1
|
Patle R, Shinde S, Patel S, Maheshwari R, Jariyal H, Srivastava A, Chauhan N, Globisch C, Jain A, Tekade RK, Shard A. Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. Bioorg Med Chem Lett 2021; 42:128062. [PMID: 33901643 DOI: 10.1016/j.bmcl.2021.128062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Several studies have established that cancer cells explicitly over-express the less active isoform of pyruvate kinase M2 (PKM2) is critical for tumorigenesis. The activation of PKM2 towards tetramer formation may increase affinity towards phosphoenolpyruvate (PEP) and avoidance of the Warburg effect. Herein, we describe the design, synthesis, and development of boronic acid-based molecules as activators of PKM2. The designed molecules were inspired by existing anticancer scaffolds and several fragments were assembled in the derivatives. 6a-6d were synthesized using a multi-step synthetic strategy in 55-70% yields, starting from cheap and readily available materials. The compounds were selectively cytotoxic to kill the cancerous cells at 80 nM, while they were non-toxic to the normal cells. The kinetic studies established the compounds as novel activators of PKM2 and (E/Z)-(4-(3-(2-((4-chlorophenyl)amino)-4-(dimethylamino)thiazol-5-yl)-2-(ethoxycarbonyl)-3-oxoprop-1-en-1-yl) phenyl)boronic acid (6c) emerged as the most potent derivative. 6c was further evaluated using various in silico tools to understand the molecular mechanism of tetramer formation. Docking studies revealed that 6c binds to the PKM2 dimer at the dimeric interface. Further to ascertain the binding site and mechanism of action, rigorous MD (molecular dynamics) simulations were undertaken, which led to the conclusion that 6c stabilizes the center of the dimeric interface that possibly promotes tetramer formation. We further planned to make a tablet of the developed molecule for oral delivery, but it was seriously impeded owing to poor aqueous solubility of 6c. To improve aqueous solubility and retain 6c at the lower gastrointestinal tract, thiolated chitosan-based nanoparticles (TCNPs) were prepared and further developed as tablet dosage form to retain anticancer potency in the excised goat colon. Our findings may provide a valuable pharmacological mechanism for understanding metabolic underpinnings that may aid in the clinical development of new anticancer agents targeting PKM2.
Collapse
Affiliation(s)
- Rajkumar Patle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Shital Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rahul Maheshwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Akshay Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Neelam Chauhan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | | | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rakesh K Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| |
Collapse
|
2
|
Tan Z, Lei H, Guo M, Chen Y, Zhai X. An updated patent review of autotaxin inhibitors (2017-present). Expert Opin Ther Pat 2021; 31:421-434. [PMID: 33342311 DOI: 10.1080/13543776.2021.1867106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The ATX-LPA axis is an attractive target for therapeutic intervention in a variety of diseases, such as tumor metastasis, fibrosis, pruritus, multiple sclerosis, inflammation, autoimmune conditions, metabolic syndrome, and so on. Accordingly, considerable efforts have been devoted to the development of new chemical entities capable of modulating the ATX-LPA axis. AREAS COVERED This review aims to provide an overview of novel ATX inhibitors reported in patents from September 2016 to August 2020, discussing their structural characteristics and inhibitory potency in vitro and in vivo. EXPERT OPINION In the past four years, the classification of ATX inhibitors based on binding modes has brought great benefits to the discovery of more efficacious inhibitors. In addition to GLPG1690 currently in phase III clinical studies for IPF, BBT-877, and BLD-0409 as potent ATX inhibitors have been enrolled in phase I clinical evaluation; meanwhile, many effective molecules were also reported successively. However, most emerging ATX inhibitors in the last four years are closely analogs of previous entities, such as GLPG1690 and PF-8380, which translate into the urgently identification of ATX inhibitors with diverse structural features and promising properties in the near future.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuxiang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Structure-Based Discovery of Novel Chemical Classes of Autotaxin Inhibitors. Int J Mol Sci 2020; 21:ijms21197002. [PMID: 32977539 PMCID: PMC7582705 DOI: 10.3390/ijms21197002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids, largely responsible for extracellular lysophosphatidic acid (LPA) production. LPA is a bioactive growth-factor-like lysophospholipid that exerts pleiotropic effects in almost all cell types, exerted through at least six G-protein-coupled receptors (LPAR1-6). Increased ATX expression has been detected in different chronic inflammatory diseases, while genetic or pharmacological studies have established ATX as a promising therapeutic target, exemplified by the ongoing phase III clinical trial for idiopathic pulmonary fibrosis. In this report, we employed an in silico drug discovery workflow, aiming at the identification of structurally novel series of ATX inhibitors that would be amenable to further optimization. Towards this end, a virtual screening protocol was applied involving the search into molecular databases for new small molecules potentially binding to ATX. The crystal structure of ATX in complex with a known inhibitor (HA-155) was used as a molecular model docking reference, yielding a priority list of 30 small molecule ATX inhibitors, validated by a well-established enzymatic assay of ATX activity. The two most potent, novel and structurally different compounds were further structurally optimized by deploying further in silico tools, resulting to the overall identification of six new ATX inhibitors that belong to distinct chemical classes than existing inhibitors, expanding the arsenal of chemical scaffolds and allowing further rational design.
Collapse
|
4
|
Wang W, Zhao F, Zhao Y, Pan W, Cao P, Wu L, Wang Z, Zhao X, Zhao Y, Wang H. Design, Synthesis, and Preliminary Bioactivity Evaluation of 2,7-Substituted Carbazole Derivatives as Potent Autotaxin Inhibitors and Antitumor Agents†. Anticancer Agents Med Chem 2019; 19:256-264. [PMID: 30173652 DOI: 10.2174/1871520618666180830161821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autotaxin-LPA signaling has been implicated in cancer progression, and targeted for the discovery of cancer therapeutic agents. OBJECTIVE Potential ATX inhibitors were synthesized to develop novel leading compounds and effective anticancer agents. METHODS The present work designs and synthesizes a series of 2,7-subsitituted carbazole derivatives with different terminal groups R [R = -Cl (I), -COOH (II), -B(OH)2 (III), or -PO(OH)2 (I-IV)]. The inhibition of these compounds on the enzymatic activity of ATX was measured using FS-3 and Bis-pNpp as substrates, and the cytotoxicity of these compounds was evaluated using SW620, SW480, PANC-1, and SKOV-3 human carcinoma cells. Furthermore, the binding of leading compound with ATX was analyzed by molecular docking. RESULTS Compound III was shown to be a promising antitumor candidate by demonstrating both good inhibition of ATX enzymatic activity and high cytotoxicity against human cancer cell lines. Molecular docking study shows that compound III is located in a pocket, which mainly comprises amino acids 209 to 316 in domain 2 of ATX, and binds with these residues of ATX through van der Waals, conventional hydrogen bonds, and hydrophobic interactions. CONCLUSION Compound III with the terminal group R = -B(OH)2 has the most potent inhibitory effect with the greatest cytotoxicity to cancer cells. Moreover, the docking model provides a structural basis for the future optimization of promising antitumor compounds.
Collapse
Affiliation(s)
- Wenming Wang
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Shanxi, Taiyuan 030006, China
| | - Fengmei Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Yarui Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Weiwei Pan
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Pengcheng Cao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, United States
| | - Yi Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Shanxi, Taiyuan 030006, China
| |
Collapse
|
5
|
Nikolaou A, Kokotou MG, Limnios D, Psarra A, Kokotos G. Autotaxin inhibitors: a patent review (2012-2016). Expert Opin Ther Pat 2017; 27:815-829. [DOI: 10.1080/13543776.2017.1323331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maroula G. Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Liu YM, Nepali K, Liou JP. Idiopathic Pulmonary Fibrosis: Current Status, Recent Progress, and Emerging Targets. J Med Chem 2016; 60:527-553. [DOI: 10.1021/acs.jmedchem.6b00935] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi-Min Liu
- School of Pharmacy, College
of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College
of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College
of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Khan KM, Siddiqui S, Saleem M, Taha M, Saad SM, Perveen S, Choudhary MI. Synthesis of triazole Schiff bases: novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1. Bioorg Med Chem 2015; 22:6509-14. [PMID: 25440732 DOI: 10.1016/j.bmc.2014.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 12/16/2022]
Abstract
A series of Schiff base triazoles 1–25 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 lM), 13 (IC50 = 152.83 ± 2.39 lM), and 22 (IC50 = 251.0 ± 6.64 lM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 lM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.
Collapse
|
8
|
Murph MM, Jiang GW, Altman MK, Jia W, Nguyen DT, Fambrough JM, Hardman WJ, Nguyen HT, Tran SK, Alshamrani AA, Madan D, Zhang J, Prestwich GD. Vinyl sulfone analogs of lysophosphatidylcholine irreversibly inhibit autotaxin and prevent angiogenesis in melanoma. Bioorg Med Chem 2015; 23:5999-6013. [PMID: 26190462 DOI: 10.1016/j.bmc.2015.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/12/2015] [Accepted: 06/20/2015] [Indexed: 02/07/2023]
Abstract
Autotaxin (ATX) is an enzyme discovered in the conditioned medium of cultured melanoma cells and identified as a protein that strongly stimulates motility. This unique ectonucleotide pyrophosphatase and phosphodiesterase facilitates the removal of a choline headgroup from lysophosphatidylcholine (LPC) to yield lysophosphatidic acid (LPA), which is a potent lipid stimulator of tumorigenesis. Thus, ATX has received renewed attention because it has a prominent role in malignant progression with significant translational potential. Specifically, we sought to develop active site-targeted irreversible inhibitors as anti-cancer agents. Herein we describe the synthesis and biological activity of an LPC-mimetic electrophilic affinity label that targets the active site of ATX, which has a critical threonine residue that acts as a nucleophile in the lysophospholipase D reaction to liberate choline. We synthesized a set of quaternary ammonium derivative-containing vinyl sulfone analogs of LPC that function as irreversible inhibitors of ATX and inactivate the enzyme. The analogs were tested in cell viability assays using multiple cancer cell lines. The IC50 values ranged from 6.74 to 0.39 μM, consistent with a Ki of 3.50 μM for inhibition of ATX by the C16H33 vinyl sulfone analog CVS-16 (10b). A phenyl vinyl sulfone control compound, PVS-16, lacking the choline-like quaternary ammonium mimicking head group moiety, had little effect on cell viability and did not inhibit ATX. Most importantly, CVS-16 (10b) significantly inhibited melanoma progression in an in vivo tumor model by preventing angiogenesis. Taken together, this suggests that CVS-16 (10b) is a potent and irreversible ATX inhibitor with significant biological activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States.
| | - Guowei W Jiang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, United States
| | - Molly K Altman
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Duy T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Jada M Fambrough
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - William J Hardman
- The University of Georgia and Georgia Regents University Medical Partnership, 1425 Prince Avenue, Athens, GA 30606, United States
| | - Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Sterling K Tran
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Ali A Alshamrani
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Damian Madan
- Echelon Biosciences Incorporated, 675 Arapeen Way, Suite 302, Salt Lake City, UT 84108, United States
| | - Jianxing Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, United States
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, United States.
| |
Collapse
|
9
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
10
|
Sidduri A, Budd DC, Fuentes ME, Lambros T, Ren Y, Roongta V, Schoenfeld RC, Gillespie P, Stevenson CS, Truitt T, Qian Y. Discovery of novel non-carboxylic acid 5-amino-4-cyanopyrazole derivatives as potent and highly selective LPA1R antagonists. Bioorg Med Chem Lett 2014; 24:4450-4454. [DOI: 10.1016/j.bmcl.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
|
11
|
Development of lysophosphatidic acid pathway modulators as therapies for fibrosis. Future Med Chem 2013; 5:1935-52. [DOI: 10.4155/fmc.13.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a class of bioactive phospholipid that displays a wide range of cellular effects via LPA receptors, of which six have been identified (LPAR1–6). In serum and plasma, LPA production occurs mainly by the hydrolysis of lysophosphatidylcholine by the phospholipase D activity of autotaxin (ATX). The involvement of the LPA pathway in driving chronic wound-healing conditions, such as idiopathic pulmonary fibrosis, has suggested targets in this pathway could provide potential therapeutic approaches. Mice with LPAR1 knockout or tissue-specific ATX deletion have demonstrated reduced lung fibrosis following bleomycin challenge. Therefore, strategies aimed at antagonizing LPA receptors or inhibiting ATX have gained considerable attention. This Review will summarize the current status of identifying small-molecule modulators of the LPA pathway. The therapeutic utility of LPA modulators for the treatment of fibrotic diseases will soon be revealed as clinical trials are already in progress in this area.
Collapse
|
12
|
Barbayianni E, Magrioti V, Moutevelis-Minakakis P, Kokotos G. Autotaxin inhibitors: a patent review. Expert Opin Ther Pat 2013; 23:1123-32. [PMID: 23641951 DOI: 10.1517/13543776.2013.796364] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Autotaxin (ATX) is a lysophospholipase D enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA) and choline. LPA is a bioactive lipid mediator that activates several transduction pathways, and is involved in migration, proliferation and survival of various cells. Thus, ATX is an attractive medicinal target. AREAS COVERED The aim of this review is to summarize ATX inhibitors, reported in patents from 2006 up to now, describing their discovery and biological evaluation. EXPERT OPINION ATX has been implicated in various pathological conditions, such as cancer, chronic inflammation, neuropathic pain, fibrotic diseases, etc. Although there is an intensive effort on the discovery of potent and selective ATX inhibitors in order to identify novel medicinal agents, up to now, no ATX inhibitor has reached clinical trials. However, the use of ATX inhibitors seems an attractive strategy for the development of novel medicinal agents, for example anticancer therapeutics.
Collapse
Affiliation(s)
- Efrosini Barbayianni
- University of Athens, Department of Chemistry, Laboratory of Organic Chemistry, Panepistimiopolis, Athens 15771, Greece
| | | | | | | |
Collapse
|
13
|
Qian Y, Hamilton M, Sidduri A, Gabriel S, Ren Y, Peng R, Kondru R, Narayanan A, Truitt T, Hamid R, Chen Y, Zhang L, Fretland AJ, Sanchez RA, Chang KC, Lucas M, Schoenfeld RC, Laine D, Fuentes ME, Stevenson CS, Budd DC. Discovery of Highly Selective and Orally Active Lysophosphatidic Acid Receptor-1 Antagonists with Potent Activity on Human Lung Fibroblasts. J Med Chem 2012; 55:7920-39. [DOI: 10.1021/jm301022v] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yimin Qian
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Matthew Hamilton
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Achyutharao Sidduri
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Stephen Gabriel
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Yonglin Ren
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Ruoqi Peng
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Rama Kondru
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Arjun Narayanan
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Terry Truitt
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Rachid Hamid
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Yun Chen
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Lin Zhang
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Adrian J. Fretland
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Ruben Alvarez Sanchez
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Kung-Ching Chang
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Matthew Lucas
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Ryan C. Schoenfeld
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Dramane Laine
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Maria E. Fuentes
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - Christopher S. Stevenson
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| | - David C. Budd
- Discovery
Chemistry, ‡Discovery Inflammation and Respiratory Diseases, §Discovery Technology, ∥Pharmaceutical and
Analytical Research, and ⊥Drug Metabolism and Pharmacokinetics, Small Molecule Research, Pharmaceutical Research and Early Drug
Development, Hoffmann-La Roche, 340 Kingsland
Street, Nutley, New Jersey 07110, United States
| |
Collapse
|
14
|
Bekele RT, Brindley DN. Role of autotaxin and lysophosphatidate in cancer progression and resistance to chemotherapy and radiotherapy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Mize CD, Abbott AM, Gacasan SB, Parrill AL, Baker DL. Ligand-based autotaxin pharmacophore models reflect structure-based docking results. J Mol Graph Model 2011; 31:76-86. [PMID: 21967734 DOI: 10.1016/j.jmgm.2011.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/03/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
The autotaxin (ATX) enzyme exhibits lysophospholipase D activity responsible for the conversion of lysophosphatidyl choline to lysophosphatidic acid (LPA). ATX and LPA have been linked to the initiation of atherosclerosis, cancer invasiveness, and neuropathic pain. ATX inhibition therefore offers currently unexploited therapeutic potential, and substantial interest in the development of ATX inhibitors is evident in the recent literature. Here we report the performance-based comparison of ligand-based pharmacophores developed on the basis of different combinations of ATX inhibitors in the training sets against an extensive database of compounds tested for ATX inhibitory activity, as well as with docking results of the actives against a recently reported ATX crystal structure. In general, pharmacophore models show better ability to select active ATX inhibitors binding in a common location when the ligand-based superposition shows a good match to the superposition of actives based on docking results. Two pharmacophore models developed on the basis of competitive inhibitors in combination with the single inhibitor crystallized to date in the active site of ATX were able to identify actives at rates over 40%, a substantial improvement over the <10% representation of active site-directed actives in the test set database.
Collapse
Affiliation(s)
- Catrina D Mize
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | |
Collapse
|