1
|
Ghanem K, Saltoun K, Suvrathan A, Draganski B, Bzdok D. Longitudinal microstructural changes in 18 amygdala nuclei resonate with cortical circuits and phenomics. Commun Biol 2024; 7:477. [PMID: 38637627 PMCID: PMC11026520 DOI: 10.1038/s42003-024-06187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans. This allows us to quantify how 18 microanatomical amygdala subregions undergo plastic changes in tandem with coupled neural systems and delineating their associated phenome-wide profiles. In the context of population change, the basal, lateral, accessory basal, and paralaminar nuclei change in lockstep with the prefrontal cortex, a region that subserves planning and decision-making. The central, medial and cortical nuclei are structurally coupled with the insular and anterior-cingulate nodes of the salience network, in addition to the MT/V5, basal ganglia, and putamen, areas proposed to represent internal bodily states and mediate attention to environmental cues. The central nucleus and anterior amygdaloid area are longitudinally tied with the inferior parietal lobule, known for a role in bodily awareness and social attention. These population-level amygdala-brain plasticity regimes in turn are linked with unique collections of phenotypes, ranging from social status and employment to sleep habits and risk taking. The obtained structural plasticity findings motivate hypotheses about the specific functions of distinct amygdala nuclei in humans.
Collapse
Affiliation(s)
- Karam Ghanem
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| | - Karin Saltoun
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Aparna Suvrathan
- Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience (BRaIN) Research Program, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bogdan Draganski
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Danilo Bzdok
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
2
|
Moreno Manrique JF, Voit PR, Windsor KE, Karla AR, Rodriguez SR, Beaudoin GMJ. SynapseJ: An Automated, Synapse Identification Macro for ImageJ. Front Neural Circuits 2021; 15:731333. [PMID: 34675779 PMCID: PMC8524137 DOI: 10.3389/fncir.2021.731333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
While electron microscopy represents the gold standard for detection of synapses, a number of limitations prevent its broad applicability. A key method for detecting synapses is immunostaining for markers of pre- and post-synaptic proteins, which can infer a synapse based upon the apposition of the two markers. While immunostaining and imaging techniques have improved to allow for identification of synapses in tissue, analysis and identification of these appositions are not facile, and there has been a lack of tools to accurately identify these appositions. Here, we delineate a macro that uses open-source and freely available ImageJ or FIJI for analysis of multichannel, z-stack confocal images. With use of a high magnification with a high NA objective, we outline two methods to identify puncta in either sparsely or densely labeled images. Puncta from each channel are used to eliminate non-apposed puncta and are subsequently linked with their cognate from the other channel. These methods are applied to analysis of a pre-synaptic marker, bassoon, with two different post-synaptic markers, gephyrin and N-methyl-d-aspartate (NMDA) receptor subunit 1 (NR1). Using gephyrin as an inhibitory, post-synaptic scaffolding protein, we identify inhibitory synapses in basolateral amygdala, central amygdala, arcuate and the ventromedial hypothalamus. Systematic variation of the settings identify the parameters most critical for this analysis. Identification of specifically overlapping puncta allows for correlation of morphometry data between each channel. Finally, we extend the analysis to only examine puncta overlapping with a cytoplasmic marker of specific cell types, a distinct advantage beyond electron microscopy. Bassoon puncta are restricted to virally transduced, pedunculopontine tegmental nucleus (PPN) axons expressing yellow fluorescent protein. NR1 puncta are restricted to tyrosine hydroxylase labeled dopaminergic neurons of the substantia nigra pars compacta (SNc). The macro identifies bassoon-NR1 overlap throughout the image, or those only restricted to the PPN-SNc connections. Thus, we have extended the available analysis tools that can be used to study synapses in situ. Our analysis code is freely available and open-source allowing for further innovation.
Collapse
Affiliation(s)
| | - Parker R Voit
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Kathryn E Windsor
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Aamuktha R Karla
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Sierra R Rodriguez
- Department of Biology, Trinity University, San Antonio, TX, United States
| | | |
Collapse
|
3
|
Ashby DM, Dias C, Aleksandrova LR, Lapish CC, Wang YT, Phillips AG. Disruption of Long-Term Depression Potentiates Latent Inhibition: Key Role for Central Nucleus of the Amygdala. Int J Neuropsychopharmacol 2021; 24:580-591. [PMID: 33693669 PMCID: PMC8299826 DOI: 10.1093/ijnp/pyab011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Latent inhibition (LI) reflects an adaptive form of learning impaired in certain forms of mental illness. Glutamate receptor activity is linked to LI, but the potential role of synaptic plasticity remains unspecified. METHODS Accordingly, the present study examined the possible role of long-term depression (LTD) in LI induced by prior exposure of rats to an auditory stimulus used subsequently as a conditional stimulus to signal a pending footshock. We employed 2 mechanistically distinct LTD inhibitors, the Tat-GluA23Y peptide that blocks endocytosis of the GluA2-containing glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, or the selective glutamate n-methyl-d-aspartate receptor 2B antagonist, Ro25-6981, administered prior to the acquisition of 2-way conditioned avoidance with or without tone pre-exposure. RESULTS Systemic LTD blockade with the Tat-GluA23Y peptide strengthened the LI effect by further impairing acquisition of conditioned avoidance in conditional stimulus-preexposed rats compared with normal conditioning in non-preexposed controls. Systemic Ro25-6981 had no significant effects. Brain region-specific microinjections of the Tat-GluA23Y peptide into the nucleus accumbens, medial prefrontal cortex, or central or basolateral amygdala demonstrated that disruption of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor endocytosis in the central amygdala also potentiated the LI effect. CONCLUSIONS These data revealed a previously unknown role for central amygdala LTD in LI as a key mediator of cognitive flexibility required to respond to previously irrelevant stimuli that acquire significance through reinforcement. The findings may have relevance both for our mechanistic understanding of LI and its alteration in disease states such as schizophrenia, while further elucidating the role of LTD in learning and memory.
Collapse
Affiliation(s)
- Donovan M Ashby
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carine Dias
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lily R Aleksandrova
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Christopher C Lapish
- Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Yu Tian Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony G Phillips
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability. Proc Natl Acad Sci U S A 2021; 118:1921123118. [PMID: 33558223 DOI: 10.1073/pnas.1921123118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The perception of and response to danger is critical for an individual's survival and is encoded by subcortical neurocircuits. The amygdaloid complex is the primary neuronal site that initiates bodily reactions upon external threat with local-circuit interneurons scaling output to effector pathways. Here, we categorize central amygdala neurons that express secretagogin (Scgn), a Ca2+-sensor protein, as a subset of protein kinase Cδ (PKCδ)+ interneurons, likely "off cells." Chemogenetic inactivation of Scgn+/PKCδ+ cells augmented conditioned response to perceived danger in vivo. While Ca2+-sensor proteins are typically implicated in shaping neurotransmitter release presynaptically, Scgn instead localized to postsynaptic compartments. Characterizing its role in the postsynapse, we found that Scgn regulates the cell-surface availability of NMDA receptor 2B subunits (GluN2B) with its genetic deletion leading to reduced cell membrane delivery of GluN2B, at least in vitro. Conclusively, we describe a select cell population, which gates danger avoidance behavior with secretagogin being both a selective marker and regulatory protein in their excitatory postsynaptic machinery.
Collapse
|
5
|
Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metab 2018; 27:42-56. [PMID: 29107504 PMCID: PMC5762260 DOI: 10.1016/j.cmet.2017.09.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/11/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Central regulation of food intake is a key mechanism contributing to energy homeostasis. Many neural circuits that are thought to orchestrate feeding behavior overlap with the brain's reward circuitry both anatomically and functionally. Manipulation of numerous neural pathways can simultaneously influence food intake and reward. Two key systems underlying these processes-those controlling homeostatic and hedonic feeding-are often treated as independent. Homeostatic feeding is necessary for basic metabolic processes and survival, while hedonic feeding is driven by sensory perception or pleasure. Despite this distinction, their functional and anatomical overlap implies considerable interaction that is often overlooked. Here, we argue that the neurocircuits controlling homeostatic feeding and hedonic feeding are not completely dissociable given the current data and urge researchers to assess behaviors extending beyond food intake in investigations of the neural control of feeding.
Collapse
|
6
|
Samson RD, Lester AW, Duarte L, Venkatesh A, Barnes CA. Emergence of β-Band Oscillations in the Aged Rat Amygdala during Discrimination Learning and Decision Making Tasks. eNeuro 2017; 4:ENEURO.0245-17.2017. [PMID: 29034315 PMCID: PMC5629614 DOI: 10.1523/eneuro.0245-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 09/23/2017] [Indexed: 11/21/2022] Open
Abstract
Older adults tend to use strategies that differ from those used by young adults to solve decision-making tasks. MRI experiments suggest that altered strategy use during aging can be accompanied by a change in extent of activation of a given brain region, inter-hemispheric bilateralization or added brain structures. It has been suggested that these changes reflect compensation for less effective networks to enable optimal performance. One way that communication can be influenced within and between brain networks is through oscillatory events that help structure and synchronize incoming and outgoing information. It is unknown how aging impacts local oscillatory activity within the basolateral complex of the amygdala (BLA). The present study recorded local field potentials (LFPs) and single units in old and young rats during the performance of tasks that involve discrimination learning and probabilistic decision making. We found task- and age-specific increases in power selectively within the β range (15-30 Hz). The increased β power occurred after lever presses, as old animals reached the goal location. Periods of high-power β developed over training days in the aged rats, and was greatest in early trials of a session. β Power was also greater after pressing for the large reward option. These data suggest that aging of BLA networks results in strengthened synchrony of β oscillations when older animals are learning or deciding between rewards of different size. Whether this increased synchrony reflects the neural basis of a compensatory strategy change of old animals in reward-based decision-making tasks, remains to be verified.
Collapse
Affiliation(s)
- Rachel D. Samson
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Adam W. Lester
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Leroy Duarte
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Anu Venkatesh
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Carol A. Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
7
|
Keifer OP, Hurt RC, Ressler KJ, Marvar PJ. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning. Physiology (Bethesda) 2016; 30:389-401. [PMID: 26328883 DOI: 10.1152/physiol.00058.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Robert C Hurt
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kerry J Ressler
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Howard Hughes Medical Institute, Bethesda, Maryland; and Yerkes National Primate Research Center, Atlanta, Georgia
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C.;
| |
Collapse
|
8
|
Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. eNeuro 2016; 3:eN-NWR-0002-16. [PMID: 27022632 PMCID: PMC4804386 DOI: 10.1523/eneuro.0002-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, brain-slice recordings, and adenoviral optogenetics to dissect connectivity of ascending BLA input onto PL and IL neurons projecting to the periaqueductal gray (PAG) or the amygdala. We found differential targeting of BLA projections to PL and IL cortex. Activating BLA projections evoked excitatory and inhibitory responses in cortico-PAG (CP) neurons in layer 5 (L5) of both PL and IL cortex. However, all inhibitory responses were polysynaptic and monosynaptic BLA input was stronger to CP neurons in IL cortex. Conversely, the BLA preferentially targeted corticoamygdalar (CA) neurons in layer 2 (L2) of PL over IL cortex. We also reveal that BLA input is projection specific by showing preferential targeting of L5 CP neurons over neighboring L3/5 CA neurons in IL cortex. We conclude by showing that BLA input is laminar-specific by producing stronger excitatory responses CA neurons in L3/5 compared with L2 in IL cortex. Collectively, this study reveals differential targeting of the BLA to PL and IL cortex, which depends both on laminar location and projection target of cortical neurons. Overall, our findings should have important implications for understanding the processing of pain and fear input by the PL and IL cortex.
Collapse
|
9
|
Fox AS, Oler JA, Shelton SE, Nanda SA, Davidson RJ, Roseboom PH, Kalin NH. Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proc Natl Acad Sci U S A 2012; 109:18108-13. [PMID: 23071305 PMCID: PMC3497741 DOI: 10.1073/pnas.1206723109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Children with anxious temperament (AT) are particularly sensitive to new social experiences and have increased risk for developing anxiety and depression. The young rhesus monkey is optimal for studying the origin of human AT because it shares with humans the genetic, neural, and phenotypic underpinnings of complex social and emotional functioning. In vivo imaging in young monkeys demonstrated that central nucleus of the amygdala (Ce) metabolism is relatively stable across development and predicts AT. Transcriptome-wide gene expression, which reflects combined genetic and environmental influences, was assessed within the Ce. Results support a maladaptive neurodevelopmental hypothesis linking decreased amygdala neuroplasticity to early-life dispositional anxiety. For example, high AT individuals had decreased mRNA expression of neurotrophic tyrosine kinase, receptor, type 3 (NTRK3). Moreover, variation in Ce NTRK3 expression was inversely correlated with Ce metabolism and other AT-substrates. These data suggest that altered amygdala neuroplasticity may play a role the early dispositional risk to develop anxiety and depression.
Collapse
Affiliation(s)
- Andrew S. Fox
- Departments of Psychology and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| | - Jonathan A. Oler
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
| | - Steven E. Shelton
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
| | | | - Richard J. Davidson
- Departments of Psychology and
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| | | | - Ned H. Kalin
- Departments of Psychology and
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
10
|
Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Struct Funct 2012; 218:1033-49. [PMID: 22847115 DOI: 10.1007/s00429-012-0445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
Aggression is a complex behavior that is essential for survival. Of the various forms of aggression, impulsive violent displays without prior planning or deliberation are referred to as affective aggression. Affective aggression is thought to be caused by aberrant perceptions of, and consequent responses to, threat. Understanding the neuronal networks that regulate affective aggression is pivotal to development of novel approaches to treat chronic affective aggression. Here, we provide a detailed anatomical map of neuronal activity in the forebrain of two inbred lines of mice that were selected for low (NC100) and high (NC900) affective aggression. Attack behavior was induced in male NC900 mice by exposure to an unfamiliar male in a novel environment. Forebrain maps of c-Fos+ nuclei, which are surrogates for neuronal activity during behavior, were then generated and analyzed. NC100 males rarely exhibited affective aggression in response to the same stimulus, thus their forebrain c-Fos maps were utilized to identify unique patterns of neuronal activity in NC900s. Quantitative results indicated robust differences in the distribution patterns and densities of c-Fos+ nuclei in distinct thalamic, subthalamic, and amygdaloid nuclei, together with unique patterns of neuronal activity in the nucleus accumbens and the frontal cortices. Our findings implicate these areas as foci regulating differential behavioral responses to an unfamiliar male in NC900 mice when expressing affective aggression. Based on the highly conserved patterns of connections and organization of neuronal limbic structures from mice to humans, we speculate that neuronal activities in analogous networks may be disrupted in humans prone to maladaptive affective aggression.
Collapse
|
11
|
Ardjmand A, Rezayof A, Zarrindast MR. Involvement of central amygdala NMDA receptor mechanism in morphine state-dependent memory retrieval. Neurosci Res 2011; 69:25-31. [DOI: 10.1016/j.neures.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/25/2010] [Accepted: 09/14/2010] [Indexed: 12/11/2022]
|
12
|
Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 2010; 468:277-82. [DOI: 10.1038/nature09559] [Citation(s) in RCA: 682] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 10/07/2010] [Indexed: 12/18/2022]
|
13
|
Abstract
The amygdala has received considerable attention because of its established role in specific behaviors and disorders such as anxiety, depression, and autism. Studies have revealed that the amygdala is a complex and dynamic brain region that is highly connected with other areas of the brain. Previous works have focused on neurons, demonstrating that the amygdala in rodents is highly plastic and sexually dimorphic. However, our more recent work explores sex differences in nonneuronal cells, joining a rich literature concerning glia in the amygdala. Prior investigation of glia in the amygdala can generally be divided into disease-related and hormone-related categories, with both areas of research producing interesting findings concerning glia in this important brain region. Despite a wide range of research topics, the collected findings make it clear that glia in the amygdala are sensitive and plastic cells that respond and develop in a highly region specific manner.
Collapse
|
14
|
Schiller D, Delgado MR. Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends Cogn Sci 2010; 14:268-76. [PMID: 20493762 DOI: 10.1016/j.tics.2010.04.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/09/2010] [Accepted: 04/11/2010] [Indexed: 10/19/2022]
Abstract
Learned fear is a process allowing quick detection of associations between cues in the environment and prediction of imminent threat. Adaptive function in a changing environment, however, requires organisms to quickly update this learning and have the ability to hinder fear responses when predictions are no longer correct. Here we focus on three strategies that can modify conditioned fear, namely extinction, reversal and regulation of fear, and review their underlying neural mechanisms. By directly comparing neuroimaging data from three separate studies that employ each strategy, we highlight overlapping brain structures that comprise a general circuitry in the human brain. This circuitry potentially enables the flexible control of fear, regardless of the particular task demands.
Collapse
Affiliation(s)
- Daniela Schiller
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
15
|
Abstract
Temporal contiguity between two stimuli is insufficient for the establishment of a predictive relation between those stimuli. Rather, learning about predictive relations is influenced by a prediction error mechanism: the discrepancy between actual and expected outcomes. Although the neural substrates of contiguous stimuli presentation have been the focus of research for decades, relatively little empirical evidence exists with regard to the neural mechanisms of prediction error. Recent work has implicated the neurotransmitter dopamine in regulation of predictive learning. If dopamine modulates prediction error then it should do so despite the nature (appetitive or aversive) of the biological stimuli that serve to drive learning. The exact role of dopamine in appetitive and aversive predictive learning, however, remains the focus of continuous debate. This review focuses on the behavioural, neuropharmacological and electrophysiological evidence implicating dopamine in prediction error in appetitive and aversive predictive learning. In addition, recent work in the area of fear conditioning implicating other neurochemical substrates, namely opioids, in the process of prediction error is discussed. Finally, some predictions are made with regard to the neurochemical circuitry involved in modulating learning and behaviour based on prediction error.
Collapse
|
16
|
Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron 2009; 62:757-71. [PMID: 19555645 DOI: 10.1016/j.neuron.2009.05.026] [Citation(s) in RCA: 686] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 11/16/2022]
Abstract
Classical fear conditioning is a powerful behavioral paradigm that is widely used to study the neuronal substrates of learning and memory. Previous studies have clearly identified the amygdala as a key brain structure for acquisition and storage of fear memory traces. Whereas the majority of this work has focused on principal cells and glutamatergic transmission and its plasticity, recent studies have started to shed light on the intricate roles of local inhibitory circuits. Here, we review current understanding and emerging concepts of how local inhibitory circuits in the amygdala control the acquisition, expression, and extinction of conditioned fear at different levels.
Collapse
Affiliation(s)
- Ingrid Ehrlich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Fudge JL, Tucker T. Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate. Neuroscience 2009; 159:819-41. [PMID: 19272304 DOI: 10.1016/j.neuroscience.2009.01.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 01/02/2009] [Accepted: 01/06/2009] [Indexed: 11/19/2022]
Abstract
In rats and primates, the central nucleus of the amygdala (CeN) is most known for its role in responses to fear stimuli. Recent evidence also shows that the CeN is required for directing attention and behaviors when the salience of competing stimuli is in flux. To examine how information flows through this key output region of the primate amygdala, we first placed small injections of retrograde tracers into the subdivisions of the central nucleus in Old world primates, and examined inputs from specific amygdaloid nuclei. The amygdalostriatal area and interstitial nucleus of the posterior limb of the anterior commissure (IPAC) were distinguished from the CeN using histochemical markers, and projections to these regions were also described. As expected, the basal nucleus and accessory basal nucleus are the main afferent connections of the central nucleus and transition zones. The medial subdivision of the central nucleus (CeM) receives a significantly stronger input from all regions compared to the lateral core subdivision (CeLcn). The corticoamygdaloid transition zone (a zone of confluence of the medial parvicellular basal nucleus, paralaminar nucleus, and the sulcal periamygdaloid cortex) provides the main input to the CeLcn. The IPAC and amygdalostriatal area can be divided in medial and lateral subregions, and receive input from the basal and accessory basal nucleus, with differential inputs according to subdivision. The piriform cortex and lateral nucleus, two important sensory interfaces, send projections to the transition zones. In sum, the CeM receives broad inputs from the entire amygdala, whereas the CeLcn receives more restricted inputs from the relatively undifferentiated corticoamygdaloid transition region. Like the CeN, the transition zones receive most of their input from the basal nucleus and accessory basal nucleus, however, inputs from the piriform cortex and lateral nucleus, and a lack of input from the parvicellular accessory basal nucleus, are distinguishing afferent features.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
18
|
Bonett RM, Hu F, Bagamasbad P, Denver RJ. Stressor and glucocorticoid-dependent induction of the immediate early gene kruppel-like factor 9: implications for neural development and plasticity. Endocrinology 2009; 150:1757-65. [PMID: 19036875 PMCID: PMC2659263 DOI: 10.1210/en.2008-1441] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Krüppel-like factor 9 (KLF9) is a thyroid hormone-induced, immediate early gene implicated in neural development in vertebrates. We analyzed stressor and glucocorticoid (GC)-dependent regulation of KLF9 expression in the brain of the frog Xenopus laevis, and investigated a possible role for KLF9 in neuronal differentiation. Exposure to shaking/confinement stressor increased plasma corticosterone (CORT) concentration, and KLF9 immunoreactivity in several brain regions, which included the medial amygdala and bed nucleus of the stria terminalis, anterior preoptic area (homologous to the mammalian paraventricular nucleus), and optic tectum (homologous to the mammalian superior colliculus). The stressor-induced KLF9 mRNA expression in the brain was blocked by pretreatment with the GC receptor antagonist RU486, or mimicked by injection of CORT. Treatment with CORT also caused a rapid and dose-dependent increase in KLF9 mRNA in X. laevis XTC-2 cells that was resistant to inhibition of protein synthesis. The action of CORT on KLF9 expression in XTC-2 cells was blocked by RU486, but not by the mineralocorticoid receptor antagonist spironolactone. To test for functional consequences of up-regulation of KLF9, we introduced a KLF9 expression plasmid into living tadpole brain by electroporation-mediated gene transfer. Forced expression of KLF9 in tadpole brain caused an increase in Golgi-stained cells, reflective of neuronal differentiation/maturation. Our results support that KLF9 is a direct, GC receptor target gene that is induced by stress, and functions as an intermediary in the actions of GCs on brain gene expression and neuronal structure.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
19
|
Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault C, Dembele D, Le Merrer J, Becker JAJ, Poch O, Kieffer BL. Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur J Neurosci 2008; 27:2973-84. [PMID: 18588537 DOI: 10.1111/j.1460-9568.2008.06273.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Addiction develops from the gradual adaptation of the brain to chronic drug exposure, and involves genetic reprogramming of neuronal function. The central extended amygdala (EAc) is a network formed by the central amygdala and the bed nucleus of the stria terminalis. This key site controls drug craving and seeking behaviors, and has not been investigated at the gene regulation level. We used Affymetrix microarrays to analyze transcriptional activity in the murine EAc, with a focus on mu-opioid receptor-associated events because these receptors mediate drug reward and dependence. We identified 132 genes whose expression is regulated by a chronic escalating morphine regimen in the EAc from wild-type but not mu-opioid receptor knockout mice. These modifications are mostly EAc-specific. Gene ontology analysis reveals an overrepresentation of neurogenesis, cell growth and signaling protein categories. A separate quantitative PCR analysis of genes in the last of these groups confirms the dysregulation of both orphan (Gpr88) and known (DrD1A, Adora2A, Cnr1, Grm5, Gpr6) G protein-coupled receptors, scaffolding (PSD95, Homer1) and signaling (Sgk, Cap1) proteins, and neuropeptides (CCK, galanin). These transcriptional modifications do not occur following a single morphine injection, and hence result from long-term adaptation to excessive mu receptor activation. Proteins encoded by these genes are classically associated with spine modules function in other brain areas, and therefore our data suggest a remodeling of EAc circuits at sites where glutamatergic and monoaminergic afferences interact. Together, mu receptor-dependent genes identified in this study potentially contribute to drug-induced neural plasticity, and provide a unique molecular repertoire towards understanding drug craving and relapse.
Collapse
Affiliation(s)
- K Befort
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département Neurobiologie et Génétique, Illkirch, F-67400 France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Becker JAJ, Befort K, Blad C, Filliol D, Ghate A, Dembele D, Thibault C, Koch M, Muller J, Lardenois A, Poch O, Kieffer BL. Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala. Neuroscience 2008; 156:950-65. [PMID: 18786617 DOI: 10.1016/j.neuroscience.2008.07.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/18/2008] [Accepted: 07/30/2008] [Indexed: 01/18/2023]
Abstract
The central extended amygdala (EAc) is an ensemble of highly interconnected limbic structures of the anterior brain, and forms a cellular continuum including the bed nucleus of the stria terminalis (BNST), the central nucleus of the amygdala (CeA) and the nucleus accumbens shell (AcbSh). This neural network is a key site for interactions between brain reward and stress systems, and has been implicated in several aspects of drug abuse. In order to increase our understanding of EAc function at the molecular level, we undertook a genome-wide screen (Affymetrix) to identify genes whose expression is enriched in the mouse EAc. We focused on the less-well known BNST-CeA areas of the EAc, and identified 121 genes that exhibit more than twofold higher expression level in the EAc compared with whole brain. Among these, 43 genes have never been described to be expressed in the EAc. We mapped these genes throughout the brain, using non-radioactive in situ hybridization, and identified eight genes with a unique and distinct rostro-caudal expression pattern along AcbSh, BNST and CeA. Q-PCR analysis performed in brain and peripheral organ tissues indicated that, with the exception of one (Spata13), all these genes are predominantly expressed in brain. These genes encode signaling proteins (Adora2, GPR88, Arpp21 and Rem2), a transcription factor (Limh6) or proteins of unknown function (Rik130, Spata13 and Wfs1). The identification of genes with enriched expression expands our knowledge of EAc at a molecular level, and provides useful information to toward genetic manipulations within the EAc.
Collapse
Affiliation(s)
- J A J Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science, New York University, 4 Washington Place, New York, New York 10003, USA.
| |
Collapse
|
22
|
López de Armentia M, Sah P. Bidirectional synaptic plasticity at nociceptive afferents in the rat central amygdala. J Physiol 2007; 581:961-70. [PMID: 17379642 PMCID: PMC2170827 DOI: 10.1113/jphysiol.2006.121822] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamatergic inputs arising from the parabrachial nucleus to neurons in the lateral sector of the central amygdala were studied in vitro. Tetanic stimulation of these inputs led to LTP that did not require activation of NMDA receptors or a rise of postsynaptic calcium. LTP was accompanied by a reduction in the paired-pulse ratio, indicating that LTP results from an increase in transmitter release probability. Activation of adenylyl cyclase with forskolin potentiated these inputs with a similar reduction in paired-pulse facilitation and occluded LTP induction. LTP was inhibited by the protein kinase A blocker H89. Low-frequency stimulation led to LTD that required activation of postsynaptic NMDA receptors and a rise in postsynaptic calcium. There was no change in paired-pulse facilitation with LTD. LTD was blocked by protein phosphatase blockers calyculin and okadaic acid. We conclude that parabrachial inputs to the lateral sector of the central amygdala show presynaptic LTP that requires activation of a presynaptic protein kinase A via a calcium-dependent adenylyl cyclase while LTD at the same synapses is postsynaptic and requires a rise in postsynaptic calcium and activation of protein phosphatase.
Collapse
|
23
|
Sinfield JL, Collins DR. Induction of synchronous oscillatory activity in the rat lateral amygdala in vitro is dependent on gap junction activity. Eur J Neurosci 2007; 24:3091-5. [PMID: 17156370 DOI: 10.1111/j.1460-9568.2006.05202.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synchronized and rhythmic activity within the amygdala is thought to play a pivotal role in the generation of fear- and anxiety-related behaviour. The aim here was to determine the validity of the in vitro amygdala slice preparation to investigate the generation of rhythmic activity similar to that observed in vivo. Extracellular population activity recorded from the lateral nucleus of the amygdala in vitro showed significant enhancement of activity within the theta-band frequency (3-9 Hz) in the presence of kainic acid (100 nm; n=18). Alterations in the patterns of oscillatory activity within the gamma frequency band (20-40 Hz) were observed in the presence of (RS)-3,5-dihydroxyphenylglycine (10 microm; n=7) or carbachol (50 microm; n=5). Theta frequency oscillatory activity was blocked in the presence of the gap junction blocker carbenoxolone (100 mm), whereas gamma frequency oscillatory activity showed increased variability in the dominant frequency of rhythmic activity. The results suggest that the neuronal circuitry of the amygdala in vitro is capable of generating and sustaining rhythmic activity and that intercellular communication via gap junctions may play a role in the synchronization of population activity underlying this oscillatory activity.
Collapse
Affiliation(s)
- James L Sinfield
- MOAC Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|