1
|
Inniss MC, Smith SG, Li DJ, Primack B, Sun D, Olinger GY, Sheahan KL, Ross T, Langley M, Young V, Alvarado A, Davoodi S, Geng J, Schebesta M, Ols ML, Tchaicha J, Ter Meulen J, Sethi DK. Carbonic anhydrase 2-derived drug-responsive domain regulates membrane-bound cytokine expression and function in engineered T cells. Commun Biol 2025; 8:28. [PMID: 39789216 PMCID: PMC11718131 DOI: 10.1038/s42003-024-07410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Adoptive cell therapies (ACT) have shown reduced efficacy against solid tumor malignancies compared to hematologic malignancies, partly due to the immunosuppressive nature of the tumor microenvironment (TME). ACT efficacy may be enhanced with pleiotropic cytokines that remodel the TME; however, their expression needs to be tightly controlled to avoid systemic toxicities. Here we show T cells can be armored with membrane-bound cytokines with surface expression regulated using drug-responsive domains (DRDs) developed from the 260-amino acid protein human carbonic anhydrase 2 (CA2). The CA2-DRD can be stabilized in vitro and in vivo with the FDA-approved small-molecule CA2 inhibitor acetazolamide (ACZ). We develop conditional degrons using library-based screening of mutants and show characterization of one DRD using crystallography and molecular dynamics (MD) simulations. Using protein-engineering solutions to increase the valency of DRDs fused to the cargo we have developed "modulation hubs" and show tight regulation of membrane-bound cytokines IL2, IL12, IL15, IL21, IL23, and IFNα in genetically engineered T cells. Finally, CA2-DRD regulated IL12 mediates regulated efficacy in a solid tumor model. Regulation of pleotropic cytokines potentially paves the way to safely use these powerful cytokines in ACT for cancer treatment.
Collapse
Affiliation(s)
| | | | - Dan Jun Li
- Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Dexue Sun
- Obsidian Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
3
|
Angeli A, Occhini A, Renzi G, Capperucci A, Ferraroni M, Tanini D, Supuran CT. Thia- and Seleno-Michael Reactions for the Synthesis of Carbonic Anhydrases Inhibitors. ChemMedChem 2024; 19:e202400345. [PMID: 39031732 DOI: 10.1002/cmdc.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Novel chalcogen-containing amides and esters bearing the benzenesulfonamide moiety have been synthesised upon nucleophilic conjugate addition of thiols and selenols to suitable electron-deficient alkenes. The activity of the synthesised compounds as Carbonic Anhydrases inhibitors has been investigated in vitro and the inhibition mechanism has been elucidated by X-rays studies.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Alessio Occhini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Gioele Renzi
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Antonella Capperucci
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
4
|
Giovannuzzi S, Shyamal SS, Bhowmik R, Ray R, Manaithiya A, Carta F, Parrkila S, Aspatwar A, Supuran CT. Physiological modeling of the metaverse of the Mycobacterium tuberculosis β-CA inhibition mechanism. Comput Biol Med 2024; 181:109029. [PMID: 39173489 DOI: 10.1016/j.compbiomed.2024.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Tuberculosis (TB) is an infectious disease that primarily affects the lungs of humans and accounts for Mycobacterium tuberculosis (Mtb) bacteria as the etiologic agent. In this study, we introduce a computational framework designed to identify the important chemical features crucial for the effective inhibition of Mtb β-CAs. Through applying a mechanistic model, we elucidated the essential features pivotal for robust inhibition. Using this model, we engineered molecules that exhibit potent inhibitory activity and introduce relevant novel chemistry. The designed molecules were prioritized for synthesis based on their predicted pKi values via the QSAR (Quantitative Structure-Activity Relationship) model. All the rationally designed and synthesized compounds were evaluated in vitro against different carbonic anhydrase isoforms expressed from the pathogen Mtb; moreover, the off-target and widely human-expressed CA I and II were also evaluated. Among the reported derivatives, 2, 4, and 5 demonstrated the most valuable in vitro activity, resulting in promising candidates for the treatment of TB infection. All the synthesized molecules exhibited favorable pharmacokinetic and toxicological profiles based on in silico predictions. Docking analysis confirmed that the zinc-binding groups bind effectively into the catalytic triad of the Mtb β-Cas, supporting the in vitro outcomes with these binding interactions. Furthermore, molecules with good prediction accuracies according to previously established mechanistic and QSAR models were utilized to delve deeper into the realm of systems biology to understand their mechanism in combating tuberculotic pathogenesis. The results pointed to the key involvement of the compounds in modulating immune responses via NF-κβ1, SRC kinase, and TNF-α to modulate granuloma formation and clearance via T cells. This dual action, in which the pathogen's enzyme is inhibited while modulating the human immune machinery, represents a paradigm shift toward more effective and comprehensive treatment approaches for combating tuberculosis.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Seppo Parrkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Supuran CT. Multi- and poly-pharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001125. [PMID: 39326898 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described in organisms allover the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons, and are involved in pH regulation, chemosensing and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or for Alzheimer's/Parkinson's disease management. CAs from pathogenic bacteria, fungi, protozoans and nematodes started to be considered as drug targets in recent years, with notable advances registered ultimately. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future, due to the emergence of drug design approaches which afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, (iso)coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed since drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide and high-ceiling diuretics) show efective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. Significance Statement Carbonic anhydrase inhibitors have multiple pharmacologic applications as diuretics, antiglaucoma, antiepileptic, antiobesity, anti-acute mountain sickness, anti-idiopathic intracranial hypertension and as antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations started to be investigated recently. Parasite carbonic anhydrases are also drug targets for antiinfectives with novel mechanisms of action which can by pass drug resistance to commonly used such agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
|
6
|
Yu Y, Sternicki LM, Hilko DH, Jarrott RJ, Di Trapani G, Tonissen KF, Poulsen SA. Investigating Active Site Binding of Ligands to High and Low Activity Carbonic Anhydrase Enzymes Using Native Mass Spectrometry. J Med Chem 2024; 67:15862-15872. [PMID: 39161321 DOI: 10.1021/acs.jmedchem.4c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Carbonic anhydrases (CAs) are a family of enzymes that play an important pH regulatory role in health and disease. While different CA isozymes have a high degree of structural similarity, they have variable enzymatic activity, with CA III being the least active and having less than 1% of the activity of CA II, the most active. Furthermore, ligand binding studies for CA III are limited, and a resulting lack of chemical probes impedes understanding of this CA isozyme in comparison to other CA family members where studies are abundant. Therefore, we employed native mass spectrometry (nMS), also known as intact mass spectrometry, to assess ligand binding to CA II and CA III and discovered two novel compounds that for the first time display strong binding to CA III. We present a new data visualization and quantification tool developed to display native mass spectra as an intuitive stacked heat map representation for rapidly interpreting the results of ligand-protein binding from nMS screening.
Collapse
Affiliation(s)
- Yezhou Yu
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Louise M Sternicki
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - David H Hilko
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russell J Jarrott
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Giovanna Di Trapani
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Kathryn F Tonissen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
7
|
Mu Y, Meng Q, Fan X, Xi S, Xiong Z, Wang Y, Huang Y, Liu Z. Identification of the inhibition mechanism of carbonic anhydrase II by fructooligosaccharides. Front Mol Biosci 2024; 11:1398603. [PMID: 38863966 PMCID: PMC11165268 DOI: 10.3389/fmolb.2024.1398603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Polygonatum sibiricum (P. sibiricum), recognized as a precious nourishing Chinese traditional medicine, exhibits the pharmacological effect of anti-aging. In this work, we proposed a novel mechanism underlying this effect related to the less studied bioactive compounds fructooligosaccharides in P. sibiricum (PFOS) to identify the inhibition effect of the small glycosyl molecules on the age-related zinc metalloprotease carbonic anhydrase II (CA II). Molecular docking and molecular dynamics simulation were used to investigate the structural and energetic properties of the complex systems consisting of the CA II enzyme and two possible structures of PFOS molecules (PFOS-A and PFOS-B). The binding affinity of PFOS-A (-7.27 ± 1.02 kcal/mol) and PFOS-B (-8.09 ± 1.75 kcal/mol) shows the spontaneity of the binding process and the stability of the combination in the solvent. Based on the residue energy decomposition and nonbonded interactions analysis, the C-, D- and G-sheet fragments of the CA II were found to be crucial in binding process. Van der Waals interactions form on the hydrophobic surface of CAII mainly with 131PHE and 135VAL, while hydrogen bonds form on the hydrophilic surface mainly with 67ASN and 92GLN. The binding of PFOS results in the blocking of the zinc ions pocket and then inhibiting its catalytic activity, the stability of which has been further demonstrated by free energy landscape. These findings provide evidence of the effective inhibition of PFOS to CA II enzyme, which leads to a novel direction for exploring the mechanism of traditional Chinese medicine focused on small molecule fructooligosaccharides.
Collapse
Affiliation(s)
- Yue Mu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Xinyi Fan
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Shuyun Xi
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Zhongli Xiong
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yihua Wang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yanling Huang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Koyuncu I, Temiz E, Güler EM, Durgun M, Yuksekdag O, Giovannuzzi S, Supuran CT. Effective Anticancer Potential of a New Sulfonamide as a Carbonic Anhydrase IX Inhibitor Against Aggressive Tumors. ChemMedChem 2024; 19:e202300680. [PMID: 38323458 DOI: 10.1002/cmdc.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey Tel
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Simone Giovannuzzi
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| |
Collapse
|
9
|
Demir-Yazıcı K, Trawally M, Bua S, Öztürk-Civelek D, Akdemir A, Supuran CT, Güzel-Akdemir Ö. Novel 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide based thiosemicarbazides as potent and selective inhibitors of tumor-associated human carbonic anhydrase IX and XII: Synthesis, cytotoxicity, and molecular modelling studies. Bioorg Chem 2024; 144:107096. [PMID: 38290186 DOI: 10.1016/j.bioorg.2024.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
In the pursuit of discovering new selective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, a small collection of novel thiosemicarbazides (5a-5t) were designed and synthesized starting from 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide which was evaluated as a potent inhibitor of different CA isoforms in a previous study. The newly synthesized compounds were examined against four human carbonic anhydrases (hCA), namely transmembrane tumor-related hCA IX/XII and cytosolic widespread off-targets hCA I/II. In enzyme inhibition assays, all nineteen compounds display up to ∼340-fold selectivity for hCA IX/XII over off-target isoforms hCA I/II. Four compounds have enzyme inhibition values (Ki) lower than 10 nM against tumor-associated isoforms hCA IX/XII including two compounds in the subnanomolar range (5r and 5s; hCA XII; Ki: 0.69 and 0.87 nM). The potential binding interactions of the most potent compounds against hCA IX and XII, compounds 5s and 5r, respectively, were investigated using ensemble docking and molecular dynamics studies. Cell viability assays using human colorectal adenocarcinoma cell line HT-29 and healthy skin fibroblasts CCD-86Sk show that compound 5e selectively inhibits HT-29 cancer cell proliferation (IC50: 53.32 ± 7.74 µM for HT-29; IC50: 74.64 ± 14.15 µM for CCD-986Sk). Finally, Western blot assays show that compounds 5e and 5r significantly reduce the expression of hCA XII in HT-29 cells. Moreover, 5e shows better cytotoxic activity in hypoxia compared to normoxic conditions. Altogether, the newly designed compounds show stronger inhibition of the tumor-associated hCA IX and XII isoforms and several tested compounds show selective cytotoxicity as well as downregulation of hCA XII expression.
Collapse
Affiliation(s)
- Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Chemistry, Institute of Graduate Studies in Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Muhammed Trawally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Chemistry, Institute of Graduate Studies in Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Dilek Öztürk-Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Istinye University, 34408 Istanbul, Turkey
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
10
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
11
|
Türkeş C. Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico. J Mol Recognit 2023; 36:e3063. [PMID: 37807620 DOI: 10.1002/jmr.3063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KI s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KI s in the range of 0.64 ± 0.08-5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug-drug interactions unexpectedly when used in combination with other agents.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
12
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
13
|
Pourbaghi M, Haghani L, Zhao K, Karimi A, Marinelli B, Erinjeri JP, Geschwind JFH, Yarmohammadi H. Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options. Curr Oncol 2023; 30:6609-6622. [PMID: 37504345 PMCID: PMC10377758 DOI: 10.3390/curroncol30070485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatocellular cancer (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death. Locoregional therapies, including transarterial embolization (TAE: bland embolization), chemoembolization (TACE), and radioembolization, have demonstrated survival benefits when treating patients with unresectable HCC. TAE and TACE occlude the tumor's arterial supply, causing hypoxia and nutritional deprivation and ultimately resulting in tumor necrosis. Embolization blocks the aerobic metabolic pathway. However, tumors, including HCC, use the "Warburg effect" and survive hypoxia from embolization. An adaptation to hypoxia through the Warburg effect, which was first described in 1956, is when the cancer cells switch to glycolysis even in the presence of oxygen. Hence, this is also known as aerobic glycolysis. In this article, the adaptation mechanisms of HCC, including glycolysis, are discussed, and anti-glycolytic treatments, including systemic and locoregional options that have been previously reported or have the potential to be utilized in the treatment of HCC, are reviewed.
Collapse
Affiliation(s)
- Miles Pourbaghi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Leila Haghani
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Ken Zhao
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Anita Karimi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Brett Marinelli
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Joseph P. Erinjeri
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | | | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| |
Collapse
|
14
|
Sharma V, Kumar R, Angeli A, Supuran CT, Sharma PK. Benzenesulfonamides with trisubstituted triazole motif as selective carbonic anhydrase I, II, IV, and IX inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200391. [PMID: 36316236 DOI: 10.1002/ardp.202200391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/03/2023]
Abstract
Twenty novel 1,2,3-triazole benzenesulfonamides featuring nitrile 8a-g, carbothioamide 9a-f, and N'-hydroxycarboximidamide 10a-g functionalities were designed and synthesized to improve potency and selectivity as carbonic anhydrase inhibitors (CAIs). The synthesized 1,2,3-triazole compounds were tested in vitro as CAIs against four physiologically and pharmacologically relevant isoforms of human carbonic anhydrase (hCA I, II, IV, and IX). Compounds 8a-g, 9a-f, and 10a-g displayed variable inhibition constants ranging from 8.1 nM to 3.22 μM for hCA I, 4.7 nM to 0.50 μM for hCA II, 15.0 nM to 3.7 μM for hCA IV, and 29.6 nM to 0.27 μM for hCA IX. As per the inhibition data profile, compounds 9a-e exhibited strong efficacy for hCA IV, whereas the inhibition was found to be somewhat diminished in the case of hCA IX by nearly all the compounds. A computational protocol based on docking and MM-GBSA was conducted to reveal the plausible interactions of the targeted sulfonamides within the hCA II and IX binding sites. The outcomes of appending various functionalities at the C-4 position of the 1,2,3-triazole motif over the inhibition potential and selectivity of the designed sulfonamides were examined with a potential for the discovery of new isoform selective CAIs. The CAI and SAR data established the significance of the synthesized 1,2,3-triazoles as building blocks for developing CAI drugs.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India.,Pt. Chiranji Lal Sharma Government College, Karnal, India
| | - Rajiv Kumar
- Ch. Mani Ram Godara Government College for Women, Fatehabad, India
| | - Andrea Angeli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
15
|
Hussain Z, Mahmood A, Shah Q, Imran A, Mughal EU, Khan W, Baig A, Iqbal J, Mumtaz A. Synthesis and Evaluation of Amide and Thiourea Derivatives as Carbonic Anhydrase (CA) Inhibitors. ACS OMEGA 2022; 7:47251-47264. [PMID: 36570246 PMCID: PMC9773353 DOI: 10.1021/acsomega.2c06513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Series of sulfonamide-substituted amide (9-11), benzamide (12-15), and 1,3-disubstituted thiourea (17-26) derivatives were synthesized from a common precursor, i.e., substituted benzoyl chlorides. Structures of all of the synthesized compounds were characterized by spectroscopic techniques (1H nuclear magnetic resonance (NMR),13C NMR, and Fourier transform infrared spectroscopy (FTIR)). All of the amide (9-15) and thiourea (17-26) derivatives were screened against human carbonic anhydrases, hCA-II, hCA IX, and hCA-XII. Sulfonamide-substituted amides 9, 11, and 12 were found to be excellent selective inhibitors with IC50 values of 0.18 ± 0.05, 0.17 ± 0.05, and 0.58 ± 0.05 μM against hCA II, hCA IX, and hCA XII, respectively. Compound 9 was found to be highly selective for hCA II and about 6-fold more potent as compared to the standard antagonist, acetazolamide. Safe toxicity profiling of the most potent and selective compounds was determined against normal BHK-21 and HEK-293 T cells. Molecular docking studies were performed, which described the type of interactions between the synthesized compounds and enzyme proteins. In addition, in silico absorption, distribution, metabolism, and excretion (ADME) studies were performed, which showed that all of the synthesized molecules fulfilled the druggability criteria.
Collapse
Affiliation(s)
- Zahid Hussain
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Abid Mahmood
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Qasim Shah
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Aqeel Imran
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | | | - Wajiha Khan
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Ayesha Baig
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Jamshed Iqbal
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Amara Mumtaz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| |
Collapse
|
16
|
Eldehna WM, Taghour MS, Al-Warhi T, Nocentini A, Elbadawi MM, Mahdy HA, Abdelrahman MA, Alotaibi OJ, Aljaeed N, Elimam DM, Afarinkia K, Abdel-Aziz HA, Supuran CT. Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. J Enzyme Inhib Med Chem 2022; 37:531-541. [PMID: 34991416 PMCID: PMC8745369 DOI: 10.1080/14756366.2021.2024528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Mostafa M. Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ohoud J. Alotaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaaeldin M. Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
17
|
Saleem A, Farooq U, Bukhari SM, Khan S, Zaidi A, Wani TA, Shaikh AJ, Sarwar R, Mahmud S, Israr M, Khan FA, Shahzad SA. Isoxazole Derivatives against Carbonic Anhydrase: Synthesis, Molecular Docking, MD Simulations, and Free Energy Calculations Coupled with In Vitro Studies. ACS OMEGA 2022; 7:30359-30368. [PMID: 36061660 PMCID: PMC9434621 DOI: 10.1021/acsomega.2c03600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Heterocyclic compounds with a five-membered ring as a core, particularly those containing more than one heteroatom, have a wide spectrum of biological functions, especially in enzyme inhibition. In this study, we present the synthesis of five-membered heterocyclic isoxazole derivatives via sonication of ethyl butyrylacetate with aromatic aldehyde in the presence of a SnII-Mont K10 catalyst. The synthesized compounds were characterized using sophisticated spectroscopic methods. In vitro testing of the compounds reveals three derivatives with significant inhibitory action against carbonic anhydrase (CA) enzyme. The compound AC2 revealed the most promising inhibitory activity against CA among the entire series, with an IC50 = 112.3 ± 1.6 μM (%inh = 79.5) followed by AC3 with an IC50 = 228.4 ± 2.3 μM (%inh = 68.7) compared to the standard with 18.6 ± 0.5 μM (%inh = 87.0). Molecular docking (MD) study coupled with extensive MD simulations (400 ns) and MMPBSA study fully supported the in vitro enzyme inhibition results, evident from the computed ΔG bind (AC2 = -13.53 and AC3 = -12.49 kcal/mol). The in vitro and in silico studies are also augmented by a fluorescence-based enzymatic assay in which compounds AC2 and AC3 showed significant fluorescence enhancement. Therefore, on the basis of the present study, it is inferred that AC2 and AC3 may serve as a new framework for designing effective CA inhibitors.
Collapse
Affiliation(s)
- Afia Saleem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Syed Majid Bukhari
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sara Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Asma Zaidi
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Tanveer A. Wani
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahson Jabbar Shaikh
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Rizwana Sarwar
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Shafi Mahmud
- Division
of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Muhammad Israr
- Pakistan
Science Foundation, 1-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan
| | - Farhan A. Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| |
Collapse
|
18
|
Singh P, Sridhar Goud N, Swain B, Kumar Sahoo S, Choli A, Angeli A, Singh Kushwah B, Madhavi Yaddanapudi V, Supuran CT, Arifuddin M. Synthesis of a new series of quinoline/pyridine indole-3-sulfonamide hybrids as selective carbonic anhydrase IX inhibitors. Bioorg Med Chem Lett 2022; 70:128809. [PMID: 35605838 DOI: 10.1016/j.bmcl.2022.128809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
In this manuscript, design, rational, synthesisand carbonic anhydrases (CAs) inhibitory profile of the quinoline/pyridine linked indole-3-sulfonamide derivatives were reported. The library of 29newly quinoline/pyridine indole-3-sulfonamide derivatives have been generated and examined against the panel of four physiological relevant human CA isoforms, namely, the cytosolic isoforms hCA I and hCA II and the transmembrane tumor associated isoforms hCA IX and hCA XII. Pyridine indole-3-sulfonamide hybrids are selective inhibit transmembrane tumor associated isoforms hCA IX and hCA XII. However, all synthesized quinoline indole-3-sulfonamide hybrids have inhibitory effect on hCA IX isoforms, whereas few have shown inhibitory activity against hCA II and hCA XII as well. However, among all synthesized compound 6q and6p having good inhibitory activity against hCA IX with Ki 1.47 µM and 1.57 µM respectively.These quinoline/pyridine indole-3-sulfonamide conjugatesmay be regarded as potential leads for hCA IXselective inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Priti Singh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Nerella Sridhar Goud
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; Department of Neuroimaging and Interventional Radiology (NIIIR) National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560027, India
| | - Baijayantimala Swain
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Santosh Kumar Sahoo
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Abhishek Choli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degl iStudi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bhoopendra Singh Kushwah
- Department of Pharmaceurical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| | - Claudiu T Supuran
- Università degl iStudi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| |
Collapse
|
19
|
Xue J, Thomas L, Dominguez Rieg JA, Fenton RA, Rieg T. NHE3 in the thick ascending limb is required for sustained but not acute furosemide-induced urinary acidification. Am J Physiol Renal Physiol 2022; 323:F141-F155. [PMID: 35635321 PMCID: PMC9306792 DOI: 10.1152/ajprenal.00013.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Na+/H+ exchanger isoform 3 (NHE3) facilitates Na+ reabsorption and H+ secretion by the kidneys. Despite stronger NHE3 abundance in the thick ascending limb (TAL) compared with the S1 and S2 segments of the proximal tubule, the role of NHE3 in the TAL is poorly understood. To investigate the role of NHE3 in the TAL, we generated and phenotyped TAL-specific NHE3 knockout (NHE3TAL-KO) mice. Compared with control mice, NHE3TAL-KO mice did not show significant differences in body weight, blood pH, or plasma Na+, K+, or Cl- levels. Fluid intake trended to be higher and urine osmolality was significantly lower in NHE3TAL-KO mice. Despite a similar glomerular filtration rate, NHE3TAL-KO mice had a greater urinary K+-to-creatinine ratio. One proposed role of NHE3 relates to furosemide-induced urinary acidification. Acute bolus treatment with furosemide under anesthesia did not result in differences in the dose dependence of urinary flow rate, Cl- excretion, or maximal urinary acidification between genotypes; however, in contrast with control mice, urinary pH returned immediately toward baseline levels in NHE3TAL-KO mice. Chronic furosemide treatment reduced urine osmolality similarly in both genotypes but metabolic alkalosis, hypokalemia, and calciuresis were absent in NHE3TAL-KO mice. Compared with vehicle, chronic furosemide treatment resulted in greater Na+-K+-2Cl- abundance regardless of genotype. Na+-phosphate cotransporter 2a abundance was also greater in furosemide-treated control mice compared with vehicle treatment, an effect that was absent in NHE3TAL-KO mice. In summary, NHE3 in the TAL plays a role in the sustained acidification effect of furosemide. Consistent with this, long-term treatment with furosemide did not result in metabolic alkalosis in NHE3TAL-KO mice.NEW & NOTEWORTHY Na+/H+ exchanger isoform 3 (NHE3) is very abundant in the thick ascending limb (TAL) compared with the proximal tubule. Much has been learned about the role of NHE3 in the proximal tubule; however, the function of NHE3 in the TAL remains elusive. A novel mouse model that lacks NHE3 selectively in the TAL not only shows a phenotype under baseline conditions but also identifies that NHE3 is required for sustained but not acute furosemide-induced urinary acidification.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| |
Collapse
|
20
|
Hamdy MM, Abdel-Rahman MS, Badary DM, Sabra MS. Effects of furosemide and tadalafil in both conventional and nanoforms against adenine-induced chronic renal failure in rats. Eur J Med Res 2022; 27:117. [PMID: 35820963 PMCID: PMC9275182 DOI: 10.1186/s40001-022-00747-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is a progressive loss of renal function that lead to reduced sodium filtration and inappropriate suppression of tubular reabsorption that ultimately leads to volume expansion. The aim of this study was to study the efficacy of furosemide and tadalafil nanoforms compared to conventional forms against adenine-induced CRF rat-model. METHODS Addition of 0.75% adenine to the diet of rats for 4 weeks gained general acceptance as a model to study kidney damage as this intervention mimicked most of the structural and functional changes seen in human chronic kidney disease Urine analysis, histopathological changes and immunohistochemical expression of caspase-3 and interleukin-1 beta (IL-1β) in renal tissues were performed. RESULTS Our results showed that the combination of tadalafil and furosemide using conventional and nanoparticle formulations had better renoprotective effect than individual drugs. This was demonstrated by improvement of urinary, serum and renal tissue markers as indicative of organ damage. This was also reflected on the reduction of tubular expression of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Immunohistochemical studies showed that the deteriorated renal cellular changes indicated by increased expression of caspase-3 and IL-1β were greatly improved by the combined treatment particularly with the nanoforms. CONCLUSIONS The nanoforms of both furosemide and tadalafil had greater renopreventive effects compared with conventional forms against adenine-induced CRF in rats.
Collapse
Affiliation(s)
| | - Mahran S Abdel-Rahman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sphinx University, New Assuit, 71526, Egypt
| | - Dalia M Badary
- Pathology Department, Faculty of Medicine, Assiut University, Egypt, Assuit, 71526, Egypt
| | - Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assuit, 71526, Egypt.
| |
Collapse
|
21
|
Sulfonamide Diuretic Azosemide as an Efficient Carbonic Anhydrase Inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Acetazolamide Detection Via its Competition With Sulfamethoxazole on Molecularly Imprinted Polymer: A proof-of-concept. J Pharm Biomed Anal 2022; 219:114954. [DOI: 10.1016/j.jpba.2022.114954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022]
|
23
|
Balandis B, Šimkūnas T, Paketurytė-Latvė V, Michailovienė V, Mickevičiūtė A, Manakova E, Gražulis S, Belyakov S, Kairys V, Mickevičius V, Zubrienė A, Matulis D. Beta and Gamma Amino Acid-Substituted Benzenesulfonamides as Inhibitors of Human Carbonic Anhydrases. Pharmaceuticals (Basel) 2022; 15:477. [PMID: 35455474 PMCID: PMC9033141 DOI: 10.3390/ph15040477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel benzenesulfonamide derivatives were synthesized bearing para-N β,γ-amino acid or para-N β-amino acid and thiazole moieties and their binding to the human carbonic anhydrase (CA) isozymes determined. These enzymes are involved in various illnesses, such as glaucoma, altitude sickness, epilepsy, obesity, and even cancer. There are numerous compounds that are inhibitors of CA and used as pharmaceuticals. However, most of them bind to most CA isozymes with little selectivity. The design of high affinity and selectivity towards one CA isozyme remains a significant challenge. The beta and gamma amino acid-substituted compound affinities were determined by the fluorescent thermal shift assay and isothermal titration calorimetry for all 12 catalytically active human carbonic anhydrase isozymes, showing the full affinity and selectivity profile. The structures of several compounds were determined by X-ray crystallography, and the binding mode in the active site of CA enzyme was shown.
Collapse
Affiliation(s)
- Benas Balandis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.B.); (V.M.)
| | - Tomas Šimkūnas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Vaida Paketurytė-Latvė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Elena Manakova
- Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.M.); (S.G.)
| | - Saulius Gražulis
- Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.M.); (S.G.)
| | - Sergey Belyakov
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.B.); (V.M.)
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| |
Collapse
|
24
|
La Rocca M, Rinaldi A, Bruni G, Friuli V, Maggi L, Bini M. New Emerging Inorganic–Organic Systems for Drug-Delivery: Hydroxyapatite@Furosemide Hybrids. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractIn the pharmaceutical market, the need to find effective systems for the efficient release of poorly bioavailable drugs is a forefront topic. The inorganic–organic hybrid materials have been recognized as one of the most promising systems. In this paper, we developed new Hydroxypapatite@Furosemide hybrids with improved dissolution rates in different media with respect to the drug alone. The hybrids formation was demonstrated by SEM/EDS measurements (showing homogeneous distribution of the elements) and FT-IR spectroscopy. The drug was adsorbed onto hydroxyapatite surfaces in amorphous form, as demonstrated by XRPD and its thermal stability was improved due to the absence, in the hybrids, of melting and decomposition peaks typical of the drug. The Sr substitution on Ca sites in hydroxyapatite allows increasing the surface area and pore volume, foreseeing a high capacity of drug loading. The dissolution tests of the hybrid compounds show dissolution rates much faster than the drug alone in different fluids, and also their solubility and wetting ability is improved in comparison to furosemide alone.
Collapse
|
25
|
Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments. Pharmaceuticals (Basel) 2022; 15:ph15020236. [PMID: 35215348 PMCID: PMC8875555 DOI: 10.3390/ph15020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
A multi-target small molecule modulator is advantageous for treating complicated diseases such as cancers. However, the strategy and application for discovering a multi-target modulator have been less reported. This study presents the dual inhibitors for kinase and carbonic anhydrase (CA) predicted by machine learning (ML) classifiers, and validated by biochemical and biophysical experiments. ML trained by CA I and CA II inhibitor molecular fingerprints predicted candidates from the protein-specific bioactive molecules approved or under clinical trials. For experimental tests, three sulfonamide-containing kinase inhibitors, 5932, 5946, and 6046, were chosen. The enzyme assays with CA I, CA II, CA IX, and CA XII have allowed the quantitative comparison in the molecules’ inhibitory activities. While 6046 inhibited weakly, 5932 and 5946 exhibited potent inhibitions with 100 nM to 1 μM inhibitory constants. The ML screening was extended for finding CAs inhibitors of all known kinase inhibitors. It found XMU-MP-1 as another potent CA inhibitor with an approximate 30 nM inhibitory constant for CA I, CA II, and CA IX. Differential scanning fluorimetry confirmed the direct interaction between CAs and small molecules. Cheminformatics studies, including docking simulation, suggest that each molecule possesses two separate functional moieties: one for interaction with kinases and the other with CAs.
Collapse
|
26
|
Güller U, Beydemir Ş, Küfrevioğlu Öİ. In vitro and In silico Interactions of Antiulcer, Glucocorticoids and Urological Drugs on Human Carbonic Anhydrase I and II isozymes. Biopharm Drug Dispos 2022; 43:47-56. [PMID: 35080786 DOI: 10.1002/bdd.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) convert carbon dioxide to bicarbonate in metabolism and use Zn2+ ions as a cofactor for their catalytic activity. The activators or inhibitors of CA-I and CA-II, which are the most abundant CA isozymes in erythrocytes, have pharmacological applications in medicine. So, investigation of drug-protein interaction of these isozymes is significant. On this basis, the objective of this study was to clarify the primer effects of widely used drugs on the activity of human CA-I and CA-II enzymes and elucidate the inhibition mechanism through molecular docking studies. For this aim isozymes were purified from human erythrocytes by affinity chromatography technique. Then inhibition profiles of antiulcer, glucocorticoids, and urological drugs were investigated. As a result, while budesonide had the highest inhibitory potency on hydratase activity of hCA-I with the IC50 of 0.08 mM, levofloxacin showed the highest inhibition effect on hCA-II with the IC50 of 0.886 mM. The most effective inhibitor on the esterase activity of isozymes was found as fluticasone propionate with the Ki values of 0.0365±0.016 mM and 0.054±0.018 mM respectively. However, by molecular docking study, it was estimated that budesonide showed maximum inhibition potency for both isozymes with the free binding energy of -7.58 and -6.97 kcal/mol respectively. Consequently, it was observed that some of the drugs studied did not show any inhibitory effect. Drug-enzyme interactions were also estimated by molecular docking. This study could contribute to the discovery of new drug candidates and as well as target proteins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | | |
Collapse
|
27
|
Danish M, Bibi A, Akhtar A, Noreen N, Batool F, Zahra N, Arshad MN, Asiri AM. Theoretical and Experimental Investigations of
N
‐ and
O
‐Alkylated Sulfonamides: Density Functional Theory, Hirshfeld Surface Analysis, and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Danish
- Department of Chemistry Faculty of Science University of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Ayesha Bibi
- Department of Chemistry Faculty of Science University of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Arusa Akhtar
- Department of Chemistry Faculty of Science University of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Nadia Noreen
- Department of Chemistry Faculty of Science University of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Fatima Batool
- Department of Chemistry Faculty of Science University of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Nallain Zahra
- Department of Chemistry Faculty of Science University of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry Department Faculty of Science King Abdulaziz University, P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University, P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department Faculty of Science King Abdulaziz University, P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University, P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
28
|
Montazeri M, Fakhar M, Keighobadi M. The Potential Role of the Serotonin Transporter as a Drug Target against Parasitic Infections: A Scoping Review of the Literature. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:23-33. [PMID: 35249526 DOI: 10.2174/1574891x16666220304232301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several in vitro and in vivo biological activities of serotonin, 5- hydroxytryptamine (5-HT), as a bioactive molecule, and its transporter (5-HT-Tr) were evaluated in parasitic infections. OBJECTIVE Herein, the roles of 5-HT and 5-HTR in helminths and protozoan infections with medical and veterinary importance are reviewed. METHODS We searched information in 4 main databases and reviewed published literature about the serotonin transporter's role as a promising therapeutic target against pathogenic parasitic infections between 2000 and 2021. RESULTS Based on recent investigations, 5-HT and 5-HT-Tr play various roles in parasite infections, including biological function, metabolic activity, organism motility, parasite survival, and immune response modulation. Moreover, some of the 5-HT-TR in Schistosoma mansoni showed an excess of favorite substrates for biogenic amine 5-HT compared to their mammalian hosts. Furthermore, the main neuronal protein related to the G protein-coupled receptor (GPCR) was identified in S. mansoni and Echinococcus granulosus, playing main roles in these parasites. In addition, 5-HT increased in toxoplasmosis, giardiasis, and Chagas disease. On the other hand, in Plasmodium spp., different forms of targeted 5-HTR stimulate Ca2+ release, intracellular inositol triphosphate (ITP), cAMP, and protein kinase A (PKA) activity. CONCLUSION This review summarized the several functional roles of the 5-HT and the importance of the 5-HT-TR as a drug target with minimal harm to the host to fight against helminths and protozoan infections. Hopefully, this review will shed light on research regarding serotonin transporter-based therapies as a potential drug target soon.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Keighobadi
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Petreni A, Osman SM, Alasmary FA, Almutairi TM, Nocentini A, Supuran CT. Binding site comparison for coumarin inhibitors and amine/amino acid activators of human carbonic anhydrases. Eur J Med Chem 2021; 226:113875. [PMID: 34634741 DOI: 10.1016/j.ejmech.2021.113875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023]
Abstract
The first structural analysis comparing the binding mode to the target carbonic anhydrases (CAs, EC 4.2.1.1) of two opposite classes of modulators is presented here: coumarin derivatives act as prodrug CA inhibitors (CAIs), being hydrolyzed by the enzyme esterase activity to 2-hydroxycinnamic acids that occlude the active site entrance; CA activators (CAAs) belonging of the amine and amino acid types, enhance the CA activity by increasing the efficiency of the rate-determining proton shuttling step in the CA catalytic cycle. Analysis of the crystallographic data available for the human CA isoform II in adduct with two coumarin CAIs and some CAAs showed that both types of CA modulators bind in the same region of the enzyme active site, basically interacting with superimposable amino acid residues, that are Trp5, Asn62, His64, Asn67, Gln92, Thr200. A plethora of water molecules also participate in the adducts formation. This structural analysis showed that presence of certain chemical groups in the compound structure is mandatory to produce an activating rather than inhibitory action, such as multiple nitrogen- and oxygen-based moieties capable of shuttling protons or forming extended H-bond networks nearby the proton shuttle residue. This constitutes the only known example among all enzymes of an identical binding site for inhibitors and activators, which, in addition, possess significant pharmacological applications.
Collapse
Affiliation(s)
- Andrea Petreni
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
30
|
Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2021; 205:108910. [PMID: 34883135 DOI: 10.1016/j.neuropharm.2021.108910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
The Na-K-2Cl cotransporter NKCC1 and the neuron-specific K-Cl cotransporter KCC2 are considered attractive CNS drug targets because altered neuronal chloride regulation and consequent effects on GABAergic signaling have been implicated in numerous CNS disorders. While KCC2 modulators are not yet clinically available, the loop diuretic bumetanide has been used off-label in attempts to treat brain disorders and as a tool for NKCC1 inhibition in preclinical models. Bumetanide is known to have anticonvulsant and neuroprotective effects under some pathophysiological conditions. However, as shown in several species from neonates to adults (mice, rats, dogs, and by extrapolation in humans), at the low clinical doses of bumetanide approved for diuresis, this drug has negligible access into the CNS, reaching levels that are much lower than what is needed to inhibit NKCC1 in cells within the brain parenchyma. Several drug discovery strategies have been initiated over the last ∼15 years to develop brain-permeant compounds that, ideally, should be selective for NKCC1 to eliminate the diuresis mediated by inhibition of renal NKCC2. The strategies employed to improve the pharmacokinetic and pharmacodynamic properties of NKCC1 blockers include evaluation of other clinically approved loop diuretics; development of lipophilic prodrugs of bumetanide; development of side-chain derivatives of bumetanide; and unbiased high-throughput screening approaches of drug discovery based on large chemical compound libraries. The main outcomes are that (1), non-acidic loop diuretics such as azosemide and torasemide may have advantages as NKCC1 inhibitors vs. bumetanide; (2), bumetanide prodrugs lead to significantly higher brain levels than the parent drug and have lower diuretic activity; (3), the novel bumetanide side-chain derivatives do not exhibit any functionally relevant improvement of CNS accessibility or NKCC1 selectivity vs. bumetanide; (4) novel compounds discovered by high-throughput screening may resolve some of the inherent problems of bumetanide, but as yet this has not been achieved. Thus, further research is needed to optimize the design of brain-permeant NKCC1 inhibitors. In parallel, a major challenge is to identify the mechanisms whereby various NKCC1-expressing cellular targets of these drugs within (e.g., neurons, oligodendrocytes or astrocytes) and outside the brain parenchyma (e.g., the blood-brain barrier, the choroid plexus, and the endocrine system), as well as molecular off-target effects, might contribute to their reported therapeutic and adverse effects.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| |
Collapse
|
31
|
Hao Y, Moore JH. TargetTox: A Feature Selection Pipeline for Identifying Predictive Targets Associated with Drug Toxicity. J Chem Inf Model 2021; 61:5386-5394. [PMID: 34757743 DOI: 10.1021/acs.jcim.1c00733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In silico assessment of drug toxicity is becoming a critical step in drug development. Conventional ligand-based models are limited by low accuracy and lack of interpretability. Further, they often fail to explain cellular mechanisms underlying structure-toxicity associations. We addressed these limitations by incorporating target profile as an intermediate connecting structure to toxicity. To accommodate for high-dimensional feature space, we developed a pipeline named TargetTox that can identity a subset of predictive features. We implemented TargetTox to study 569 targets and 815 adverse events. The features identified by TargetTox comprise less than 10% of the original feature space; nevertheless, they accurately predicted binding outcomes for 377 targets and toxicity outcomes for 36 adverse events. We demonstrated that predictive targets tend to be differentially expressed in the tissue of toxicity. We also rediscovered key cellular functions associated with cardiotoxicity from the predictive targets, as well as markers of skin and liver diseases. Furthermore, we found evidence supporting diagnostic and therapeutic applications of some predictive targets in hepatotoxicity and nephrotoxicity. Our findings highlighted the critical role of predictive targets in cellular mechanisms leading to toxicity. In general, our study improved the interpretability of toxicity prediction without sacrificing accuracy. Our novel pipeline may benefit future studies of high-dimensional data sets.
Collapse
Affiliation(s)
- Yun Hao
- Genomics and Computational Biology (GCB) Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason H Moore
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
Fatima A, Singh M, Singh N, Savita S, Verma I, Siddiqui N, Javed S. Investigations on experimental, theoretical spectroscopic, electronic excitations, molecular docking of Sulfaguanidine (SG): An antibiotic drug. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Jing Z, Wang X, Li N, Sun Z, Zhang D, Zhou L, Yin F, Jia Q, Wang M, Chu Y, Du S, He Y, Du Q, Zhang X. Ultrasound-guided percutaneous metal-organic frameworks based codelivery system of doxorubicin/acetazolamide for hepatocellular carcinoma therapy. Clin Transl Med 2021; 11:e600. [PMID: 34709761 PMCID: PMC8516336 DOI: 10.1002/ctm2.600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaohui Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingding Zhang
- Department of Cardiovascular, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fanxiang Yin
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengli Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaojuan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaping He
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
35
|
Eldeeb AH, Abo-Ashour MF, Angeli A, Bonardi A, Lasheen DS, Elrazaz EZ, Nocentini A, Gratteri P, Abdel-Aziz HA, Supuran CT. Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 2021; 221:113486. [PMID: 33965860 DOI: 10.1016/j.ejmech.2021.113486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
New series of benzenesulfonamide and benzoic acid derivatives were designed and synthesized using tail/dual tail approach to improve potency and selectivity as carbonic anhydrase inhibitors. The synthesized compounds evaluated as CAIs against isoforms hCA I, II, IV and IX with acetazolamide (AAZ) as standard inhibitor. The benzenesulfonamide derivatives 7a-d, 8a-h, 12a-c, 13a and 15a-c showed moderate to potent inhibitory activity with selectivity toward isoform hCA II, especially, compound 13a with (Ki = 7.6 nM), while the benzoic acid analogues 12d-f, 13b and 15d-f didn't show any activity except compounds 12d,f and 15e that showed weak activity. Additionally, molecular docking was performed for compounds 7a, 8a, 8e, 12a, 13a and 15a on isoform hCA I, II to illustrate the possible interaction with the active site to justify the inhibitory activity.
Collapse
Affiliation(s)
- Assem H Eldeeb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
36
|
Terpenoids enriched ethanol extracts of aerial roots of Ceriops decandra (Griff.) and Ceriops tagal (Perr.) promote diuresis in mice. Heliyon 2021; 7:e07580. [PMID: 34337186 PMCID: PMC8318864 DOI: 10.1016/j.heliyon.2021.e07580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Ceriops decandra (CD) and Ceriops tagal (CT) are two traditionally used mangrove plants widely distributed along the coastal areas of South Asia, Africa, South Pacific. In this study, we evaluated the diuretic potential of aerial roots of CD, CT and assessed the effectiveness of the plants' terpenoids enriched bioactive constituents against human carbonic anhydrase (hCA) enzyme through molecular docking. Materials and methods Firstly, the acute toxicity of CD and CT was evaluated in mice. In vivo diuretic activity was then studied in mice and the volume of excreted urine was measured. The urine was further examined for pH, density and Na+, K+, Cl- concentrations. From this, the saluretic, natriuretic, kaliuretic and CAI (carbonic anhydrase inhibitory) activities were calculated. Finally, total terpenoid contents (TTC) of the plant extracts were quantified and the terpenoids previously reported from both CD and CT were docked against four hCA isoforms - hCAII, hCAIV, hCAXII and hCAXIV. Results In the acute toxicity assessment, no sign of toxicity was found. In diuretic activity evaluation, both extracts displayed substantial increase in urine volume, with CD being at top. Concentrations of Na+, K+ and Cl- were also upsurged at a high dose of treatment (500 mg/kg). Both extracts at 500 mg/kg dose demonstrated potent saluretic, natriuretic and CAI activity. The TTC of CD was significantly higher than CT. In molecular docking analysis, greater binding affinity against hCA isoforms was demonstrated by the terpenoids reported from CD. Conclusion Aerial roots of both CD and CT possess substantial diuretic activity with an inhibitory effect on CA. Here, diuretic potential as well as the total terpenoid content of CD were much greater between the two.
Collapse
|
37
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Tuğrak M, Gül Hİ, Sakagami H, Kaya R, Gülçin İ. Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turk J Chem 2021; 45:528-539. [PMID: 34385849 PMCID: PMC8326471 DOI: 10.3906/kim-2009-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease characterized by the continuous growth of cells without adherence to the rules that healthy normal cells obey. Carbonic anhydrase I and II (CA I and CA II) inhibitors are used for the treatment of some diseases. The available drugs in the market have limitations or side effects, which bring about the need to develop new drug candidate compound(s) to overcome the problems at issue. In this study, new pyrazole-sulphonamide hybrid compounds 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1
H
-pyrazol-1-yl]benzenesulphonamides (4a - 4j) were designed to discover new drug candidate compounds. The compounds 4a - 4j were synthesized and their chemical structures were confirmed using spectral techniques. The hypothesis tested was whether an introduction of methoxy and polymethoxy group(s) lead to an increased potency selectivity expression (PSE) value of the compound, which reflects cytotoxicity and selectivity of the compounds. The cytotoxicity of the compounds towards tumor cell lines were in the range of 6.7 – 400 µM. The compounds 4i (PSE2 = 461.5) and 4g (PSE1 = 193.2) had the highest PSE values in cytotoxicity assays. Ki values of the compounds were in the range of 59.8 ± 3.0 - 12.7 ± 1.7 nM towards hCA I and in the range of 24.1 ± 7.1 - 6.9 ± 1.5 nM towards hCA II. While the compounds 4b, 4f, 4g, and 4i showed promising cytotoxic effects, the compounds 4c and 4g had the inhibitory potency towards hCA I and hCA II, respectively. These compounds can be considered as lead compounds for further research.
Collapse
Affiliation(s)
- Mehtap Tuğrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Halise İnci Gül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Hiroshi Sakagami
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama Japan
| | - Rüya Kaya
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey.,Central Research and Application Laboratory, Ağrı İbrahim Çeçen University, Ağrı Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey
| |
Collapse
|
39
|
Baranauskiene L, Škiudaitė L, Michailovienė V, Petrauskas V, Matulis D. Thiazide and other Cl-benzenesulfonamide-bearing clinical drug affinities for human carbonic anhydrases. PLoS One 2021; 16:e0253608. [PMID: 34166457 PMCID: PMC8224972 DOI: 10.1371/journal.pone.0253608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
Twelve carbonic anhydrase (CA) isoforms catalyze carbon dioxide hydration to bicarbonate and acid protons and are responsible for many biological functions in human body. Despite their vital functions, they are also responsible for, or implicated in, numerous ailments and diseases such as glaucoma, high altitude sickness, and cancer. Because CA isoforms are highly homologous, clinical drugs designed to inhibit enzymatic activity of a particular isoform, can also bind to others with similar affinity causing toxic side effects. In this study, the affinities of twelve CA isoforms have been determined for nineteen clinically used drugs used to treat hypertension related diseases, i.e. thiazides, indapamide, and metolazone. Their affinities were determined using a fluorescent thermal shift assay. Stopped flow assay and isothermal titration calorimetry were also employed on a subset of compounds and proteins to confirm inhibition of CA enzymatic activity and verify the quantitative agreement between different assays. The findings of this study showed that pharmaceuticals could bind to human CA isoforms with variable affinities and inhibit their catalytic activity, even though the drug was intended to interact with a different (non-CA) protein target. Relatively minor structural changes of the compounds may cause significant changes in affinity and selectivity for a particular CA isoform.
Collapse
Affiliation(s)
- Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Škiudaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Pharmacy Center, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
40
|
Recent Updates on the Synthesis of Bioactive Quinoxaline-Containing Sulfonamides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quinoxaline is a privileged pharmacophore that has broad-spectrum applications in the fields of medicine, pharmacology and pharmaceutics. Similarly, the sulfonamide moiety is of considerable interest in medicinal chemistry, as it exhibits a wide range of pharmacological activities. Therefore, the therapeutic potential and biomedical applications of quinoxalines have been enhanced by incorporation of the sulfonamide group into their chemical framework. The present review surveyed the literature on the preparation, biological activities and structure-activity relationship (SAR) of quinoxaline sulfonamide derivatives due to their broad range of biomedical activities, such as diuretic, antibacterial, antifungal, neuropharmacological, antileishmanial, anti-inflammatory, anti-tumor and anticancer action. The current biological diagnostic findings in this literature review suggest that quinoxaline-linked sulfonamide hybrids are capable of being established as lead compounds; modifications on quinoxaline sulfonamide derivatives may give rise to advanced therapeutic agents against a wide variety of diseases.
Collapse
|
41
|
Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021; 135:1233-1249. [PMID: 34013961 DOI: 10.1042/cs20210040] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) was clinically exploited for decades, as most modern diuretics were obtained considering as lead molecule acetazolamide, the prototypical CA inhibitor (CAI). The discovery and characterization of multiple human CA (hCA) isoforms, 15 of which being known today, led to new applications of their inhibitors. They include widely clinically used antiglaucoma, antiepileptic and antiobesity agents, antitumor drugs in clinical development, as well as drugs for the management of acute mountain sickness and idiopathic intracranial hypertension (IIH). Emerging roles of several CA isoforms in areas not generally connected to these enzymes were recently documented, such as in neuropathic pain, cerebral ischemia, rheumatoid arthritis, oxidative stress and Alzheimer's disease. Proof-of-concept studies thus emerged by using isoform-selective inhibitors, which may lead to new clinical applications in such areas. Relevant preclinical models are available for these pathologies due to the availability of isoform-selective CAIs for all human isoforms, belonging to novel classes of compounds, such as coumarins, sulfocoumarins, dithiocarbamates, benzoxaboroles, apart the classical sulfonamide inhibitors. The inhibition of CAs from pathogenic bacteria, fungi, protozoans or nematodes started recently to be considered for obtaining anti-infectives with a new mechanism of action.
Collapse
|
42
|
Mincione F, Nocentini A, Supuran CT. Advances in the discovery of novel agents for the treatment of glaucoma. Expert Opin Drug Discov 2021; 16:1209-1225. [PMID: 33914670 DOI: 10.1080/17460441.2021.1922384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Glaucoma, a neuropathy characterized by increased intraocular pressure (IOP), is the major cause of blindness worldwide and its treatment aims at reducing IOP. AREAS COVERED The authors review the design of the main classes of anti-glaucoma agents. Drugs which interfere with the aqueous humor secretion (adrenergic agonists/antagonists, carbonic anhydrase inhibitors) and with its outflow, by means of both conventional and non-conventional pathways (prostaglandin (PG) analogs, rho kinase inhibitors, nitric oxide (NO) donors) as well as new agents (adenosine receptors modulators, melatonin - fatty acid amide hydrolase hybrids, tyrosine kinase activators, natriuretic peptide analogs) are considered. EXPERT OPINION The anti-glaucoma drug field has undergone several developments in recent years with the approval of at least three new drugs belonging to novel pharmacological classes, the rho kinase inhibitors ripasudil and netarsudil, and the PG-NO donor hybrid latanoprostene bunod. Eye drops with combinations of two different drugs are also available, allowing for effective IOP control, with once daily administration for some of them, which assures a better patient compliance and ease of administration. Overall, after more than a decade without new anti-glaucoma drugs, the last year afforded interesting new pharmacological opportunities for the management of this disease.
Collapse
Affiliation(s)
- Francesco Mincione
- U.O. Oculistica Az. USL 3, Val Di Nievole, Ospedale Di Pescia, Pescia, Italy
| | - Alessio Nocentini
- Università Degli Studi Di Firenze, NEUROFARBA Department, Sezione Di Scienze Farmaceutiche E Nutraceutiche, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Università Degli Studi Di Firenze, NEUROFARBA Department, Sezione Di Scienze Farmaceutiche E Nutraceutiche, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
43
|
Kugler M, Nekvinda J, Holub J, El Anwar S, Das V, Šícha V, Pospíšilová K, Fábry M, Král V, Brynda J, Kašička V, Hajdúch M, Řezáčová P, Grüner B. Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds. Chembiochem 2021; 22:2741-2761. [PMID: 33939874 DOI: 10.1002/cbic.202100121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Indexed: 11/12/2022]
Abstract
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| |
Collapse
|
44
|
Daniel D, Nunes B. Evaluation of single and combined effects of two pharmaceuticals on the marine gastropod Phorcus lineatus enzymatic activity under two different exposure periods. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:756-765. [PMID: 33829385 DOI: 10.1007/s10646-021-02396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical drugs are among the most used chemicals for human and veterinary medicines, aquaculture and agriculture. Pharmaceuticals are environmentally persistent, biologically active molecules, thereby having the potential to exert biological effects on non-target species. Among the most used pharmaceuticals, one may find salicylic acid (SA), a non-steroid anti-inflammatory drug (NSAID) that acts by inhibiting the enzymes cyclooxigenases; it is also possible to identify acetazolamide (ACZ), a diuretic that acts by inhibiting the activity of carbonic anhydrase (CA). In this work, the effects of both single and combined effects of these drugs were assessed on the marine gastropod Phorcus lineatus, by measuring key enzymatic activities, namely carbonic anhydrase (CA) and cyclooxygenase (COX), under two different exposure periods (14 and 28 days). We observed no straightforward pattern of enzymatic response in all treatments of both pharmaceuticals, on both analyzed tissues (gut and gills), and for both exposure regimes. We assume that this species is not responsive to the hereby tested pharmaceuticals, a finding that may be due to general mechanisms of response to adverse conditions, such as reduction of metabolism, of heart rate, of filtration rates, and to the increase production of mucus. All these functional adaptations can mitigate the deleterious effects caused by adverse conditions, without triggering biochemical responses. In conclusion, the species P. lineatus seems not to be sensitive in terms of these specific enzymatic pathways to these contaminants, under the adopted conditions.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Mishra CB, Kumari S, Angeli A, Bua S, Mongre RK, Tiwari M, Supuran CT. Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. J Med Chem 2021; 64:3100-3114. [PMID: 33721499 DOI: 10.1021/acs.jmedchem.0c01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two sets of benzenesulfonamide-based effective human carbonic anhydrase (hCA) inhibitors have been developed using the tail approach. The inhibitory action of these novel molecules was examined against four isoforms: hCA I, hCA II, hCA VII, and hCA XII. Most of the molecules disclosed low to medium nanomolar range inhibition against all tested isoforms. Some of the synthesized derivatives selectively inhibited the epilepsy-involved isoforms hCA II and hCA VII, showing low nanomolar affinity. The anticonvulsant activity of selected sulfonamides was assessed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (sc-PTZ) in vivo models of epilepsy. These potent CA inhibitors effectively inhibited seizures in both epilepsy models. The most effective compounds showed long duration of action and abolished MES-induced seizures up to 6 h after drug administration. These sulfonamides were found to be orally active anticonvulsants, being nontoxic in neuronal cell lines and in animal models.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Raj Kumar Mongre
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| |
Collapse
|
46
|
Novak JJ, Burchett W, Di L. Effects of low temperature on blood‐to‐plasma ratio measurement. Biopharm Drug Dispos 2021; 42:234-241. [DOI: 10.1002/bdd.2265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Jonathan J. Novak
- Pharmacokinetics, Dynamics and Metabolism Pfizer Worldwide Research and Development Groton Connecticut USA
| | - Woodrow Burchett
- Early Clinical Development Pfizer Worldwide Research and Development Groton Connecticut USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism Pfizer Worldwide Research and Development Groton Connecticut USA
| |
Collapse
|
47
|
Roy M, Dutta TK. Evaluation of Phytochemicals and Bioactive Properties in Mangrove Associate Suaeda monoica Forssk. ex J.F.Gmel. of Indian Sundarbans. Front Pharmacol 2021; 12:584019. [PMID: 33790782 PMCID: PMC8006309 DOI: 10.3389/fphar.2021.584019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/26/2021] [Indexed: 01/24/2023] Open
Abstract
Suaeda monoica Forssk. ex J.F.Gmel. (Amaranthaceae), a mangrove associate and ethno-medicinal herb of Indian Sundarbans, was investigated as a promising source of bioactive compounds. Various polar and nonpolar solvent extracts of the leaf and root-shoot parts of the plant exhibited antioxidant, antibacterial, antifungal, allelopathic, mosquitocidal, antihaemolytic and antidiuretic potential. Moreover, to meet pharmacological requirements, the antioxidant ability of the plant was validated by both chemical and biological analyses. Extraction yield and presence of different phytochemicals like phenolics, flavonoids, tannins and saponins were compared in various solvent-extracted fractions. Principle component analysis revealed that the antioxidant property present in different extracts maintained a positive correlation with the occurrence of polyphenols (phenolics, tannins and flavonoids). Biochemical evaluation, HPLC examination and GC–MS analysis showed a differential level of the presence of various phytochemicals in different solvent extracts. In contrast to mosquitocidal, antioxidant, antihaemolytic and phytotoxic properties which were observed to be dominant in polar solvent extracts, maximum antibacterial potency was detected in nonpolar n-hexane fractions. Overall, the plant extract is nontoxic in nature and a dose amounting to 3,000 mg/kg was well tolerated by Swiss albino mice. A combination of HPLC and GC–MS analyses showed the presence of a large number of structurally diverse phytochemicals, many of which had already been reported as insecticidal, mosquitocidal, antibacterial, herbicidal, antidiuretic, antioxidant and anti-haemolytic compounds. All these findings support that the least explored traditional edible medicinal mangrove associate S.monoica is enriched with multiple bioactive molecules and may be considered as one of the richest sources of various lead molecules of pharmaceutical importance.
Collapse
Affiliation(s)
- Madhumita Roy
- Department of Microbiology, Bose Institute, Kolkata, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata, India
| |
Collapse
|
48
|
Sayed AM, Saleh NM, El‐Gaby MSA, Abdel‐Samad MRK, Taher FA. Synthesis and in vivo evaluation of novel benzimidazole‐sulfonamide hybrids and
Lucilia cuprina
maggots' excretion/secretion topical gels for wound healing. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa M. Sayed
- Department of Chemistry, Faculty of Science Al‐Azhar University (Girls) Cairo Egypt
| | - Nashwa M. Saleh
- Department of Chemistry, Faculty of Science Al‐Azhar University (Girls) Cairo Egypt
| | - Mohamed S. A. El‐Gaby
- Department of Chemistry, Faculty of Science Al‐Azhar University at Assiut Assiut Egypt
| | - Mohammad R. K. Abdel‐Samad
- Department of Zoology and Entomology, Faculty of Science Al‐Azhar University Cairo Egypt
- Al‐Azhar Technology Incubator (ATI) Al‐Azhar University Cairo Egypt
| | - Fatma A. Taher
- Department of Chemistry, Faculty of Science Al‐Azhar University (Girls) Cairo Egypt
- Al‐Azhar Technology Incubator (ATI) Al‐Azhar University Cairo Egypt
| |
Collapse
|
49
|
Synthesis, spectroscopic characterizations, carbonic anhydrase II inhibitory activity, anticancer activity and docking studies of new Schiff bases of sulfa drugs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Urbański LJ, Angeli A, Hytönen VP, Di Fiore A, De Simone G, Parkkila S, Supuran CT. Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides. J Enzyme Inhib Med Chem 2020; 36:329-334. [PMID: 33356653 PMCID: PMC7782162 DOI: 10.1080/14756366.2020.1863958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sulphonamides and their isosteres are classical inhibitors of the carbonic anhydrase (CAs, EC 4.2.1.1) metalloenzymes. The protozoan pathogen Trichomonas vaginalis encodes two such enzymes belonging to the β-class, TvaCA1 and TvaCA2. Here we report the first sulphonamide inhibition study of TvaCA1, with a series of simple aromatic/heterocyclic primary sulphonamides as well as with clinically approved/investigational drugs for a range of pathologies (diuretics, antiglaucoma, antiepileptic, antiobesity, and antitumor drugs). TvaCA1 was effectively inhibited by acetazolamide and ethoxzolamide, with KIs of 391 and 283 nM, respectively, whereas many other simple or clinically used sulphonamides were micromolar inhibitors or did not efficiently inhibit the enzyme. Finding more effective TvaCA1 inhibitors may constitute an innovative approach for fighting trichomoniasis, a sexually transmitted infection, caused by T. vaginalis.
Collapse
Affiliation(s)
- Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|