1
|
Alexiev U, Rühl E. Visualization of Nanocarriers and Drugs in Cells and Tissue. Handb Exp Pharmacol 2024; 284:153-189. [PMID: 37566121 DOI: 10.1007/164_2023_684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Eckart Rühl
- Physikalische Chemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Efficacy of topically applied rapamycin-loaded redox-sensitive nanocarriers in a human skin/T cell co-culture model. Int Immunopharmacol 2023; 117:109903. [PMID: 36848792 DOI: 10.1016/j.intimp.2023.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Rapamycin, also known as Sirolimus, is a promising anti-proliferative drug, but its therapeutic use for the topical treatment of inflammatory, hyperproliferative skin disorders is limited by insufficient penetration rates due to its high molecular weight (MW of 914.172 g/mol) and high lipophilicity. We have shown that core multi-shell (CMS) nanocarriers sensitive to oxidative environment can improve drug delivery to the skin. In this study, we investigated the mTOR inhibitory activity of these oxidation-sensitive CMS (osCMS) nanocarrier formulations in an inflammatory ex vivo human skin model. In this model, features of inflamed skin were introduced by treating the ex vivo tissue with low-dose serine protease (SP) and lipopolysaccharide (LPS), while phorbol 12-myristate 13-acetate and ionomycin were used to stimulate IL-17A production in the co-cultured SeAx cells. Furthermore, we tried to elucidate the effects of rapamycin on single cell populations isolated from skin (keratinocytes, fibroblast) as well as on SeAx cells. Further, we measured possible effects of the rapamycin formulations on dendritic cell (DC) migration and activation. The inflammatory skin model enabled the assessment of biological readouts at both the tissue and T cell level. All investigated formulations successfully delivered rapamycin across the skin as revealed by reduced IL-17A levels. Nevertheless, only the osCMS formulations reached higher anti-inflammatory effects in the skin compared to the control formulations with a significant downregulation of mTOR activity. These results indicate that osCMS formulations could help to establish rapamycin, or even other drugs with similar physico-chemical properties, in topical anti-inflammatory therapy.
Collapse
|
3
|
Naz M, Rizwan M, Jabeen S, Ghaffar A, Islam A, Gull N, Rasool A, Khan RU, Alshawwa SZ, Iqbal M. Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay. Z PHYS CHEM 2022; 236:227-238. [DOI: 10.1515/zpch-2021-3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Abstract
The chitosan/polyvinyl alcohol/halloysite nanoclay (CS/PVA/HNC) loaded with cephradine drug electrospun nanofibers (NFs) were fabricated and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) techniques. FTIR analysis confirmed the hydrogen bonding between the polymer chain and the developed siloxane linkages. SEM analysis revealed the formation of uniform NFs having beads free and smooth surface with an average diameter in 50–200 nm range. The thermal stability of the NFs was increased by increasing the HNC concentration. The antimicrobial activity was examined against Escherichia
coli and staphylococcus strains and the NFs revealed auspicious antimicrobial potential. The drug release was studied at pH 7.4 (in PBS) at 37 °C. The drug release analysis showed that 90% of the drug was released from NFs in 2 h and 40 min. Hence, the prepared NFs could be used as a potential drug carrier and release in a control manner for biomedical application.
Collapse
Affiliation(s)
- Mahwish Naz
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Sehrish Jabeen
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Abdul Ghaffar
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Nafisa Gull
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Atta Rasool
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences , College of Pharmacy, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
4
|
Ihsan A, Khera RA, Iqbal J, Asgher M. Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The docking simulation of benzamide derivatives as ligands and protein targets (DNA–gyrase) was performed and Sec14p binding mode interaction was predicted based on binding free energy analysis. Software Molegro Virtual Docking (MVD) was used to visualize the ligand–protein binding interactions. The results indicated the prevalence of steric or hydrophobic interactions among all the benzamide ligands besides hydrogen bonding or electrostatic interactions. The compounds B2, B4 against DNA gyrase, and compounds B3, B5 against Sec14p showed an uncompetitive pattern of inhibition as compared with the reference molecule. While compounds B1, B5 exhibited the best MolDock scores, i.e., −109.736 and −114.391 kcal/mol respectively for DNA gyrase, also compounds B1 and B2 against Sec14p displayed −100.105 and −119.451 kcal/mol sequentially. It was evident from the comparison of MolDock score for both the bacterial and fungal protein receptors that all the ligands were found to be more potent against DNA gyrase than Sec14p. However, only compound B2 with MolDock score −119.451 kcal/mol showed exceptional activity against Sec14p and was predicted to have potency as a lead compound to find a new anti-fungal therapeutic agent. Docking studies further highlighted the unique interactions such as tail-end hydrophobic rings of benzamide inhibitors with catalytically important amino acid residues, allowing flexibility in binding to both the receptors different from other inhibitors. These findings showed us that B1, B2 against Staphylococcus aureus and B5 against Saccharomyces cerevisiae could be leading compounds to discover new multidrug-resistant strains.
Collapse
Affiliation(s)
- Anaum Ihsan
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Javed Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Asgher
- Department of Biochemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
5
|
Rancan F, Guo X, Rajes K, Sidiropoulou P, Zabihi F, Hoffmann L, Hadam S, Blume-Peytavi U, Rühl E, Haag R, Vogt A. Topical Delivery of Rapamycin by Means of Microenvironment-Sensitive Core-Multi-Shell Nanocarriers: Assessment of Anti-Inflammatory Activity in an ex vivo Skin/T Cell Co-Culture Model. Int J Nanomedicine 2021; 16:7137-7151. [PMID: 34712046 PMCID: PMC8548260 DOI: 10.2147/ijn.s330716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 01/16/2023] Open
Abstract
Introduction Rapamycin (Rapa) is an immunosuppressive macrolide that inhibits the mechanistic target of rapamycin (mTOR) activity. Thanks to its anti-proliferative effects towards different cell types, including keratinocytes and T cells, Rapa shows promise in the treatment of skin diseases characterized by cell hyperproliferation. However, Rapa skin penetration is limited due to its lipophilic nature (log P = 4.3) and high molecular weight (MW = 914 g/mol). In previous studies, new microenvironment-sensitive core multishell (CMS) nanocarriers capable of sensing the redox state of inflamed skin were developed as more efficient and selective vehicles for macrolide delivery to inflamed skin. Methods In this study, we tested such redox-sensitive CMS nanocarriers using an inflammatory skin model based on human skin explants co-cultured with Jurkat T cells. Serine protease (SP) was applied on skin surface to induce skin barrier impairment and oxidative stress, whereas phytohaemagglutinin (PHA), IL-17A, and IL-22 were used to activate Jurkat cells. Activation markers, such as CD45 and CD69, phosphorylated ribosomal protein S6 (pRP-S6), and IL-2 release were monitored in activated T cells, whereas pro-inflammatory cytokines were measured in skin extracts and culture medium. Results We found that alteration of skin barrier proteins corneodesmosin (CDSN), occludin (Occl), and zonula occludens-1 (ZO-1) as well as oxidation-induced decrease of free thiol groups occurred upon SP-treatment. All Rapa formulations exerted inhibitory effects on T cells after penetration across ex vivo skin. No effects on skin inflammatory markers were detected. The superiority of the oxidative-sensitive CMS nanocarriers over the other formulations was observed with regard to drug delivery as well as downregulation of IL-2 release. Conclusion Overall, our results demonstrate that nanocarriers addressing features of diseased skin are promising approaches to improve the topical delivery of macrolide drugs.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Polytimi Sidiropoulou
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Luisa Hoffmann
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eckart Rühl
- Physical Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Germer G, Ohigashi T, Yuzawa H, Kosugi N, Flesch R, Rancan F, Vogt A, Rühl E. Improved Skin Permeability after Topical Treatment with Serine Protease: Probing the Penetration of Rapamycin by Scanning Transmission X-ray Microscopy. ACS OMEGA 2021; 6:12213-12222. [PMID: 34056375 PMCID: PMC8154144 DOI: 10.1021/acsomega.1c01058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 05/05/2023]
Abstract
Drug penetration in human skin ex vivo following a modification of skin barrier permeability is systematically investigated by scanning transmission X-ray microscopy. Element-selective excitation is used in the O 1s regime for probing quantitatively the penetration of topically applied rapamycin in different formulations with a spatial resolution reaching <75 nm. The data were analyzed by a comparison of two methods: (i) two-photon energies employing the Beer-Lambert law and (ii) a singular value decomposition approach making use of the full spectral information in each pixel of the X-ray micrographs. The latter approach yields local drug concentrations more reliably and sensitively probed than the former. The present results from both approaches indicate that rapamycin is not observed within the stratum corneum of nontreated skin ex vivo, providing evidence for the observation that this high-molecular-weight drug inefficiently penetrates intact skin. However, rapamycin is observed to penetrate more efficiently the stratum corneum when modifications of the skin barrier are induced by the topical pretreatment with the serine protease trypsin for variable time periods ranging from 2 to 16 h. After the longest exposure time to serine protease, the drug is even found in the viable epidermis. High-resolution micrographs indicate that the lipophilic drug preferably associates with corneocytes, while signals found in the intercellular lipid compartment were less pronounced. This result is discussed in comparison to previous work obtained from low-molecular-weight lipophilic drugs as well as polymer nanocarriers, which were found to penetrate the intact stratum corneum exclusively via the lipid layers between the corneocytes. Also, the role of the tight junction barrier in the stratum granulosum is briefly discussed with respect to modifications of the skin barrier induced by enhanced serine protease activity, a phenomenon of clinical relevance in a range of inflammatory skin disorders.
Collapse
Affiliation(s)
- Gregor Germer
- Physical
Chemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Takuji Ohigashi
- UVSOR
Synchrotron Facility, Institute for Molecular
Science, Okazaki 444-8585, Japan
| | - Hayato Yuzawa
- UVSOR
Synchrotron Facility, Institute for Molecular
Science, Okazaki 444-8585, Japan
| | - Nobuhiro Kosugi
- UVSOR
Synchrotron Facility, Institute for Molecular
Science, Okazaki 444-8585, Japan
| | - Roman Flesch
- Physical
Chemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | | | - Annika Vogt
- Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Eckart Rühl
- Physical
Chemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| |
Collapse
|
7
|
Rajes K, Walker KA, Hadam S, Zabihi F, Ibrahim-Bacha J, Germer G, Patoka P, Wassermann B, Rancan F, Rühl E, Vogt A, Haag R. Oxidation-Sensitive Core-Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2021; 7:2485-2495. [PMID: 33905661 DOI: 10.1021/acsbiomaterials.0c01771] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer meso-tetra-hydroxyphenyl-porphyrin (mTHPP). Oxidative processes of the nanocarriers were probed in vitro by hydrogen peroxide, and the degradation products were identified by infrared spectroscopy supported by ab initio calculations, yielding mechanistic details on the chemical changes occurring in redox-sensitive nanocarriers. Oxidation-triggered drug release of the model drug Nile Red measured and assessed by time-dependent fluorescence spectroscopy showed a release of up to 80% within 24 h. The drug delivery capacity of the new osCMS nanocarriers was tested in ex vivo human skin with and without pretreatments to induce local oxidative stress. It was found that the delivery of mTHPP was selectively enhanced in skin under oxidative stress. The number and position of the thioether groups influenced the physicochemical as well as drug delivery properties of the carriers.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Karolina A Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany.,Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jumana Ibrahim-Bacha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Gregor Germer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Piotr Patoka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Bernhard Wassermann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| |
Collapse
|
8
|
Frombach J, Rancan F, Kübrich K, Schumacher F, Unbehauen M, Blume-Peytavi U, Haag R, Kleuser B, Sabat R, Wolk K, Vogt A. Serine Protease-Mediated Cutaneous Inflammation: Characterization of an Ex Vivo Skin Model for the Assessment of Dexamethasone-Loaded Core Multishell-Nanocarriers. Pharmaceutics 2020; 12:pharmaceutics12090862. [PMID: 32927792 PMCID: PMC7558872 DOI: 10.3390/pharmaceutics12090862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022] Open
Abstract
Standard experimental set-ups for the assessment of skin penetration are typically performed on skin explants with an intact skin barrier or after a partial mechanical or chemical perturbation of the stratum corneum, but they do not take into account biochemical changes. Among the various pathological alterations in inflamed skin, aberrant serine protease (SP) activity directly affects the biochemical environment in the superficial compartments, which interact with topically applied formulations. It further impacts the skin barrier structure and is a key regulator of inflammatory mediators. Herein, we used short-term cultures of ex vivo human skin treated with trypsin and plasmin as inflammatory stimuli to assess the penetration and biological effects of the anti-inflammatory drug dexamethasone (DXM), encapsulated in core multishell-nanocarriers (CMS-NC), when compared to a standard cream formulation. Despite a high interindividual variability, the combined pretreatment of the skin resulted in an average 2.5-fold increase of the transepidermal water loss and swelling of the epidermis, as assessed by optical coherence tomography, as well as in a moderate increase of a broad spectrum of proinflammatory mediators of clinical relevance. The topical application of DXM-loaded CMS-NC or DXM standard cream revealed an increased penetration into SP-treated skin when compared to untreated control skin with an intact barrier. Both formulations, however, delivered sufficient amounts of DXM to effectively suppress the production of interleukin-6 (IL-6), interleukin-8 (IL-8) and Thymic Stromal Lymphopoietin (TSLP). In conclusion, we suggest that the herein presented ex vivo inflammatory skin model is functional and could improve the selection of promising drug delivery strategies for anti-inflammatory compounds at early stages of development.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Katharina Kübrich
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Michael Unbehauen
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (M.U.); (R.H.)
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Rainer Haag
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (M.U.); (R.H.)
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Department of Dermatology, Venerology and Allergy/Institute for Medical Immunology, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (R.S.); (K.W.)
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Department of Dermatology, Venerology and Allergy/Institute for Medical Immunology, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (R.S.); (K.W.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
- Correspondence:
| |
Collapse
|