1
|
Qi T, Wu L, Yu J, Song Z, Liu F, Li J, Song X, Li X. Acute low-dose phosphate disrupts glycerophospholipid metabolism and induces stress in juvenile turbot (Scophthalmus maximus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160430. [PMID: 36455734 DOI: 10.1016/j.scitotenv.2022.160430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Phosphate, as the main nutrient factor of lake eutrophication brought by pollutants discharged from agriculture and industry, is always considered to be a low-toxicity substance to aquatic animals. But the toxicity mechanism is unclear, and published information is limited. In this study, a 96 h acute stress experiment was conducted on juvenile turbot (Scophthalmus maximus) with 0, 10, and 60 mg/L phosphate solutions. Metabonomic analysis revealed that low-dose phosphate (10 mg/L) disrupted glycerophospholipid, purine, and glycolipid metabolism, as well as the tricarboxylic acid (TCA) cycle in juveniles, even at 96 h of stress, which may lead to cell structure damage and signal recognition disorder between cells. Upregulated key genes in the main glycerophospholipid metabolic pathways, which matched the results of the metabolomic study, were detected. Furthermore, low-dose phosphate (10 mg/L) induced oxidative stress and immunotoxicity in fish, resulting in the raising of relevant genes expression such as cat and sod in liver and kidney. In addition, all phosphate-treated groups had induced lesions on gill tissue, as evidenced by pathological observations. In this study on toxic effects on and mechanism of phosphate in aquatic animals using metabolomics, gene expression, and histopathology, we confirm that acute low-dose phosphate could disrupt glycerophospholipid metabolism and induce stress in juvenile turbot. This can provide advice on the amount of phosphate accumulation for marine fish farming and on protecting species diversity and marine ecosystem from the point of view of phosphate toxicity to marine animals.
Collapse
Affiliation(s)
- Ting Qi
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Lele Wu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jiachen Yu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, PR China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiefa Song
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China.
| |
Collapse
|
2
|
Li W, Tan L, Li X, Zhang X, Wu X, Chen H, Hu L, Wang X, Luo X, Wang F, Xu C, Chen Q, Jin R, Wang QK. Identification of a p.Trp403* nonsense variant in PHEX causing X-linked hypophosphatemia by inhibiting p38 MAPK signaling. Hum Mutat 2019; 40:879-885. [PMID: 30920082 DOI: 10.1002/humu.23743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/08/2022]
Abstract
X-linked hypophosphatemia (XLH) is the most common hereditary rickets, caused by mutations in PHEX encoding the phosphate regulating endopeptidase homolog X-linked. Here, we report a nonsense variant in exon 11 of PHEX (c.1209G>A p.Trp403*) cosegregating with XLH in a Chinese family with a LOD score of 2.70. Real-time reverse transcription polymerase chain reaction analysis demonstrated that p.Trp403* variant did not cause nonsense-mediated mRNA decay (NMD), but significantly increased the expression level of FGF23 mRNA in the patients. Interestingly, p.Trp403* significantly reduced phosphorylation of p38 mitogen-activated protein kinase (MAPK) but not ERK1/2. Moreover, overexpression of FGF23 significantly decreased phosphorylation of p38 MAPK, whereas knockdown of FGF23 by siRNA significantly increased phosphorylation of p38 MAPK. These data suggest that p.Trp403* may not function via an NMD mechanism, and instead causes XLH via a novel signaling mechanism involving PHEX, FGF23, and p38 MAPK. This finding provides important insights into genetic and molecular mechanisms for the pathogenesis of XLH.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lihua Hu
- Department of Clinical Laboratory, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobei Wang
- Department of Clinical Laboratory, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
3
|
Fakhar M, Rashid S. Targeted inhibition of Klotho binding to fibroblast growth factor 23 prevents hypophosphetemia. J Mol Graph Model 2017; 75:9-19. [PMID: 28501532 DOI: 10.1016/j.jmgm.2017.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
Klotho is a transmembrane protein which plays significant role in the pathogenesis of phosphate ion (Pi)-related disorders. Pi accumulation in human kidney tissues results in the major metabolic disorders due to malfunctioning of Klotho-FGFR1-FGF23 trimeric complex. The potential role of Klotho in Pi metabolism was elaborated through modeling and interaction analysis of glycosyl hydrolase (GS1 and GS2) domains with Fibroblast growth factor 23 (FGF23). In order to inhibit the association of Klotho and FGF23, binding patterns of three reported hits (N-(2-chlorophenyl)-1H-indole-3-carboxamide, N-[2-(1-cyclohexen-1-yl)ethyl]-6,7,8,9-tetrahydropyrido[1,2-e]purin-4-amine and 2-(1-propyl)amino-11-chlorothiazolo[5,4-a]acridine) were evaluated through molecular docking analysis. These inhibitors effectively targeted both GS1 and GS2 domains of Klotho at the similar sites required for FGF23 binding. To further characterize the comparative binding profile of these compounds, molecular dynamics simulation assays were performed. Taken together, current study emphasizes that Klotho may be anticipated as a target molecule in familial hypophosphatemic rickets and mentioned compounds may prove to be effective therapeutic targets against hypophosphetemia induced disorders.
Collapse
Affiliation(s)
- Muhammad Fakhar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Nitta K, Nagano N, Tsuchiya K. Fibroblast growth factor 23/klotho axis in chronic kidney disease. Nephron Clin Pract 2014; 128:1-10. [PMID: 25402964 DOI: 10.1159/000365787] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/26/2014] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone that regulates phosphate and 1,25-hydroxyvitamin D [1,25(OH)2D] metabolism. FGF23 binds to FGF receptor 1 with its coreceptor Klotho and maintains serum phosphate levels within the normal range by increasing renal phosphate excretion. In addition, FGF23 reduces the synthesis and accelerates the degradation of 1,25(OH)2D to reduce intestinal phosphate absorption. Moreover, FGF23 acts at the parathyroid gland to decrease parathyroid hormone synthesis and secretion. In chronic kidney disease (CKD), serum FGF23 levels rise exponentially as renal function declines long before a significant increase in serum phosphate concentration occurs. Although there is room for argument, FGF23 and Klotho are recently reported contributors to vascular calcification. Finally, prospective observational studies have shown that serum FGF23 concentrations predict mortality not only among dialysis patients but among predialysis CKD patients. In addition to being a coreceptor for FGF23, Klotho circulates as an endocrine substance and exerts a multitude of effects. This review describes recent advances in research on the FGF23-Klotho axis in CKD. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Kosaku Nitta
- Kidney Center, Department of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | | | | |
Collapse
|
5
|
Zhou X, Wang X. Klotho: a novel biomarker for cancer. J Cancer Res Clin Oncol 2014; 141:961-9. [PMID: 25086986 DOI: 10.1007/s00432-014-1788-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Klotho gene was originally identified as an anti-aging gene in 1997. Recent studies have demonstrated aberrant expression of Klotho in a number of cancers, including breast cancer, lung cancer, hepatocellular carcinoma (HCC), and so on. METHODS A literature search focusing on dysregulation of Klotho and its possible mechanisms in cancer was performed. RESULTS AND CONCLUSIONS Downregulation of Klotho was found in several cancers, such as pancreatic cancer, HCC, and other tumors. Epigenetic modulation, such as promoter methylation and histone deacetylation, also contributed to the dysregulation of Klotho in cancers. Downregulation of Klotho resulted in promoted proliferation and reduced apoptosis of cancer cells. The relevant mechanisms include the fibroblast growth factor signaling, the insulin-like growth factor 1 receptor pathway, and the Wnt/β-catenin signaling pathway. Furthermore, the Klotho protein hopefully provides new insights into cancer target treatment.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | | |
Collapse
|
6
|
Razzaque MS. Bone-kidney axis in systemic phosphate turnover. Arch Biochem Biophys 2014; 561:154-8. [PMID: 24997362 DOI: 10.1016/j.abb.2014.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
An adequate phosphate balance is essential for the maintenance of skeletal growth, development and function. It is also crucial in basic cellular functions, ranging from cell signaling to energy metabolism. Bone-derived fibroblast growth factor 23 (FGF23), through activating FGF receptor system, plays an important role in the systemic regulation of phosphate metabolism. Under physiological conditions, FGF23 exerts serum phosphate-lowering effects by inducing urinary phosphate excretion. Increased FGF23 activities are associated with hypophosphatemic diseases (i.e., rickets/osteomalacia), while reduced FGF23 activity are linked to hyperphosphatemic diseases (i.e., tumoral calcinosis). Unlike most of the FGF family members, FGF23 needs klotho, as a co-factor to activate its receptor system. In vivo studies have convincingly demonstrated that, in absence of klotho, FGF23 is unable to influence systemic phosphate metabolism. Available information suggests that interactions of FGF23, klotho, and FGFRs regulate renal phosphate metabolism by suppressing sodium-phosphate transporters in the proximal tubular epithelial cells. This article briefly summarizes how bone-kidney communication contributes to physiologic phosphate balance.
Collapse
Affiliation(s)
- Mohammed Shawkat Razzaque
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Uchihashi K, Nakatani T, Goetz R, Mohammadi M, He X, Razzaque MS. FGF23-induced hypophosphatemia persists in Hyp mice deficient in the WNT coreceptor Lrp6. CONTRIBUTIONS TO NEPHROLOGY 2013; 180:124-37. [PMID: 23652555 DOI: 10.1159/000346792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deregulated phosphate homeostasis can lead to a wide range of disorders, including myopathy, cardiac dysfunction, and skeletal abnormalities. Therefore, characterization of the molecular regulation of phosphate metabolism is of pathophysiological and clinical significance. Hyp mouse is the model for human X-linked hypophosphatemia which is due to mutations that inactivate the endopeptidases of the X chromosome (PHEX). PHEX inactivation leads to increased serum levels of fibroblast growth factor 23 (FGF23), a phosphaturic hormone that induces excessive renal phosphate excretion and severe hypophosphatemia. The expression of WNT signaling components is increased in Hyp mice. To determine the potential role of WNT signaling in FGF23-mediated hypophosphatemia, we cross-bred Hyp mice with mice deficient in the WNT coreceptor low-density lipoprotein receptor-related protein 6 (Lrp6) to generate Hyp and Lrp6 double mutant mice (Hyp/Lrp6). Like Hyp mice, Hyp/Lrp6 double mutants maintained high serum levels of FGF23, and accordingly exhibited hypophosphatemia to the same degree as the Hyp mice did, indicating that genetically reducing WNT signaling does not impact FGF23-induced phosphaturia. Moreover, similar to Hyp mice, the Hyp/Lrp6 double mutants also exhibited reduced mineralization of the bone, further supporting that reduced WNT signaling does not affect the chronic phosphate wasting caused by excess FGF23 in these mice. In further support of our finding, injection of bioactive FGF23 protein into Lrp6 mutant mice reduced serum phosphate levels to a similar degree as FGF23 injection into wild-type mice. Our in vivo studies provide genetic and pharmacological evidence for a WNT-independent function of FGF23 in the regulation of phosphate homeostasis.
Collapse
Affiliation(s)
- Kazuyoshi Uchihashi
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75:503-33. [PMID: 23398153 PMCID: PMC3770142 DOI: 10.1146/annurev-physiol-030212-183727] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The metabolically active and perpetually remodeling calcium phosphate-based endoskeleton in terrestrial vertebrates sets the demands on whole-organism calcium and phosphate homeostasis that involves multiple organs in terms of mineral flux and endocrine cross talk. The fibroblast growth factor (FGF)-Klotho endocrine networks epitomize the complexity of systems biology, and specifically, the FGF23-αKlotho axis highlights the concept of the skeleton holding the master switch of homeostasis rather than a passive target organ as hitherto conceived. Other than serving as a coreceptor for FGF23, αKlotho circulates as an endocrine substance with a multitude of effects. This review covers recent data on the physiological regulation and function of the complex FGF23-αKlotho network. Chronic kidney disease is a common pathophysiological state in which FGF23-αKlotho, a multiorgan endocrine network, is deranged in a self-amplifying vortex resulting in organ dysfunction of the utmost severity that contributes to its morbidity and mortality.
Collapse
Affiliation(s)
- Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Kazuhiro Shiizaki
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Makoto Kuro-o
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Physiology University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
9
|
Abstract
A disproportionate expansion of white adipose tissue and abnormal recruitment of adipogenic precursor cells can not only lead to obesity but also impair glucose metabolism, which are both common causes of insulin resistance and diabetes mellitus. The development of novel and effective therapeutic strategies to slow the progression of obesity, diabetes mellitus and their associated complications will require improved understanding of adipogenesis and glucose metabolism. Klotho might have a role in adipocyte maturation and systemic glucose metabolism. Klotho increases adipocyte differentiation in vitro, and mice that lack Klotho activity are lean owing to reduced white adipose tissue accumulation; moreover, mice that lack the Kl gene (which encodes Klotho) are resistant to obesity induced by a high-fat diet. Knockout of Kl in leptin-deficient Lep(ob/ob) mice reduces obesity and increases insulin sensitivity, which lowers blood glucose levels. Energy metabolism might also be influenced by Klotho. However, further studies are needed to explore the possibility that Klotho could be a novel therapeutic target to reduce obesity and related complications, and to determine whether and how Klotho might influence the regulation and function of a related protein, β-Klotho, which is also involved in energy metabolism.
Collapse
Affiliation(s)
- M Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Research and Education Building, Room 304, 190 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Abstract
Uremia is a complex metabolic state marked by derangement of many signaling molecules and metabolic intermediates; of these, the massively increased levels of FGF23 are among the most striking. It has remained unclear whether FGF23 is directly implicated in the pathogenesis of chronic kidney disease (CKD) and its complications, a consequence of other dysregulated pathways, or perhaps an adaptive - and thus desirable - response. In this issue of the JCI, Shalhoub et al. describe the chronic effects of antibody-mediated FGF23 neutralization in a CKD mouse model, shedding new light on this complicated story and moving us one step closer to understanding the role of FGF23 in CKD.
Collapse
|
11
|
Osuka S, Razzaque MS. Can features of phosphate toxicity appear in normophosphatemia? J Bone Miner Metab 2012; 30:10-8. [PMID: 22219005 PMCID: PMC3804315 DOI: 10.1007/s00774-011-0343-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022]
Abstract
Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels.
Collapse
Affiliation(s)
- Satoko Osuka
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Room: 304, 188 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Cheng CY, Kuro-o M, Razzaque MS. Molecular regulation of phosphate metabolism by fibroblast growth factor-23-klotho system. Adv Chronic Kidney Dis 2011; 18:91-7. [PMID: 21406293 DOI: 10.1053/j.ackd.2010.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/11/2010] [Accepted: 11/30/2010] [Indexed: 11/11/2022]
Abstract
Phosphorus is an essential nutrient and is routinely assimilated through consumption of food. The body's need of phosphate is usually fulfilled by intestinal absorption of this element from the consumed food, whereas its serum level is tightly regulated by renal excretion or reabsorption. Sodium-dependent phosphate transporters, located in the luminal side of the proximal tubular epithelial cells, have a molecular control on renal phosphate excretion and reabsorption. The systemic regulation of phosphate metabolism is a complex multiorgan process, and the identification of fibroblast growth factor-23 (FGF23)-Klotho system as a potent phosphatonin has provided new mechanistic insights into the homeostatic control of phosphate. Hypophosphatemia as a result of an increase in urinary phosphate wasting after activation of the FGF23-Klotho system is a common phenomenon, observed in both animal and human studies, whereas suppression of the FGF23-Klotho system leads to the development of hyperphosphatemia. This article will briefly summarize how delicate interactions of the FGF23-klotho system can regulate systemic phosphate homeostasis.
Collapse
|
13
|
Abstract
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
Collapse
Affiliation(s)
- M Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The study of phosphorus physiology and investigations into clinical disorders of phosphorus metabolism has blossomed over the past decade. Recent work has confirmed and further extended our knowledge of basic mechanisms of phosphorus metabolism. RECENT FINDINGS This review will focus on FGF-23 and Klotho, and on the recent further dissection of their roles in phosphorus and skeletal metabolism. Additionally, this review will detail recent studies that implicate a role for these phosphaturic and vitamin D regulating factors in extraskeletal calcification, including that occurring in soft tissue and vascular beds. SUMMARY These findings in total provide fertile ground for investigations into the cause and treatment of abnormal skeletal and extraskeletal calcification in patients with inherited hypophosphatemic disorders. More importantly, and certainly with wider potential clinical application, these studies likewise imply a role for these factors in the pathogenesis of accelerated cardiovascular disease that occurs in patients with the most common hyperphosphatemic disorder, chronic kidney disease. Future studies are needed to confirm a harmful or possibly even beneficial role for FGF-23 and other factors in these disease states, and to determine whether therapeutic manipulation of these factors does truly affect clinical outcomes in patients with hypophosphatemia and hyperphosphatemia.
Collapse
Affiliation(s)
- Richard Lee
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
15
|
Abstract
Vitamin D is a multifunctional hormone that can affect many essential biological functions, ranging from the immune regulation to mineral ion metabolism. A close association between altered activity of vitamin D and vascular calcification has been reported in various human diseases, including in patients with atherosclerosis, osteoporosis, and chronic kidney disease (CKD). Vascular calcification is a progressive disorder and is a major determinant of morbidity and mortality of the affected patients. Experimental studies have shown that excessive vitamin D activities can induce vascular calcification, and such vascular pathology can be reversed by reducing vitamin D activities. The human relevance of these experimental studies is not clear, as vitamin D toxicity is relatively rare in the general population. Contrary to the relationship between vitamin D and vascular calcification, in experimental uremic models, low levels of vitamin D were shown to be associated with extensive vascular calcification, a phenomenon that is very similar to the vascular pathology seen in patients with CKD. The current treatment approach of providing vitamin D analogs to patients with CKD often poses a dilemma, as studies linked vitamin D treatment to subsequent vascular calcification. Recent genetic studies, however, have shown that vascular calcification can be prevented by reducing serum phosphate levels, even in the presence of extremely high serum 1,25-dihydroxyvitamin D and calcium levels. This article will briefly summarize the dual effects of vitamin D in vascular calcification and will provide evidence of vitamin D-dependent and -independent vascular calcification.
Collapse
|