1
|
Parisi V, Santoro V, Faraone I, Benedetto N, Vassallo A, De Tommasi N, Milella L, Nesticò A, Maselli G, Fadda AM, Caddeo C. Sonchus asper (L.) Hill extracts: phytochemical characterization and exploitation of its biological activities by loading into nanoformulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416539. [PMID: 39220011 PMCID: PMC11363874 DOI: 10.3389/fpls.2024.1416539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Introduction The current investigation presents a two-fold approach to rediscovering the potential of Sonchus asper as a wild edible plant, both in its raw extract form and as a nanoformulated product. Furthermore, the study aimed to promote the valorization of traditional dishes and contribute to biodiversity conservation and sustainable use of S. asper, thus enhancing economic profits. Methods Liquid chromatography-mass spectrometry analyses were conducted to characterize the metabolite profile of the raw and cooked leaf extracts, and the extract from discarded leaves. The antioxidant activity, the hypoglycaemic effect and the incorporation into liposomes were evaluated. Results 38 compounds and 6 essential amino acids were identified. The incorporation into liposomes maximized the health-promoting properties for potential pharmaceutical or food applications. Discussion The commercialization of S. asper could: (i) contribute to improving the well-being of rural and urban communities, being S. asper a wild edible plant available at low cost, environmentally friendly, resilient, and adaptable; (ii) generate landowner economic returns.
Collapse
Affiliation(s)
- Valentina Parisi
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | | | - Nadia Benedetto
- Department of Science, University of Basilicata, Potenza, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Potenza, Italy
- Spinoff TNcKILLERS srl, Potenza, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Potenza, Italy
| | - Antonio Nesticò
- Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Gabriella Maselli
- Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
2
|
Suh JY, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Shin N, Kim B, Shim BS, Kim SH. Hypolipogenic effects of Icariside E4 via phosphorylation of AMPK and inhibition of MID1IP1 in HepG2 cells. Phytother Res 2023; 37:7-14. [PMID: 35916211 DOI: 10.1002/ptr.7584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Though icariside E4 (IE4) is known to have anti-noceptive, anti-oxidant, anti-Alzheimer and anti-inflammatory effects, there was no evidence on the effect of IE4 on lipid metabolism so far. Hence, the hypolipogenic mechanism of IE4 was investigated in HepG2 hepatocellular carcinoma cells (HCCs) in association with MID1 Interacting Protein 1(MID1IP1) and AMPK signaling. Here, IE4 did not show any toxicity in HepG2 cells, but reduced lipid accumulation in HepG2 cells by Oil Red O staining. MID1IP1 depletion decreased the expression of SREBP-1c and fatty acid synthase (FASN) and induced phosphorylation of ACC in HepG2 cells. Indeed, IE4 activated phosphorylation of AMPK and ACC and inhibited the expression of MID1IP1 in HepG2 cells. Furthermore, IE4 suppressed the expression of SREBP-1c, liver X receptor-α (LXR), and FASN for de novo lipogenesis in HepG2 cells. Interestingly, AMPK inhibitor compound C reversed the ability of IE4 to reduce MID1IP1, SREBP-1c, and FASN and activate phosphorylation of AMPK/ACC in HepG2 cells, indicating the important role of AMPK/ACC signaling in IE4-induced hypolipogenic effect. Taken together, these findings suggest that IE4 has hypolipogenic potential in HepG2 cells via activation of AMPK and inhibition of MID1IP1 as a potent candidate for treatment of fatty liver disease.
Collapse
Affiliation(s)
- Jin Young Suh
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Yin M, Li C, Wang Y, Fu J, Sun Y, Zhang Q. Comparison analysis of metabolite profiling in seeds and bark of Ulmus parvifolia, a Chinese medicine species. PLANT SIGNALING & BEHAVIOR 2022; 17:2138041. [PMID: 36317599 PMCID: PMC9629078 DOI: 10.1080/15592324.2022.2138041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Ulmus parvifolia (U. parvifolia) is a Chinese medicine plant whose bark and leaves are used in the treatment of some diseases such as inflammation, diarrhea and fever. However, metabolic signatures of seeds have not been studied. The seeds and bark of U. parvifolia collected at the seed ripening stage were used for metabolite profiling analysis through the untargeted metabolomics approach. A total of 2,578 and 2,207 metabolites, while 503 and 132 unique metabolites were identified in seeds and bark, respectively. Additionally, 574 differential metabolites (DEMs) were detected in the two different organs of U. parvifolia, which were grouped into 52 classes. Most kinds of metabolites classed into prenol lipids class. The relative content of flavonoids class was the highest. DEMs contained some bioactive compounds (e.g., flavonoids, terpene glycosides, triterpenoids, sesquiterpenoids) with antioxidant, anti-inflammatory, and anti-cancer activities. Most kinds of flavonoids and sesquiterpenes were up-regulated in seeds. There were more varieties of terpene glycosides and triterpenoids showing up-regulated in bark. The pathway enrichment was performed, while flavonoid biosynthesis, flavone and flavonol biosynthesis were worthy of attention. This study identified DEMs with pharmaceutical value between seeds and bark during seed maturation and offered a molecular basis for alternative or complementary use of seeds and bark of U. parvifolia as a Chinese medicinal material.
Collapse
Affiliation(s)
- MingLong Yin
- Forestry College, Shandong Agricultural University, Tai’an, China
| | - ChuanRong Li
- Forestry College, Shandong Agricultural University, Tai’an, China
| | - YuShan Wang
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - JunHui Fu
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - YangYang Sun
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - Qian Zhang
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| |
Collapse
|
4
|
Vigbedor BY, Osei-Owusu J, Kwakye R, Neglo D. Bioassay-Guided Fractionation, ESI-MS Scan, Phytochemical Screening, and Antiplasmodial Activity of Afzelia africana. Biochem Res Int 2022; 2022:6895560. [PMID: 35465443 PMCID: PMC9020990 DOI: 10.1155/2022/6895560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Afzelia africana is a plant species with reported numerous medicinal potentials and secondary metabolites. Various parts of the plant have been applied for the treatment of hernia, rheumatism, pain, lumbago, malaria, etc. The study seeks to evaluate the phytochemical constituents, antiplasmodial, and ESI-MS scan of bioassay-guided fractions from the methanol extract of the bark of the plant. Aims The main aim of the study was to carry out bioassay-guided fractionation of the crude methanol extract of Afzelia africana in order to isolate fractions and to evaluate their antiplasmodial activities and ESI-MS fingerprints. Methods The methods employed include column chromatographic fractionation, phytochemical screening, antiplasmodial activity (malaria SYBER green assay (MSF)), and ESI-MS profile (full ESI-MS scan). Results The column chromatographic fractionation and phytochemical screening of the plant led to the separation of the following four fractions: 1 (flavonoids, phenolics, glycosides, terpenoids, and steroids), 2 (alkaloids, anthraquinones, flavonoids, phenolics, glycosides, terpenoids, and steroids), 3 (anthraquinones, flavonoids, phenolics, glycosides, terpenoids, and steroids), and 4 (alkaloids, flavonoids, phenolics, glycosides, terpenoids, and steroids). The antiplasmodial activities of the fractions were tested against the 3D7 strain of Plasmodium falciparum with reported stronger activities for 1 (IC50: 0.097 ± 0.034 μg/mL) and 3 (IC50: 1.43 ± 0.072 μg/mL), and weaker activities for 2 (IC50: >100 μg/mL) and 4 (IC50: 37.09 ± 6.14 μg/mL). The full ESI-MS fingerprint of fractions 1, 2, 3, and 4 revealed the presence of 14, 24, 34, and 37 major molecular ions or compounds in each fraction, respectively.
Collapse
Affiliation(s)
- Bright Yaw Vigbedor
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB31, Ho, Ghana
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Ralph Kwakye
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB31, Ho, Ghana
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB31, Ho, Ghana
| |
Collapse
|
5
|
Ulmus parvifolia Jacq. Exhibits Antiobesity Properties and Potentially Induces Browning of White Adipose Tissue. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9358563. [PMID: 33425000 PMCID: PMC7773463 DOI: 10.1155/2020/9358563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
The bark of Ulmus parvifolia Jacq. (UP) was traditionally used as a diuretic and to treat intestinal inflammation. With modern evidence of the correlation of diuretics, gut inflammation, and obesity, our study has shown the antiobesity effects of the bark of UP. UP treatment reduced lipid production and adipogenic genes in vitro. In vivo studies revealed that UP 100 mg/kg and UP 300 mg/kg treatment significantly reduced mouse weight without reducing food intake, indicating increased energy expenditure. UP significantly reduced the weight of epididymal and subcutaneous adipose tissue and decreased liver weight. Histological analysis revealed improvement in the progression of nonalcoholic fatty liver disease and epididymal white adipose tissue hypertrophy induced by a HFD. Real-Time PCR of epididymal adipose tissue revealed significant increases of uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression after UP 300 mg/kg treatments. Phosphorylation of AMP-activated protein α (AMPKα) was increased, while phosphorylation of Acetyl-CoA Carboxylase (ACC) was reduced. Our findings reveal the ability of UP to reduce the occurrence of obesity through increased browning of white adipose tissue via increased AMPKα, PPARγ, PGC-1α, and UCP-1 expression.
Collapse
|
6
|
Irfan M, Kwon HW, Lee DH, Shin JH, Yuk HJ, Kim DS, Hong SB, Kim SD, Rhee MH. Ulmus parvifolia Modulates Platelet Functions and Inhibits Thrombus Formation by Regulating Integrin α IIbβ 3 and cAMP Signaling. Front Pharmacol 2020; 11:698. [PMID: 32508642 PMCID: PMC7248206 DOI: 10.3389/fphar.2020.00698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background The prevalence of cardiovascular diseases (CVDs) is increasing at a high rate, and the available treatment options, sometimes, have complications which necessitates the need to develop safer and efficacious approaches. Ethnomedicinal applications reportedly reduce CVD risk. Ulmus parvifolia Jacq. (Ulmaceae) commonly known as Chinese Elm or Lacebark Elm, is native to China, Japan, and Korea. It exhibits anti-inflammatory, antiviral, and anticancer properties, but its anti-platelet properties have not yet been elucidated. Purpose To investigate the pharmacological anti-platelet and anti-thrombotic effects of U. parvifolia bark extract. Study Design and Methods Human and rat washed platelets were prepared; light transmission aggregometry and scanning electron microscopy was performed to assess platelet aggregation and the change in platelet shape, respectively. Intracellular calcium mobilization, ATP release, and thromboxane-B2 production were also measured. Integrin αIIbβ3 activation was analyzed in terms of fibrinogen binding, fibronectin adhesion, and clot retraction. The expression of MAPK, Src, and PI3K/Akt pathway proteins was examined. Cyclic nucleotide signaling pathway was evaluated via cAMP elevation and VASP phosphorylation. Anti-thrombotic activity of the extract was evaluated in vivo using an arteriovenous shunt rat model, whereas its effect on hemostasis in mice was assessed via bleeding time assay. Results U. parvifolia extract significantly inhibited human and rat platelet aggregation in a dose-dependent manner along with inhibition of calcium mobilization, dense granule secretion, and TxB2 production. Integrin αIIbβ3 mediated inside-out and outside-in signaling events, as evidenced by the inhibition of fibrinogen binding, fibronectin adhesion, and clot retraction. The extract significantly reduced phosphorylation of Src, MAPK (ERK, JNK, and p38MAPK), and PI3K/Akt pathway proteins. Cyclic-AMP levels were elevated in U. parvifolia-treated platelets, while PKAαβγ and VASPser157 phosphorylation was enhanced. U. parvifolia reduced thrombus weight in rats and moderately increased bleeding time in mice. Conclusion U. parvifolia modulates platelet responses and inhibit thrombus formation by regulating integrin αIIbβ3 mediated inside-out and outside-in signaling events and cAMP signaling pathway.
Collapse
Affiliation(s)
- Muhammad Irfan
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, Far East University, Eumseong, South Korea
| | - Dong-Ha Lee
- Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University, Cheonan, South Korea
| | - Jung-Hae Shin
- Department of Biomedical Laboratory Science, Far East University, Eumseong, South Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Seung-Bok Hong
- Department of Clinical Laboratory Science, Chungbuk Health & Science University, Chungbuk, South Korea
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, South Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
7
|
Ulmus parvifolia Accelerates Skin Wound Healing by Regulating the Expression of MMPs and TGF-β. J Clin Med 2019; 9:jcm9010059. [PMID: 31887972 PMCID: PMC7019489 DOI: 10.3390/jcm9010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Ulmus parvifolia is one of the medicinal plants used traditionally for treatment of wounds. We intended to investigate the wound healing effect of the powder of Ulmus parvifolia (UP) root bark in a mouse wound healing model. We also determined the mechanisms of effects of U. parvifolia in skin and skin wound healing effects using a keratinocyte model. Animal experiments showed that the wound lesions in the mice decreased with 200 mesh U. parvifolia root bark powder and were significantly reduced with treatment by UP, compared with those treated with Ulmus macrocarpa (UM). Results from in vitro experiments also revealed that UP extract promoted the migration of human skin keratinocytes. UP powder treatment upregulated the expression of the matrix metalloproteinase-2 and -9 protein and significantly increased transforming growth factor (TGF)-β levels. We confirmed that topical administration of the bark powder exerted a significant effect on skin wound healing by upregulating the expression of MMP and transforming growth factor-β. Our study suggests that U. parvifolia may be a potential candidate for skin wound healing including epidermal skin rejuvenation.
Collapse
|
8
|
Inhibitory Effects of Roseoside and Icariside E4 Isolated from a Natural Product Mixture (No-ap) on the Expression of Angiotensin II Receptor 1 and Oxidative Stress in Angiotensin II-Stimulated H9C2 Cells. Molecules 2019; 24:molecules24030414. [PMID: 30678135 PMCID: PMC6384670 DOI: 10.3390/molecules24030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/12/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a major risk factor for the development of cardiovascular diseases. This study aimed to elucidate whether the natural product mixture No-ap (NA) containing Pine densiflora, Annona muricate, and Monordica charantia, or its single components have inhibitory effects on hypertension-related molecules in Angiotensin II (Ang II)-stimulated H9C2 cells. Individual functional components were isolated and purified from NA using various columns and solvents, and then their structures were analyzed using ESI–MS, 1H-NMR, and 13H-NMR spectra. H9C2 cells were stimulated with 300 nM Ang II for 7 h. NA, telmisartan, ginsenoside, roseoside (Roseo), icariside E4 (IE4), or a combination of two components (Roseo and IE4) were administered to the cells 1 h before Ang II stimulation. The expression and activity of hypertension-related molecules or oxidative molecules were determined using RT-PCR, western blot, and ELISA. Ang II stimulation increased the expression of Ang II receptor 1 (AT1), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), tumor growth factor-β (TGF-β) mRNA, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and the levels of hydrogen peroxide (H2O2) and superoxide anion (•O2−) and reduced anti-oxidant enzyme activity. NA significantly improved the expression or activities of all hypertension-related molecules altered in Ang II-stimulated cells. Roseo or IE4 pretreatment either decreased or increased the expression or activities of all hypertension-related molecules similar to NA, but to a lesser extent. The pretreatment with a combination of Roseo and IE4 (1:1) either decreased or increased the expression of all hypertension-related molecules, compared to each single component, revealing a synergistic action of the two compounds. Thus, the combination of single components could exert promising anti-hypertensive effects similar to NA, which should be examined in future animal and clinical studies.
Collapse
|