region that plays a role in the regulation of stress. To study both hippocampal gene expression changes in offspring of prenatally stressed dams and to address genetic variability, we used a random array of prenatal stressors in three different rat strains with diverse responses to stress: Fischer, Sprague-Dawley, and Lewis rats. Candidate genes involved in stress, schizophrenia, cognition, neurotrophic effects, and immunity were selected for assessment by real-time quantitative PCR under resting conditions and following a brief exposure to restraint stress. PS resulted in significant differences in gene expression in the offspring that were strain dependent. mRNA expression for the N-methyl-D-aspartate receptor subtype 2B (Grin2b) was increased, and tumor necrosis factor-alpha (Tnfα) transcript was decreased in PS Sprague-Dawley and Lewis rats, but not in the Fischer rats. Expression of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus was increased after an acute stress in all controls of each strain, yet a decrease was seen after acute stress in the PS Sprague-Dawley and Lewis rats. Expression of the glucocorticoid receptor (Nr3c1) was decreased in the Fischer strain when compared to Lewis or Sprague-Dawley rats, though the Fischer rats had markedly higher α7 nicotinic receptor (Chrna7) expression. The expression differences seen in these animals may be important elements of the phenotypic differences seen due to PS and genetic background.
Collapse
Affiliation(s)
- Eric W Neeley
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
30
|
McEwen BS. Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann N Y Acad Sci 2010; 1204 Suppl:E38-59. [PMID: 20840167 PMCID: PMC2946089 DOI: 10.1111/j.1749-6632.2010.05568.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adult brain is much more resilient and adaptable than previously believed, and adaptive structural plasticity involves growth and shrinkage of dendritic trees, turnover of synapses, and limited amounts of neurogenesis in the forebrain, especially the dentate gyrus of the hippocampal formation. Stress and sex hormones help to mediate adaptive structural plasticity, which has been extensively investigated in the hippocampus and to a lesser extent in the prefrontal cortex and amygdala, all brain regions that are involved in cognitive and emotional functions. Stress and sex hormones exert their effects on brain structural remodeling through both classical genomic as well as non-genomic mechanisms, and they do so in collaboration with neurotransmitters and other intra- and extracellular mediators. This review will illustrate the actions of estrogen on synapse formation in the hippocampus and the process of stress-induced remodeling of dendrites and synapses in the hippocampus, amygdala, and prefrontal cortex. The influence of early developmental epigenetic events, such as early life stress and brain sexual differentiation, is noted along with the interactions between sex hormones and the effects of stress on the brain. Because hormones influence brain structure and function and because hormone secretion is governed by the brain, applied molecular neuroscience techniques can begin to reveal the role of hormones in brain-related disorders and the treatment of these diseases. A better understanding of hormone-brain interactions should promote more flexible approaches to the treatment of psychiatric disorders, as well as their prevention through both behavioral and pharmaceutical interventions.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
31
|
Böer U, Noll C, Cierny I, Krause D, Hiemke C, Knepel W. A common mechanism of action of the selective serotonin reuptake inhibitors citalopram and fluoxetine: Reversal of chronic psychosocial stress-induced increase in CRE/CREB-directed gene transcription in transgenic reporter gene mice. Eur J Pharmacol 2010; 633:33-8. [DOI: 10.1016/j.ejphar.2010.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/15/2009] [Accepted: 01/20/2010] [Indexed: 12/28/2022]
|
32
|
Dagyte G, Trentani A, Postema F, Luiten PG, Den Boer JA, Gabriel C, Mocaër E, Meerlo P, Van der Zee EA. The novel antidepressant agomelatine normalizes hippocampal neuronal activity and promotes neurogenesis in chronically stressed rats. CNS Neurosci Ther 2010; 16:195-207. [PMID: 20236141 DOI: 10.1111/j.1755-5949.2009.00125.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Agomelatine is a novel antidepressant which acts as a melatonergic (MT1/MT2) receptor agonist and serotonergic (5-HT2C) receptor antagonist. The antidepressant properties of agomelatine have been demonstrated in animal models as well as in clinical studies. Several preclinical studies reported agomelatine-induced effects on brain plasticity, mainly under basal conditions in healthy animals. Yet, it is important to unravel agomelatine-mediated changes in the brain affected by psychopathology or exposed to conditions that might predispose to mood disorders. Since stress is implicated in the etiology of depression, it is valid to investigate antidepressant-induced effects in animals subjected to chronic stress. In this context, we sought to determine changes in the brain after agomelatine treatment in chronically stressed rats. Adult male rats were subjected to footshock stress and agomelatine treatment for 21 consecutive days. Rats exposed to footshock showed a robust increase in adrenocorticotropic hormone (ACTH) and corticosterone. Chronic agomelatine treatment did not markedly influence this HPA-axis response. Whereas chronic exposure to daily footshock stress reduced c-Fos expression in the hippocampal dentate gyrus, agomelatine treatment reversed this effect and normalized neuronal activity to basal levels. Moreover, chronic agomelatine administration was associated with enhanced hippocampal cell proliferation and survival in stressed but not in control rats. Furthermore, agomelatine reversed the stress-induced decrease in doublecortin expression in the dentate gyrus. Taken together, these data show a beneficial action of agomelatine in the stress-compromised brain, where it restores stress-affected hippocampal neuronal activity and promotes adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Girstaute Dagyte
- Department of Molecular Neurobiology, University of Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Brocco MA, Fernández ME, Frasch ACC. Filopodial protrusions induced by glycoprotein M6a exhibit high motility and aids synapse formation. Eur J Neurosci 2010; 31:195-202. [PMID: 20074218 DOI: 10.1111/j.1460-9568.2009.07064.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
M6a is a neuronal membrane glycoprotein whose expression diminishes during chronic stress. M6a overexpression in rat primary hippocampal neurons induces the formation of filopodial protrusions that could be spine precursors. As the filopodium and spine motility has been associated with synaptogenesis, we analysed the motility of M6a-induced protrusions by time-lapse imaging. Our data demonstrate that the motile protrusions formed by the neurons overexpressing M6a were more abundant and moved faster than those formed in control cells. When different putative M6a phosphorylation sites were mutated, the neurons transfected with a mutant lacking intracellular phosphorylation sites bore filopodia, but these protrusions did not move as fast as those formed by cells overexpressing wild-type M6a. This suggests a role for M6a phosphorylation state in filopodium motility. Furthermore, we show that M6a-induced protrusions could be stabilized upon contact with presynaptic region. The motility of filopodia contacting or not neurites overexpressing synaptophysin was analysed. We show that the protrusions that apparently contacted synaptophysin-labeled cells exhibited less motility. The behavior of filopodia from M6a-overexpressing cells and control cells was alike. Thus, M6a-induced protrusions may be spine precursors that move to reach presynaptic membrane. We suggest that M6a is a key molecule for spine formation during development.
Collapse
Affiliation(s)
- Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de General San Martín, Buenos Aires, Argentina.
| | | | | |
Collapse
|
34
|
Lima FB, Centeno ML, Costa ME, Reddy AP, Cameron JL, Bethea CL. Stress sensitive female macaques have decreased fifth Ewing variant (Fev) and serotonin-related gene expression that is not reversed by citalopram. Neuroscience 2009; 164:676-91. [PMID: 19671441 PMCID: PMC2762017 DOI: 10.1016/j.neuroscience.2009.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 12/30/2022]
Abstract
Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. When stressed with a paradigm of relocation and diet for 60 days or two menstrual cycles, highly stress resilient monkeys (HSR) continued to ovulate during the stress cycles whereas stress sensitive monkeys (SS) did not. After cessation of stress, monkeys characterized as HSR or SS were administered placebo (PL) or S-citalopram (CIT) for 15 weeks at doses that normalized ovarian steroid secretion in the SS animals and that maintained blood CIT levels in a therapeutic range. After euthanasia, the brain was perfused with 4% paraformaldehyde. The pontine midbrain was blocked and sectioned at 25 microm. The expression of four genes pivotal to serotonin neural function was assessed in the four groups of monkeys (n=4/group). Fev (fifth Ewing variant) ETS transcription factor, tryptophan hydroxylase 2 (TPH2), the serotonin reuptake transporter (SERT), and the 5HT1A autoreceptor were determined at 7-8 levels of the dorsal raphe nucleus with in situ hybridization (ISH) using radiolabeled- and digoxygenin-incorporated riboprobes. Positive pixel area and cell number were measured with Slidebook 4.2 in the digoxigenin assay for Fev. Optical density (OD) and positive pixel area were measured with NIH Image software in the radiolabeled assays for TPH2, SERT and 5HT1A. All data were analyzed with two-way ANOVA. SS monkeys had significantly fewer Fev-positive cells and lower Fev-positive pixel area in the dorsal raphe than HSR monkeys. SS monkeys also had significantly lower levels of TPH2, SERT and 5HT1A mRNAs in the dorsal raphe nucleus than HSR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. These data suggest that SS monkeys have fewer serotonin (5-HT) neurons than HSR monkeys, and that they have deficient Fev expression, which in turn, leads to deficient TPH2, SERT and 5HT1A expression. In addition, the therapeutic effect of CIT is probably achieved through mechanisms other than alteration of 5-HT-related gene expression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents, Second-Generation/blood
- Antidepressive Agents, Second-Generation/pharmacology
- Citalopram/blood
- Citalopram/pharmacology
- Female
- Gene Expression
- Macaca fascicularis
- Pons/drug effects
- Pons/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- RNA, Messenger/metabolism
- Raphe Nuclei/drug effects
- Raphe Nuclei/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Species Specificity
- Stress, Psychological/drug therapy
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/metabolism
Collapse
Affiliation(s)
- F B Lima
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
35
|
Friedlander MJ, Torres-Reveron J. The changing roles of neurons in the cortical subplate. Front Neuroanat 2009; 3:15. [PMID: 19688111 PMCID: PMC2727405 DOI: 10.3389/neuro.05.015.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/24/2009] [Indexed: 11/28/2022] Open
Abstract
Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different stages of development.
Collapse
|
36
|
Desipramine prevents stress-induced changes in depressive-like behavior and hippocampal markers of neuroprotection. Behav Pharmacol 2009; 20:273-85. [PMID: 19424057 DOI: 10.1097/fbp.0b013e32832c70d9] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extracellular signal-regulated kinases (ERKs) are widely implicated in multiple physiological processes. Although ERK1/2 has been proposed as a common mediator of antidepressant action in naive rodents, it remains to be determined whether the ERK1/2 pathway plays a role in depressive disorder. Here, we investigated whether chronic restraint stress (14 days) and antidepressant treatment [desipramine (DMI), 10 mg/kg intraperitoneally] induce changes in animal behavior and hippocampal levels of phospho-ERK1/2 and its substrate phospho-cAMP response element-binding protein (CREB). The results indicated that stress-induced depressive-like behaviors were correlated with an increase in P-ERK1/2 and P-CREB in the hippocampus evaluated by immunoblot analysis. As an indication of CREB activity, we evaluated changes in mRNA levels of its target genes. Brain-derived neurotrophic factor (BDNF) mRNA was reduced by stress, an effect prevented by DMI only in the CA3 area of hippocampus. Bcl-2 mRNA was reduced in all hippocampal regions by stress, an effect independent of DMI treatment. However, immunoblot from hippocampal extracts revealed that stress increased BCL-2 levels, an effect prevented by chronic DMI. These results suggest that ERKs and BDNF may be altered in depressive disorder, modifications that are sensitive to DMI action. In contrast, the stress-induced increase in BCL-2 may correspond to a neuroprotective response.
Collapse
|
37
|
Steptoe A, van Jaarsveld CHM, Semmler C, Plomin R, Wardle J. Heritability of daytime cortisol levels and cortisol reactivity in children. Psychoneuroendocrinology 2009; 34:273-280. [PMID: 18938040 PMCID: PMC2637309 DOI: 10.1016/j.psyneuen.2008.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/13/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022]
Abstract
Individuals differ widely in cortisol output over the day and cortisol reactivity to challenge, both of which are relevant to disease risk. There is limited evidence concerning the heritability of these differences, so we evaluated the heritability of cortisol levels in the afternoon and cortisol reactivity using a twin design. The study involved 80 monozygotic (MZ) and 70 dizygotic (DZ) same-sex twin pairs aged 11.2 years on average. Salivary cortisol was measured in the afternoon at home before and after playing a computer game. Ratings of excitement and upset were also obtained, and objective task performance was assessed. Salivary cortisol levels averaged 4.08 (S.D. 2.3) nmol/l at pretask baseline, and declined on average over the session to 3.45 (1.9) nmol/l immediately after the tasks and 2.87 (1.6) nmol/l 10min later. There were, however, marked individual differences, with cortisol reactivity (difference between pretask baseline and post-task 1) ranging from +4.53 to -6.23nmol/l. Intra-class correlations for all the cortisol parameters were substantially greater for MZ (range 0.41-0.57) than for DZ (0.11-0.29) twin pairs. Quantitative genetic modelling confirmed significant heritability for pretask baseline cortisol (58%), the two post-task values (60 and 56%), and cortisol reactivity (44%). The study lacked power for assessing sex differences. Subjective reports of excitement were also somewhat heritable, but there was little covariation of cortisol and subjective responses, so genetic influences on covariation could not be tested. These findings indicate that individual differences in children's cortisol levels recorded before tasks and cortisol reactivity to behavioural challenges are influenced by genetic factors.
Collapse
Affiliation(s)
- Andrew Steptoe
- Psychobiology Group, Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, UK.
| | - Cornelia H M van Jaarsveld
- Centre for Health Behaviour Research, Department of Epidemiology and Public Health, University College London, London, UK
| | - Claudia Semmler
- Centre for Health Behaviour Research, Department of Epidemiology and Public Health, University College London, London, UK
| | - Robert Plomin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Jane Wardle
- Centre for Health Behaviour Research, Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
38
|
Diener C, Kuehner C, Brusniak W, Struve M, Flor H. Effects of stressor controllability on psychophysiological, cognitive and behavioural responses in patients with major depression and dysthymia. Psychol Med 2009; 39:77-86. [PMID: 18466665 PMCID: PMC2830060 DOI: 10.1017/s0033291708003437] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 03/20/2008] [Accepted: 03/27/2008] [Indexed: 12/03/2022]
Abstract
BACKGROUND The experience of uncontrollability and helplessness in the face of stressful life events is regarded as an important determinant in the development and maintenance of depression. The inability to successfully deal with stressors might be linked to dysfunctional prefrontal functioning. We assessed cognitive, behavioural and physiological effects of stressor uncontrollability in depressed and healthy individuals. In addition, relationships between altered cortical processing and cognitive vulnerability traits of depression were analysed. METHOD A total of 26 unmedicated depressed patients and 24 matched healthy controls were tested in an expanded forewarned reaction (S1-S2) paradigm. In a factorial design, stressor controllability varied across three consecutive conditions: (a) control, (b) loss of control and (c) restitution of control. Throughout the experiment, error rates, ratings of controllability, arousal, emotional valence and helplessness were assessed together with the post-imperative negative variation (PINV) of the electroencephalogram. RESULTS Depressed participants showed an enhanced frontal PINV as an electrophysiological index of altered information processing during both loss of control and restitution of control. They also felt more helpless than controls. Furthermore, frontal PINV magnitudes were associated with habitual rumination in the depressed subsample. CONCLUSIONS These findings indicate that depressed patients are more susceptible to stressor uncontrollability than healthy subjects. Moreover, the experience of uncontrollability seems to bias subsequent information processing in a situation where control is objectively re-established. Alterations in prefrontal functioning appear to contribute to this vulnerability and are also linked to trait markers of depression.
Collapse
Affiliation(s)
- C Diener
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
39
|
Thakker-Varia S, Alder J. Neuropeptides in depression: role of VGF. Behav Brain Res 2008; 197:262-78. [PMID: 18983874 DOI: 10.1016/j.bbr.2008.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/05/2008] [Indexed: 12/20/2022]
Abstract
The monoamine hypothesis of depression is increasingly called into question by newer theories that revolve around changes in neuronal plasticity, primarily in the hippocampus, at both the structural and the functional levels. Chronic stress negatively regulates hippocampal function while antidepressants ameliorate the effects of stress on neuronal morphology and activity. Both stress and antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) whose transcription is dependent on cAMP response element binding protein (CREB). BDNF itself has antidepressant-like actions and can induce transcription of a number of molecules. One class of genes regulated by both BDNF and serotonin (5-HT) are neuropeptides including VGF (non-acryonimic) which has a novel role in depression. Neuropeptides are important modulators of neuronal function but their role in affective disorders is just emerging. Recent studies demonstrate that VGF, which is also a CREB-dependent gene, is upregulated by antidepressant drugs and voluntary exercise and is reduced in animal models of depression. VGF enhances hippocampal synaptic plasticity as well as neurogenesis in the dentate gyrus but the mechanisms of antidepressant-like actions of VGF in behavioral paradigms are not known. We summarize experimental data describing the roles of BDNF, VGF and other neuropeptides in depression and how they may be acting through the generation of new neurons and altered synaptic activity. Understanding the molecular and cellular changes that underlie the actions of neuropeptides and how these adaptations result in antidepressant-like effects will aid in developing drugs that target novel pathways for major depressive disorders.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 683 Hoes Lane West, Robert Wood Johnson-School of Public Health 357A, Piscataway, NJ 08854-5635, United States
| | | |
Collapse
|
40
|
Czéh B, Perez-Cruz C, Fuchs E, Flügge G. Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: Does hemisphere location matter? Behav Brain Res 2008; 190:1-13. [DOI: 10.1016/j.bbr.2008.02.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/16/2008] [Indexed: 01/10/2023]
|
41
|
Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:715-25. [PMID: 18093712 DOI: 10.1016/j.pnpbp.2007.11.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/07/2007] [Accepted: 11/17/2007] [Indexed: 01/22/2023]
Abstract
Honokiol and magnolol are the main constituents simultaneously identified in the barks of Magnolia officinalis, which have been used in traditional Chinese medicine to treat a variety of mental disorders including depression. In the present study, we reported on the antidepressant-like effects of oral administration of the mixture of honokiol and magnolol in well-validated models of depression in rodents: forced swimming test (FST), tail suspension test (TST) and chronic mild stress (CMS) model. The mixture of honokiol and magnolol significantly decreased immobility time in the mouse FST and TST, and reversed CMS-induced reduction in sucrose consumption to prevent anhedonia in rats. However, this mixture was unable to affect ambulatory or rearing behavior in the mouse open-field test. CMS induced alterations in 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels in various brain regions of rats. An increase in serum corticosterone concentrations and a reduction in platelet adenylyl cyclase (AC) activity were simultaneously found in the CMS rats. The mixture of honokiol and magnolol at 20 and 40 mg/kg significantly attenuated CMS-induced decreases of 5-HT levels in frontal cortex, hippocampus, striatum, hypothalamus and nucleus accumbens. And it markedly increased 5-HIAA levels in frontal cortex, striatum and nucleus accumbens at 40 mg/kg and in frontal cortex at 20 mg/kg in the CMS rats. A subsequent reduction in 5-HIAA/5-HT ratio was found in hippocampus and nucleus accumbens in the CMS rats receiving this mixture. Furthermore, the mixture of honokiol and magnolol reduced elevated corticosterone concentrations in serum to normalize the hypothalamic-pituitary-adrenal (HPA) hyperactivity in the CMS rats. It also reversed CMS-induced reduction in platelet AC activity, via upregulating the cyclic adenosine monophosphate (cAMP) pathway. These results suggested that the mixture of honokiol and magnolol possessed potent antidepressant-like properties in behaviors involved in normalization of biochemical abnormalities in brain 5-HT and 5-HIAA, serum corticosterone levels and platelet AC activity in the CMS rats. Our findings could provide a basis for examining directly the interaction of the serotonergic system, the HPA axis and AC-cAMP pathway underlying the link between depression and treatment with the mixture of honokiol and magnolol.
Collapse
|
42
|
Henkel AW, Sperling W, Rotter A, Reulbach U, Reichardt C, Bönsch D, Maler JM, Kornhuber J, Wiltfang J. Antidepressant drugs modulate growth factors in cultured cells. BMC Pharmacol 2008; 8:6. [PMID: 18318898 PMCID: PMC2275236 DOI: 10.1186/1471-2210-8-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 03/04/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different classes of antidepressant drugs are used as a treatment for depression by activating the catecholinergic system. In addition, depression has been associated with decrease of growth factors, which causes insufficient axonal sprouting and reduced neuronal damage repair. In this study, antidepressant treatments are analyzed in a cell culture system, to study the modulation of growth factors. RESULTS We quantified the transcription of several growth factors in three cell lines after application of antidepressant drugs by real time polymerase chain reaction. Antidepressant drugs counteracted against phorbolester-induced deregulation of growth factors in PMA-differentiated neuronal SY5Y cells. We also found indications in a pilot experiment that magnetic stimulation could possibly modify BDNF in the cell culture system. CONCLUSION The antidepressant effects antidepressant drugs might be explained by selective modulation of growth factors, which subsequently affects neuronal plasticity.
Collapse
Affiliation(s)
- Andreas W Henkel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Wolfgang Sperling
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Andrea Rotter
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Udo Reulbach
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Cornelia Reichardt
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dominikus Bönsch
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Juan M Maler
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
43
|
Friedlander MJ. Lifespan longitudinal multitasking by cortical neurons. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The large number of neurons (1011) and synapses (1014) in the mammalian brain provides a rich anatomical substrate for information processing. Many neurons perform very specialized functions, such as detecting or processing sensory stimuli, relaying or amplifying attributes of an afferent input to another brain area or making decisions to convert inputs into action. Some cell types, including the early-generated subplate cells of the developing cerebral cortex, play a special role during a restricted period of early brain development, acting transiently as scaffolds for the formation of thalamocortical and corticothalamic connections. However, many of these neurons (10–20%) survive elimination and become functionally integrated into the mature cortical circuitry. Thus, a single neuron type can perform different functions in the brain at different periods of life, potentially increasing the combinatorial capacity of the functional cellular architecture of the brain over the lifespan.
Collapse
Affiliation(s)
- Michael J Friedlander
- Baylor College of Medicine, Department of Neuroscience, Director of Neuroscience Initiatives, One Baylor Plaza, Suite S740A, Houston, TX 77030, USA
| |
Collapse
|
44
|
The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 2007; 27:12156-67. [PMID: 17989282 DOI: 10.1523/jneurosci.1898-07.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is upregulated in the hippocampus by antidepressant treatments, and BDNF produces antidepressant-like effects in behavioral models of depression. In our previous work, we identified genes induced by BDNF and defined their specific roles in hippocampal neuronal development and plasticity. To identify genes downstream of BDNF that may play roles in psychiatric disorders, we examined a subset of BDNF-induced genes also regulated by 5-HT (serotonin), which includes the neuropeptide VGF (nonacronymic). To explore the function of VGF in depression, we first investigated the expression of the neuropeptide in animal models of depression. VGF was downregulated in the hippocampus after both the learned helplessness and forced swim test (FST) paradigms. Conversely, VGF infusion in the hippocampus of mice subjected to FST reduced the time spent immobile for up to 6 d, thus demonstrating a novel role for VGF as an antidepressant-like agent. Recent evidence indicates that chronic treatment of rodents with antidepressants increases neurogenesis in the adult dentate gyrus and that neurogenesis is required for the behavioral effects of antidepressants. Our studies using [(3)H]thymidine and bromodeoxyuridine as markers of DNA synthesis indicate that chronic VGF treatment enhances proliferation of hippocampal progenitor cells both in vitro and in vivo with survival up to 21 d. By double immunocytochemical analysis of hippocampal neurons, we demonstrate that VGF increases the number of dividing cells that express neuronal markers in vitro. Thus, VGF may act downstream of BDNF and exert its effects as an antidepressant-like agent by enhancing neurogenesis in the hippocampus.
Collapse
|
45
|
Reiss D, Wolter-Sutter A, Krezel W, Ouagazzal AM. Effects of social crowding on emotionality and expression of hippocampal nociceptin/orphanin FQ system transcripts in mice. Behav Brain Res 2007; 184:167-73. [PMID: 17697718 DOI: 10.1016/j.bbr.2007.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 11/19/2022]
Abstract
The novel nociceptin/orphanin FQ (N/OFQ) system was proposed to be an important component of neural circuits involved in stress-coping behaviour and fear. This study investigated whether variations between the mouse strains in vulnerability to social crowding stress might be linked to different regulation of N/OFQ system transcripts in mice. Three weeks old C57BL/6J (B6), BALB/cByJ (CBy) and 129S2/SvPas (129S2) male mice were housed individually or in crowded (7/cage) conditions and then tested as adults in a battery of anxiety tests (open field, elevated plus-maze and acoustic startle reflex tests). Both 129S2 and B6 mice displayed increased signs of anxiety under crowded housing, while CBy mice tended to show the opposite profile. Analysis of gene expression revealed a 10-fold increase of nociceptin precursor and 4-fold increase of the NOP receptor mRNAs contents in the hippocampus of CBy mice kept in crowded conditions compared to those housed individually. In B6 mice, mRNA level of the peptide precursor remained unchanged, while that of the receptor was increased by 2-fold under crowding compared to individual housing. No significant changes were detected in 129S2 mice. These findings show that social housing may be important environmental stress factor in mice depending on the strain. The possible involvement of central nociceptin mechanisms in behavioural resilience to social crowding stress is discussed.
Collapse
Affiliation(s)
- D Reiss
- ICS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | | | | | | |
Collapse
|
46
|
Antidepressant actions of the exercise-regulated gene VGF. Nat Med 2007; 13:1476-82. [PMID: 18059283 DOI: 10.1038/nm1669] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 09/20/2007] [Indexed: 01/30/2023]
Abstract
Exercise has many health benefits, including antidepressant actions in depressed human subjects, but the mechanisms underlying these effects have not been elucidated. We used a custom microarray to identify a previously undescribed profile of exercise-regulated genes in the mouse hippocampus, a brain region implicated in mood and antidepressant response. Pathway analysis of the regulated genes shows that exercise upregulates a neurotrophic factor signaling cascade that has been implicated in the actions of antidepressants. One of the most highly regulated target genes of exercise and of the growth factor pathway is the gene encoding the VGF nerve growth factor, a peptide precursor previously shown to influence synaptic plasticity and metabolism. We show that administration of a synthetic VGF-derived peptide produces a robust antidepressant response in mice and, conversely, that mutation of VGF in mice produces the opposite effects. The results suggest a new role for VGF and identify VGF signaling as a potential therapeutic target for antidepressant drug development.
Collapse
|
47
|
Böer U, Alejel T, Beimesche S, Cierny I, Krause D, Knepel W, Flügge G. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment. PLoS One 2007; 2:e431. [PMID: 17487276 PMCID: PMC1855984 DOI: 10.1371/journal.pone.0000431] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/13/2007] [Indexed: 12/22/2022] Open
Abstract
Background It has been suggested that stress provokes neuropathological changes and may thus contribute to the precipitation of affective disorders such as depression. Likewise, the pharmacological therapy of depression requires chronic treatment and is thought to induce a positive neuronal adaptation, presumably based on changes in gene transcription. The transcription factor cAMP-responsive element binding protein (CREB) and its binding site (CRE) have been suggested to play a major role in both the development of depression and antidepressive therapy. Methodology/Principle Findings To investigate the impact of stress and antidepressant treatment on CRE/CREB transcriptional activity, we generated a transgenic mouse line in which expression of the luciferase reporter gene is controlled by four copies of CRE. In this transgene, luciferase enzyme activity and protein were detected throughout the brain, e.g., in the hippocampal formation. Chronic social stress significantly increased (by 45 to 120%) CRE/CREB-driven gene expression measured as luciferase activity in several brain regions. This was also reflected by increased CREB-phosphorylation determined by immunoblotting. Treatment of the stressed mice with the antidepressant imipramine normalized luciferase expression to control levels in all brain regions and likewise reduced CREB-phosphorylation. In non-stressed animals, chronic (21 d) but not acute (24 h) treatment with imipramine (2×10 mg/kg/d) reduced luciferase expression in the hippocampus by 40–50%. Conclusions/Significance Our results emphasize a role of CREB in stress-regulated gene expression and support the view that the therapeutic actions of antidepressants are mediated via CRE/CREB-directed transcription.
Collapse
Affiliation(s)
- Ulrike Böer
- Department of Molecular Pharmacology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Yang J, Han H, Cui M, Wang L, Cao J, Li L, Xu L. Acute behavioural stress facilitates long-term depression in temporoammonic-CA1 pathway. Neuroreport 2006; 17:753-7. [PMID: 16641682 DOI: 10.1097/01.wnr.0000209044.66482.c5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Behavioural stress facilitates long-term depression in Schaffer collaterals-CA1 pathway, but it is unknown whether it influences long-term depression in temporoammonic fibres-CA1. Here, we report that low-frequency stimulation induced long-term depression and foot shock stress before slice preparation facilitated long-term depression in both pathways of young rat slices. When the field excitatory postsynaptic potentials were recorded by stimulating the two pathways alternately and low-frequency stimulation was given to the two pathways simultaneously, a reliable long-term depression was induced in Schaffer collaterals-CA1 but a reliable long-term potentiation took place in temporoammonic fibres-CA1. Interestingly, foot shock stress now enabled low-frequency stimulation to induce reliable long-term depressions in both pathways. These findings suggested that acute behavioural stress facilitated long-term depressions in both pathways and disrupted the interactions between pathways.
Collapse
Affiliation(s)
- Jianli Yang
- Mental Health Institute of the 2nd Xiangya Hospital, Central South University, Changsha, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Feldker DEM, Morsink MC, Veenema AH, Datson NA, Proutski V, Lathouwers D, de Kloet ER, Vreugdenhil E. The effect of chronic exposure to highly aggressive mice on hippocampal gene expression of non-aggressive subordinates. Brain Res 2006; 1089:10-20. [PMID: 16678802 DOI: 10.1016/j.brainres.2006.02.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/31/2006] [Accepted: 02/26/2006] [Indexed: 01/12/2023]
Abstract
Exposure to a chronic psychosocial stressor changes the behavioral and neuroendocrine response pattern and causes structural changes in the rodent hippocampus. However, the underlying molecular mechanism of these changes induced by chronic stress is largely unknown. Recently, it was shown that exposure to a dominant highly aggressive mouse in the sensory contact model induced long-lasting stress symptoms in subordinate mice genetically selected for long attack latency (LAL mice). The aim of the present study was to study the effect of chronic stress on hippocampal gene expression in these subordinate LAL mice. GeneChips (Affymetrix) were used to compare gene expression profiles of LAL mice exposed to a sensory contact stressor for 25 days and their controls (one array per mouse, n=5 per line). After this stress paradigm, 131 genes were found differentially expressed (P<0.01). Strikingly, all of these genes showed a subtle downregulation in response to a chronic stressor. Interestingly, a significant overrepresentation of genes encoding structural components of ribosomes were found, suggesting diminished protein biosynthesis in the hippocampus of chronically stressed LAL mice. In addition, several genes of the NFkappaB signaling cascade, a pathway crucially involved in neuronal viability and neurite growth, were found to be downregulated. Together, we hypothesize that reduced NFkappaB signaling and diminished protein biosynthesis form part of the molecular mechanisms by which a chronic psychosocial stressor induces structural alterations in hippocampus of LAL mice.
Collapse
Affiliation(s)
- Dorine E M Feldker
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|