1
|
Ismail MMF, Shawer TZ, Ibrahim RS, Allam RM, Ammar YA. Novel quinoxaline-based VEGFR-2 inhibitors to halt angiogenesis. Bioorg Chem 2023; 139:106735. [PMID: 37531818 DOI: 10.1016/j.bioorg.2023.106735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt.
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, 11754 Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Matada GSP, Dhiwar PS, Abbas N, Singh E, Ghara A, Patil R, Raghavendra NM. Pharmacophore modeling, virtual screening, molecular docking and dynamics studies for the discovery of HER2-tyrosine kinase inhibitors: An in-silico approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Combination of 4-anilinoquinazoline and rhodanine as novel epidermal growth factor receptor tyrosine kinase inhibitors. Bioorg Med Chem 2015; 23:3221-7. [DOI: 10.1016/j.bmc.2015.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 01/23/2023]
|
4
|
Fesenko AA, Shutalev AD. A novel access to pyrido[4,3-d]pyrimidine scaffold via Staudinger/intramolecular aza-Wittig reaction of 5-acyl-4-(β-azidoalkyl)-1,2,3,4-tetrahydropyrimidin-2-ones. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
|
6
|
Xu YY, Li SN, Yu GJ, Hu QH, Li HQ. Discovery of novel 4-anilinoquinazoline derivatives as potent inhibitors of epidermal growth factor receptor with antitumor activity. Bioorg Med Chem 2013; 21:6084-91. [PMID: 23962660 DOI: 10.1016/j.bmc.2013.06.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/21/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022]
Abstract
Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR-TK inhibitory activity. Especially, N(6)-((5-bromothiophen-2-yl)methyl)-N(4)-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50=3.11μM for Hep G2, IC50=0.82μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells.
Collapse
Affiliation(s)
- Yun-Yun Xu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | | | | | | | | |
Collapse
|
7
|
TØNDEL KRISTIN, WONG CHUNGF, MCCAMMON JA. COMPUTATIONAL ANALYSIS OF THE INTERACTIONS BETWEEN THE ANGIOGENESIS INHIBITOR PD173074 AND FIBROBLAST GROWTH FACTOR RECEPTOR 1. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633603000392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have carried out computational sensitivity analysis to analyze the interactions between the inhibitor PD173074 and FGFR1 in order to identify the determinants of their recognition and generate insights into further refining the inhibitor. The analysis has identified the parts of the inhibitor that are already useful for binding, e.g. the part that recognizes the linker connecting the N-terminal and C-terminal lobes of the kinase domain. These parts are profitably kept during a lead optimization process. The analysis has also pointed out regions of the inhibitors that may be useful to modify to improve its binding affinity, e.g. the dimethoxyphenyl ring. Comparative structural analysis of the binding pocket of almost 400 protein kinases also suggests that modifying the dimethoxyphenyl moiety might improve selective binding. Selectivity may be achieved not only by introducing groups to the 3 and 5 positions but also to the 1 and 6 positions. Replacing the tertiary amines by hydrocarbon might also improve binding affinity.
Collapse
Affiliation(s)
- KRISTIN TØNDEL
- Department of Chemistry, Physical Chemistry, Norwegian University of Science and Technology, Sem Selands v. 14, N-7591 Trondheim, Norway
| | - CHUNG F. WONG
- Howard Hughes Medical Institute, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365, USA
| | - J. A. MCCAMMON
- Howard Hughes Medical Institute, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365, USA
| |
Collapse
|
8
|
The combination of 4-anilinoquinazoline and cinnamic acid: A novel mode of binding to the epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem 2011; 19:5012-22. [DOI: 10.1016/j.bmc.2011.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 11/24/2022]
|
9
|
Gupta AK, Bhunia SS, Balaramnavar VM, Saxena AK. Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:239-263. [PMID: 21400356 DOI: 10.1080/1062936x.2010.548830] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A pharmacophore model has been developed using diverse classes of epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors useful in the treatment of human tumours. Among the top 10 generated hypotheses, the second hypothesis, with one hydrogen bond acceptor, one ring aromatic and three hydrophobic features, was found to be the best on the basis of Cat Scramble validation as well as test set prediction (r(training) = 0.89, r(test) = 0.82). The model also maps well to the external test set molecules as well as clinically active molecules and corroborates the docking studies. Finally, 10 hits were identified as potential leads after virtual screening of ZINC database for EGFR TK inhibition. The study may facilitate the designing and discovery of novel EGFR TK inhibitors.
Collapse
Affiliation(s)
- A K Gupta
- Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR, Lucknow, India
| | | | | | | |
Collapse
|
10
|
Backes AC, Müller G, Sennhenn PC. Design Principles of Deep Pocket-Targeting Protein Kinase Inhibitors. PROTEIN KINASES AS DRUG TARGETS 2011. [DOI: 10.1002/9783527633470.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Goettert M, Schattel V, Koch P, Merfort I, Laufer S. Biological Evaluation and Structural Determinants of p38α Mitogen-Activated-Protein Kinase and c-Jun-N-Terminal Kinase 3 Inhibition by Flavonoids. Chembiochem 2010; 11:2579-88. [DOI: 10.1002/cbic.201000487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
|
13
|
Backes AC, Zech B, Felber B, Klebl B, Müller G. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin Drug Discov 2008; 3:1409-25. [DOI: 10.1517/17460440802579975] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Laufer SA, Hauser DRJ, Domeyer DM, Kinkel K, Liedtke AJ. Design, Synthesis, and Biological Evaluation of Novel Tri- and Tetrasubstituted Imidazoles as Highly Potent and Specific ATP-Mimetic Inhibitors of p38 MAP Kinase: Focus on Optimized Interactions with the Enzyme’s Surface-Exposed Front Region. J Med Chem 2008; 51:4122-49. [DOI: 10.1021/jm701529q] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dominik R. J. Hauser
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - David M. Domeyer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Katrin Kinkel
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Andy J. Liedtke
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
15
|
Hennequin LFA, Ballard P, Boyle FT, Delouvrié B, Ellston RPA, Halsall CT, Harris CS, Hudson K, Kendrew J, Pease JE, Ross HS, Smith P, Vincent JL. Novel 4-anilinoquinazolines with C-6 carbon-linked side chains: synthesis and structure-activity relationship of a series of potent, orally active, EGF receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 2006; 16:2672-6. [PMID: 16516473 DOI: 10.1016/j.bmcl.2006.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/18/2022]
Abstract
The structure-activity relationship of a novel subseries of 4-anilinoquinazoline EGFR inhibitors substituted at the C-6 position with carbon-linked side chains has been investigated. This exploration has led to the discovery of novel aminomethyl carboxamides with good biological, pharmacokinetic and physical properties.
Collapse
Affiliation(s)
- Laurent F A Hennequin
- AstraZeneca, Centre de Recherches, Z.I. La Pompelle, B.P. 1050, Chemin de Vrilly, 51689 Reims, Cedex 2, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Combs AP, Yue EW, Bower M, Ala PJ, Wayland B, Douty B, Takvorian A, Polam P, Wasserman Z, Zhu W, Crawley ML, Pruitt J, Sparks R, Glass B, Modi D, McLaughlin E, Bostrom L, Li M, Galya L, Blom K, Hillman M, Gonneville L, Reid BG, Wei M, Becker-Pasha M, Klabe R, Huber R, Li Y, Hollis G, Burn TC, Wynn R, Liu P, Metcalf B. Structure-Based Design and Discovery of Protein Tyrosine Phosphatase Inhibitors Incorporating Novel Isothiazolidinone Heterocyclic Phosphotyrosine Mimetics. J Med Chem 2005; 48:6544-8. [PMID: 16220970 DOI: 10.1021/jm0504555] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure-based design led to the discovery of novel (S)-isothiazolidinone ((S)-IZD) heterocyclic phosphotyrosine (pTyr) mimetics that when incorporated into dipeptides are exceptionally potent, competitive, and reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). The crystal structure of PTP1B in complex with our most potent inhibitor 12 revealed that the (S)-IZD heterocycle interacts extensively with the phosphate binding loop precisely as designed in silico. Our data provide strong evidence that the (S)-IZD is the most potent pTyr mimetic reported to date.
Collapse
Affiliation(s)
- Andrew P Combs
- Discovery Chemistry, Incyte Corporation, Experimental Station, E336/132A, Route 141 and Henry Clay Road, Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Laufer SA, Domeyer DM, Scior TRF, Albrecht W, Hauser DRJ. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors. J Med Chem 2005; 48:710-22. [PMID: 15689155 DOI: 10.1021/jm0408767] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of ATP adenine, a series of adenine and purine derivatives was prepared and tested for their ability to inhibit a spectrum of disease-related kinases. There has been scant research investigating the potential of cosubstrate derived kinase inhibitors for other kinases than CDKs. Our inhibitor design combined the purine system from the original cosubstrate ATP and phenyl moieties in order to explore possible interactions with the different regions of the ATP binding site in several disease-related protein kinases. There have been a number of hits for the assayed substances, which led us to conclude that the spectrum of compounds may prove to be a valuable tool kit for the evaluation of bonding and selectivity patterns for a wide variety of kinases.
Collapse
Affiliation(s)
- Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
18
|
New retinoids and protein tyrosine kinase inhibitors for the treatment of disseminated cancer: selective induction of apoptosis in malignant cells. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.10.1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
|
20
|
|
21
|
|
22
|
Bridges AJ. Current progress towards the development of tyrosine kinase inhibitors as anticancer agents. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728214.3.1.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Strawn LM, Shawver LK. Tyrosine kinases in disease: overview of kinase inhibitors as therapeutic agents and current drugs in clinical trials. Expert Opin Investig Drugs 2005; 7:553-73. [PMID: 15991993 DOI: 10.1517/13543784.7.4.553] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tyrosine kinases, first described as oncogenes, have been shown to play a role in normal cellular processes. Aberrations in tyrosine kinase activity lead to disease states. For fifteen years it has been postulated that the inhibition of tyrosine kinases may have therapeutic utility and the design and testing of inhibitors have been major focuses of research and development in both academic institutions and pharmaceutical companies. While early research focused on developing chemical entities that mimic phosphotyrosine, later research has focused on developing competitive adenosine triphosphate (ATP) inhibitors with various levels of selectivity on kinase targets. This review focuses on a discussion of tyrosine kinases thought to be important in disease, including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial cell growth factor (VEGF), epidermal growth factor (EGF) receptors, HER-2 and Src. In addition, the classes of inhibitors designed to affect these targets and that have overcome research and development challenges and entered clinical trials are discussed. These include isoxazole, quinazoline, substituted pyrimidines and indolinone compounds, all of which are in clinical trials or near clinical development by SUGEN, Zeneca, Novartis, Pfizer and Parke-Davis. A summary of the chemistry and activity of these agents is provided.
Collapse
Affiliation(s)
- L M Strawn
- SUGEN, INC., 351 Galveston Drive, Redwood City, CA 94063, USA
| | | |
Collapse
|
24
|
Gill A, Cleasby A, Jhoti H. The Discovery of Novel Protein Kinase Inhibitors by Using Fragment-Based High-Throughput X-ray Crystallography. Chembiochem 2005; 6:506-12. [PMID: 15696598 DOI: 10.1002/cbic.200400188] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article describes the application of a high-throughput X-ray crystallographic fragment-based screening methodology to identify low-molecular-weight leads for structure-based optimisation into protein kinase inhibitors. The identification of two novel p38alpha MAP kinase inhibitors (with IC50=65 and 150 nM) starting from low-molecular-weight fragments is described.
Collapse
Affiliation(s)
- Adrian Gill
- Astex Technology, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK.
| | | | | |
Collapse
|
25
|
López-Prados J, Cuevas F, Reichardt NC, de Paz JL, Morales EQ, Martín-Lomas M. Design and synthesis of inositolphosphoglycan putative insulin mediators. Org Biomol Chem 2005; 3:764-86. [PMID: 15731862 DOI: 10.1039/b418041k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.
Collapse
Affiliation(s)
- Javier López-Prados
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio s/n, 41092, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Zhang YM, Cockerill S, Guntrip SB, Rusnak D, Smith K, Vanderwall D, Wood E, Lackey K. Synthesis and SAR of potent EGFR/erbB2 dual inhibitors. Bioorg Med Chem Lett 2004; 14:111-4. [PMID: 14684309 DOI: 10.1016/j.bmcl.2003.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A series of 6-alkoxy-4-anilinoquinazoline compounds was prepared and evaluated for in vitro inhibition of the erbB2 and EGFR kinase activity. The IC(50) values of the best compounds were below 0.10 uM. Further, several of these compounds inhibit the growth of erbB2 and EGFR over-expressing tumor cell lines at concentrations below 1 uM.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sims PA, Wong CF, McCammon JA. A computational model of binding thermodynamics: the design of cyclin-dependent kinase 2 inhibitors. J Med Chem 2003; 46:3314-25. [PMID: 12852762 DOI: 10.1021/jm0205043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclin-dependent protein kinases are important targets in drug discovery because of their role in cell cycle regulation. In this computational study, we have applied a continuum solvent model to study the interactions between cyclin-dependent kinase 2 (CDK2) and analogues of the clinically tested anticancer agent flavopiridol. The continuum solvent model uses Coulomb's law to account for direct electrostatic interactions, solves the Poisson equation to obtain the electrostatic contributions to solvation energy, and calculates scaled solvent-accessible surface area to account for hydrophobic interactions. The computed free energy of binding gauges the strength of protein-ligand interactions. Our model was first validated through a study on the binding of a number of flavopiridol derivatives to CDK2, and its ability to identify potent inhibitors was observed. The model was then used to aid in the design of novel CDK2 inhibitors with the aid of a computational sensitivity analysis. Some of these hypothetical structures could be significantly more potent than the lead compound flavopiridol. We applied two approaches to gain insights into designing selective inhibitors. One relied on the comparative analysis of the binding pocket for several hundred protein kinases to identify the parts of a lead compound whose modifications might lead to selective compounds. The other was based on building and using homology models for energy calculations. The homology models appear to be able to classify ligand potency into groups but cannot yet give reliable quantitative results.
Collapse
Affiliation(s)
- Peter A Sims
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0365, USA
| | | | | |
Collapse
|
28
|
Hou T, Zhu L, Chen L, Xu X. Mapping the binding site of a large set of quinazoline type EGF-R inhibitors using molecular field analyses and molecular docking studies. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2003; 43:273-87. [PMID: 12546563 DOI: 10.1021/ci025552a] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the current work, three-dimensional QSAR studies for one large set of quinazoline type epidermal growth factor receptor (EGF-R) inhibitors were conducted using two types of molecular field analysis techniques: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). These compounds belonging to six different structural classes were randomly divided into a training set of 122 compounds and a test set of 13 compounds. The statistical results showed that the 3D-QSAR models derived from CoMFA were superior to those generated from CoMSIA. The most optimal CoMFA model after region focusing bears significant cross-validated r(2)(cv) of 0.60 and conventional r(2) of 0.92. The predictive power of the best CoMFA model was further validated by the accurate estimation to these compounds in the external test set, and the mean agreement of experimental and predicted log(IC(50)) values of the inhibitors is 0.6 log unit. Separate CoMFA models were conducted to evaluate the influence of different partial charges (Gasteiger-Marsili, Gasteiger-Hückel, MMFF94, ESP-AM1, and MPA-AM1) on the statistical quality of the models. The resulting CoMFA field map provides information on the geometry of the binding site cavity and the relative weights of various properties in different site pockets for each of the substrates considered. Moreover, in the current work, we applied MD simulations combined with MM/PBSA (Molecular mechanics/Possion-Boltzmann Surface Area) to determine the correct binding mode of the best inhibitor for which no ligand-protein crystal structure was present. To proceed, we define the following procedure: three hundred picosecond molecular dynamics simulations were first performed for the four binding modes suggested by DOCK 4.0 and manual docking, and then MM/PBSA was carried out for the collected snapshots. The most favorable binding mode identified by MM/PBSA has a binding free energy about 10 kcal/mol more favorable than the second best one. The most favorable binding mode identified by MM/PBSA can give satisfactory explanation of the SAR data of the studied molecules and is in good agreement with the contour maps of CoMFA. The most favorable binding mode suggests that with the quinazoline-based inhibitor, the N3 atom is hydrogen-bonded to a water molecule which, in turn, interacts with Thr 766, not Thr 830 as proposed by Wissner et al. (J. Med. Chem. 2000, 43, 3244). The predicted complex structure of quinazoline type inhibitor with EGF-R as well as the pharmacophore mapping from CoMFA can interpret the structure activities of the inhibitors well and afford us important information for structure-based drug design.
Collapse
Affiliation(s)
- Tingjun Hou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | | | | | | |
Collapse
|
29
|
Peng T, Pei J, Zhou J. 3D-QSAR and receptor modeling of tyrosine kinase inhibitors with flexible atom receptor model (FLARM). JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2003; 43:298-303. [PMID: 12546565 DOI: 10.1021/ci0256034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A set of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors was investigated with the aim of developing 3D-QSAR models using the Flexible Atom Receptor Model (FLARM) method. Some 3D-QSAR models were built with high correlation coefficients, and the FLARM method predicted the biological activities of compounds in test set well. The FLARM method also gave the pseudoreceptor model, which indicates the possible interactions between the receptor and the ligand. The possible interactions include two hydrogen bonds, one hydrophobic interaction, and one sulfur-aromatic interaction, which are in accord with those in the pharmacophore model given by the scientists at Novartis. This shows that the FLARM method can bridge 3D-QSAR and receptor modeling in computer-aided drug design. Pharmacophore can be obtained according to these results, and 3D searching can then be done with databases to find the lead compound of EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Tao Peng
- Laboratory of Computer Chemistry (LCC), Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100080, People's Republic of China
| | | | | |
Collapse
|
30
|
Abstract
Protein kinases have a fundamental role in signal transduction pathways, and aberrant kinase activity has been observed in many diseases. In recent years, kinase inhibition has become a major area for therapeutic intervention and a variety of kinase inhibitor pharmacophores has been described. This review illustrates some of the efforts and results in the field of structure-based design of protein kinase inhibitors. The methods and results discussed here illustrate the power of structure-based design in lead discovery, for example via virtual screening and in guiding the optimization of the pharmacological properties of these molecules.
Collapse
Affiliation(s)
- Giovanna Scapin
- Merck Research Laboratories, PO Box 2000, RY50 105, Rahway, NJ 07065, USA.
| |
Collapse
|
31
|
Gould C, Wong CF. Designing specific protein kinase inhibitors: insights from computer simulations and comparative sequence/structure analysis. Pharmacol Ther 2002; 93:169-78. [PMID: 12191609 DOI: 10.1016/s0163-7258(02)00186-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinases are important targets for designing therapeutic drugs. We describe here a computational approach to extend the usefulness of a single protein-inhibitor structure in aiding the design of protein kinase inhibitors. This approach is based on using sensitivity analysis to identify the most significant functional groups of a lead compound in accounting for binding affinity and on using comparative sequence/structure analysis to examine whether these functional groups would present specificity. A sensitivity analysis study is similar to genetic or chemical modification experiments in which specific features of a lead compound are modified to examine whether they affect properties such as binding affinity. In this study, the binding affinity was estimated by using an implicit-solvent model in which the electrostatic contributions were obtained by solving the Poisson equation, and the hydrophobic effects were accounted for by using surface-area-dependent terms. The comparative sequence/structure analysis involves the study of the amino acid distributions of a large number of protein kinases (384 in this study) near the ligand-binding sites. This analysis provides useful guiding principles for designing specific inhibitors targeted towards a particular kinase. Here, we illustrate the utility of these computational approaches by applying them to identify the determinants of the recognition between the protein kinase A and two of its inhibitors. One inhibitor, balanol, binds to the ATP-binding pocket. The other, protein kinase inhibitor, binds to the substrate-binding site. These analyses have helped to construct pharmacophore models for mining new drug leads from small-molecule libraries and for suggesting how a lead compound or a peptide inhibitor may be modified to generate selective inhibitors.
Collapse
Affiliation(s)
- Christine Gould
- Department of Biology, Truman State University, Kirksville, MO 63501, USA
| | | |
Collapse
|
32
|
Affiliation(s)
- A J Bridges
- Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
33
|
Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Src inhibitors: genomics to therapeutics. Expert Opin Investig Drugs 2001; 10:1327-44. [PMID: 11772255 DOI: 10.1517/13543784.10.7.1327] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Following the milestone discoveries that identified Src as the first known protein tyrosine kinase and as a prototype oncogene, as well as Src transgenic studies to validate it as a promising therapeutic target for osteoporosis, intense efforts are being made to create Src inhibitor drugs. Drug discovery strategies focused on both the non-catalytic and catalytic domains of Src have successfully resulted in promising Src inhibitor lead compounds with potential therapeutic applications for osteoporosis, cancer, and other diseases. Some noteworthy examples of Src inhibitors are described, and their chemical diversity, structure-based design, and biological activities in vitro and in vivo are illustrated. The potency, selectivity, and in vivo efficacy of key Src inhibitors are being investigated in molecular, cellular and animal models. Consequently, Src inhibitor drug development is imminent, and current studies are well-poised to achieve the ultimate milestone of a Src inhibitor therapeutic.
Collapse
Affiliation(s)
- T Sawyer
- ARIAD Pharmaceuticals, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
34
|
Schroeder MC, Hamby JM, Connolly CJ, Grohar PJ, Winters RT, Barvian MR, Moore CW, Boushelle SL, Crean SM, Kraker AJ, Driscoll DL, Vincent PW, Elliott WL, Lu GH, Batley BL, Dahring TK, Major TC, Panek RL, Doherty AM, Showalter HD. Soluble 2-substituted aminopyrido[2,3-d]pyrimidin-7-yl ureas. Structure-activity relationships against selected tyrosine kinases and exploration of in vitro and in vivo anticancer activity. J Med Chem 2001; 44:1915-26. [PMID: 11384237 DOI: 10.1021/jm0004291] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In continuing our search for medicinal agents to treat proliferative diseases, we have discovered 2-substituted aminopyrido[2,3-d]pyrimidin-7-yl ureas as a novel class of soluble, potent, broadly active tyrosine kinase (TK) inhibitors. An efficient route was developed that enabled the synthesis of a wide variety of analogues with substitution on several positions of the template. From the lead structure 1, several series of analogues were made that examined the C-6 aryl substituent, a variety of water solublizing substitutents at the C-2 position, and urea or other acyl functionality at the N-7 position. Compounds of this series were competitive with ATP and displayed submicromolar to low nanomolar potency against a panel of TKs, including receptor (platelet-derived growth factor, PDGFr; fibroblast growth factor, FGFr;) and nonreceptor (c-Src) classes. Several of the most potent compounds displayed submicromolar inhibition of PDGF-mediated receptor autophosphorylation in rat aortic vascular smooth muscle cells and low micromolar inhibition of cellular growth in five human tumor cell lines. One of the more thoroughly evaluated members, 32, with IC50 values of 0.21 microM (PDGFr), 0.049 microM (bFGFr), and 0.018 microM (c-Src), was evaluated in in vivo studies against a panel of five human tumor xenografts, with known and/or inferred dependence on the EGFr, PDGFr, and c-Src TKs. Compound 32 produced a tumor growth delay of 14 days against the Colo-205 colon xenograft model.
Collapse
Affiliation(s)
- M C Schroeder
- Departments of Chemistry, Cancer Research, and Vascular and Cardiac Diseases, Pfizer Global Research & Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wong CF, Hünenberger PH, Akamine P, Narayana N, Diller T, McCammon JA, Taylor S, Xuong NH. Computational analysis of PKA-balanol interactions. J Med Chem 2001; 44:1530-9. [PMID: 11334563 DOI: 10.1021/jm000443d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinases are important targets for designing therapeutic drugs. This paper illustrates a computational approach to extend the usefulness of a single protein-inhibitor structure in aiding the design of protein kinase inhibitors. Using the complex structure of the catalytic subunit of PKA (cPKA) and balanol as a guide, we have analyzed and compared the distribution of amino acid types near the protein-ligand interface for nearly 400 kinases. This analysis has identified a number of sites that are more variable in amino acid types among the kinases analyzed, and these are useful sites to consider in designing specific protein kinase inhibitors. On the other hand, we have found kinases whose protein-ligand interfaces are similar to that of the cPKA-balanol complex and balanol can be a useful lead compound for developing effective inhibitors for these kinases. Generally, this approach can help us discover new drug targets for an existing class of compounds that have already been well characterized pharmacologically. The relative significance of the charge/polarity of residues at the protein-ligand interface has been quantified by carrying out computational sensitivity analysis in which the charge/polarity of an atom or functional group was turned off/on, and the resulting effects on binding affinity have been examined. The binding affinity was estimated by using an implicit-solvent model in which the electrostatic contributions were obtained by solving the Poisson equation and the hydrophobic effects were accounted for by using surface-area dependent terms. The same sensitivity analysis approach was applied to the ligand balanol to develop a pharmacophoric model for searching new drug leads from small-molecule libraries. To help evaluate the binding affinity of designed inhibitors before they are made, we have developed a semiempirical approach to improve the predictive reliability of the implicit-solvent binding model.
Collapse
Affiliation(s)
- C F Wong
- Department of Pharmacology, Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thacher SM, Vasudevan J, Tsang KY, Nagpal S, Chandraratna RA. New dermatological agents for the treatment of psoriasis. J Med Chem 2001; 44:281-97. [PMID: 11462969 DOI: 10.1021/jm0000214] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S M Thacher
- Department of Biology, Allergan Inc., Irvine, California 92623, USA
| | | | | | | | | |
Collapse
|
37
|
Damiens E. Molecular events that regulate cell proliferation: an approach for the development of new anticancer drugs. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:219-33. [PMID: 10740828 DOI: 10.1007/978-1-4615-4253-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer chemotherapy is the object of many fundamental and clinical researches. The development in molecular techniques and structural studies at the molecular level have led to the discovery of key proteins involved in the regulation of cell proliferation. This opened perspectives to characterize new anticancer drugs in order to reduce the limitations found with conventional drugs such as the lack of selectivity for cancer cells and resistance phenomena. This review presents the anticancer drugs in clinical investigations that target molecules involved in the signal transduction impairment, the cell cycle deregulation and the differentiation with comments on their mechanisms of action.
Collapse
Affiliation(s)
- E Damiens
- Laboratoire de Chimie Biologique, UMR n(o)111 du CNRS, Villeneuve d'Ascq, France
| |
Collapse
|
38
|
Shewchuk L, Hassell A, Wisely B, Rocque W, Holmes W, Veal J, Kuyper LF. Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. J Med Chem 2000; 43:133-8. [PMID: 10633045 DOI: 10.1021/jm990401t] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-Anilinoquinazolines represent an important class of protein kinase inhibitor. Modes of binding for two members of this inhibitor class were determined by X-ray crystallographic analysis of one inhibitor (4-[3-hydroxyanilino]-6,7-dimethoxyquinazoline) in complex with cyclin-dependent kinase 2 (CDK2) and the other (4-[3-methylsulfanylanilino]-6,7-dimethoxyquinazoline) in complex with p38 kinase. In both inhibitor/kinase structures, the 4-anilinoquinazoline was bound in the ATP site with the quinazoline ring system oriented along the peptide strand that links the two domains of the protein and with the anilino substituent projecting into a hydrophobic pocket within the protein interior. In each case, the nitrogen at position-1 of the quinazoline accepted a hydrogen bond from a backbone NH (CDK2, Leu-83; p38, Met-109) of the domain connector strand, and aromatic hydrogen atoms at C2 and C8 interacted with backbone carbonyl oxygen atoms of the peptide strand. The anilino group of the CDK2-bound compound was essentially coplanar with the quinazoline ring system and occupied a pocket between Lys-33 and Phe-80. For the p38-bound inhibitor, the anilino group was angled out of plane and was positioned between Lys-53 and Thr-106 in a manner similar to that observed for the aryl substituent of the pyridinylimidazole class of inhibitor.
Collapse
Affiliation(s)
- L Shewchuk
- Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Several tyrosine and serine/threonine protein kinases have emerged in the last few years as attractive targets in the search for new therapeutic agents being applicable in many different disease indications. Initially, inhibition of these protein kinases by ATP site-directed inhibitors was considered less prone to success, but medicinal chemists from both academia and industry have been able to impart potency and selectivity to a limited number of scaffolds by modulating and fine-tuning the interactions of the modified template with the ATP binding site of the selected kinase. The chemical templates that have been used in the synthesis of ATP site-directed protein kinase inhibitors are reviewed with emphasis on the kinase inhibitors that have entered or are about to enter clinical trials. Examples have been selected to illustrate how structure-based design approaches and new methods to increase compound diversity have had an impact on this area of research.
Collapse
|
40
|
Showalter HD, Bridges AJ, Zhou H, Sercel AD, McMichael A, Fry DW. Tyrosine kinase inhibitors. 16. 6,5,6-tricyclic benzothieno[3, 2-d]pyrimidines and pyrimido[5,4-b-] and -[4,5-b]ĭndoles as potent inhibitors of the epidermal growth factor receptor tyrosine kinase. J Med Chem 1999; 42:5464-74. [PMID: 10639288 DOI: 10.1021/jm9903949] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several elaborations of the fundamental anilinopyrimidine pharmacophore have been reported as potent and selective inhibitors of the epidermal growth factor receptor (EGFr) tyrosine kinase. This paper reports on a series of inhibitors whereby some 6,5-bicyclic heteroaromatic systems were fused through their C-2 and C-3 positions to this anilinopyrimidine pharmacophore. Although the resulting tricycles did not produce the enormous potency of some of the (5/6),6,6-bicyclic systems, the best of them had IC(50)s for the EGFr TK around 1 nM. Investigation of 4-position side chains in the indolopyrimidines confirmed that m-bromoaniline was an optimal substituent for potency. Investigation of substitution within the C-(benzo)ring of benzothienopyrimidines confirmed that introduction of an extra ring can change sharply the effects of substituents when compared to similar bicyclic nuclei, and only two substituents were found which even moderately enhanced inhibitory activity over the parent compound for this series.
Collapse
Affiliation(s)
- H D Showalter
- Department of Chemistry, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Smaill JB, Palmer BD, Rewcastle GW, Denny WA, McNamara DJ, Dobrusin EM, Bridges AJ, Zhou H, Showalter HD, Winters RT, Leopold WR, Fry DW, Nelson JM, Slintak V, Elliot WL, Roberts BJ, Vincent PW, Patmore SJ. Tyrosine kinase inhibitors. 15. 4-(Phenylamino)quinazoline and 4-(phenylamino)pyrido[d]pyrimidine acrylamides as irreversible inhibitors of the ATP binding site of the epidermal growth factor receptor. J Med Chem 1999; 42:1803-15. [PMID: 10346932 DOI: 10.1021/jm9806603] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 6- and 7-acrylamide derivatives of the 4-(phenylamino)quinazoline and -pyridopyrimidine classes of epidermal growth factor receptor (EGFR) inhibitors were prepared from the corresponding amino compounds by reaction with either acryloyl chloride/base or acrylic acid/1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. All of the 6-acrylamides, but only the parent quinazoline 7-acrylamide, were irreversible inhibitors of the isolated enzyme, confirming that the former are better-positioned, when bound to the enzyme, to react with the critical cysteine-773. Quinazoline, pyrido[3,4-d]pyrimidine, and pyrido[3,2-d]pyrimidine 6-acrylamides were all irreversible inhibitors and showed similar high potencies in the enzyme assay (likely due to titration of the available enzyme). However the pyrido[3,2-d]pyrimidine analogues were 2-6-fold less potent than the others in a cellular autophosphorylation assay for EGFR in A431 cells. The quinazolines were generally less potent overall toward inhibition of heregulin-stimulated autophosphorylation of erbB2 (in MDA-MB-453-cells), whereas the pyridopyrimidines were equipotent. Selected compounds were evaluated in A431 epidermoid and H125 non-small-cell lung cancer human tumor xenografts. The compounds showed better activity when given orally than intraperitoneally. All showed significant tumor growth inhibition (stasis) over a dose range. The poor aqueous solubility of the compounds was a drawback, requiring formulation as fine particulate emulsions.
Collapse
Affiliation(s)
- J B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Much effort has been expended in the search for inhibitors of signalling molecules that may prove to be important therapeutically in cancer. The epidermal growth factor receptor (EGFR) family and their associated ligands has been one such area extensively investigated. The complex nature of EGFR biology allows for potential opportunities for EGFR inhibitors in a number of areas of cancer therapy, including proliferative, angiogenic, invasive, and metastatic aspects. Much positive evidence of likely benefit has already been gathered from a multiplicity of laboratory experiments. Clinical trials are now urgently required to further evaluate the advantages of such agents.
Collapse
Affiliation(s)
- J R Woodburn
- Zeneca Pharmaceuticals, Macclesfield, Cheshire, UK
| |
Collapse
|
43
|
Hamby JM, Showalter HD. Small molecule inhibitors of tumor-promoted angiogenesis, including protein tyrosine kinase inhibitors. Pharmacol Ther 1999; 82:169-93. [PMID: 10454196 DOI: 10.1016/s0163-7258(98)00053-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiogenesis is an exciting and promising new area of research. The concept that tumor cells are absolutely dependent upon neovascularization to grow and metastasize has opened the door to a multitude of new approaches and targets for developing anticancer therapies. These potential new antiangiogenic therapies offer the possibility for improved efficacy and reduced toxicity relative to conventional cancer treatments without the possibility of drug resistance. In particular, reports of small molecule inhibitors of tumor-promoted angiogenesis are appearing ever more frequently in the scientific literature. For this reason, the major focus of this review will be to cover small molecule inhibitors of tumor-promoted angiogenesis. The present review concentrates on selected literature, principally from mid-1996 to mid-1998, where there are sufficient biological data to support claims of antiangiogenic activities by small molecules. In addition, a historical background is presented and some of the important issues related to this field are discussed within.
Collapse
Affiliation(s)
- J M Hamby
- Department of Chemistry, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Co., Ann Arbor, MI 48105, USA
| | | |
Collapse
|
44
|
Traxler P, Furet P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther 1999; 82:195-206. [PMID: 10454197 DOI: 10.1016/s0163-7258(98)00044-8] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein tyrosine kinases play a fundamental role in signal transduction pathways. Deregulated tyrosine kinase activity has been observed in many proliferative diseases (e.g., cancer, psoriasis, restenosis, etc.). Tyrosine kinases are, therefore, attractive targets for the design of new therapeutic agents against cancer. We have built up a pharmacophore model of the ATP-binding site of the epidermal growth factor receptor (EGFR) kinase and used it for the rational design of kinase inhibitors. Several examples of the successful use of this model are presented in this review. Amongst these, 4-substituted-pyrrolo[2,3-d]pyrimidines, a new class of highly potent and selective inhibitors of the EGFR kinase, have been identified and further optimized. The most active derivatives inhibited the EGFR tyrosine kinase with IC50 values between 1 and 5 nM. In EGF-dependent cellular systems, tyrosine phosphorylation, as well as c-fos mRNA expression, was inhibited with similar IC50 values. Further successful application of this pharmacophore model led to the identification and optimization of phenylamino-pyrazolo[4,3-d]pyrimidines and substituted isoflavones and quinolones, other classes of potent, selective, and ATP competitive EGFR kinase inhibitors with IC50 values in the low nanomolar range. Structure-activity relationships of both classes are discussed.
Collapse
Affiliation(s)
- P Traxler
- Novartis Pharmaceuticals, Therapeutic Area Oncology, Novartis Limited, Basel, Switzerland
| | | |
Collapse
|
45
|
Traxler P, Green J, Mett H, Séquin U, Furet P. Use of a pharmacophore model for the design of EGFR tyrosine kinase inhibitors: isoflavones and 3-phenyl-4(1H)-quinolones. J Med Chem 1999; 42:1018-26. [PMID: 10090785 DOI: 10.1021/jm980551o] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using a pharmacophore model for ATP-competitive inhibitors interacting with the active site of the EGFR protein tyrosine kinase together with published X-ray crystal data of quercetin (2) in complex with the Hck tyrosine kinase and of deschloroflavopiridol (3b) in complex with CDK2, a putative binding mode of the isoflavone genistein (1) was proposed. Then, based on literature data suggesting that a salicylic acid function, which is represented by the 5-hydroxy-4-keto motif in 1, could serve as a pharmacophore replacement of a pyrimidine ring, superposition of 1 onto the potent EGFR tyrosine kinase inhibitor 4-(3'-chlorophenylamino)-6, 7-dimethoxyquinazoline (4) led to 3'-chloro-5,7-dihydroxyisoflavone (6) as a target structure which in fact was 10 times more potent than 1. The putative binding mode of 6 suggests a sulfur-aromatic interaction of the m-chlorophenyl moiety with Cys 773 in the "sugar pocket" of the EGFR kinase model. Replacement of the oxygen in the chromenone ring of 6 by a nitrogen atom further improved the inhibitory activity against the EGFR kinase. With IC50 values of 38 and 8 nM, respectively, the quinolones 11 and 12 were the most potent compounds of the series. N-Alkylation of 11 did not further improve enzyme inhibitory activity but led to derivatives with cellular activity in the lower micromolar range.
Collapse
Affiliation(s)
- P Traxler
- NOVARTIS Pharmaceuticals, Therapeutic Area Oncology, NOVARTIS Limited, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Schoepfer J, Fretz H, Gay B, Furet P, García-Echeverría C, End N, Caravatti G. Highly potent inhibitors of the Grb2-SH2 domain. Bioorg Med Chem Lett 1999; 9:221-6. [PMID: 10021933 DOI: 10.1016/s0960-894x(98)00701-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Highly potent inhibitors of the Grb2-SH2 domain have been synthesized. They share the common sequence: Ac-Pmp-Ac6c-Asn-NH-(3-indolyl-propyl). Different substituents at the 3-indolyl-propylamine C-terminal group were explored to further improve the activity. This is the first example of inhibitors of SH2 domains with sub-nanomolar affinity reported to date.
Collapse
Affiliation(s)
- J Schoepfer
- Novartis Pharma Inc., Oncology Research Department, Basle, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Preparation of 4-(4'-Hydroxyanilino)-5-anilinophthalimide and 4,5-Bis-(4'-hydroxyanilino)-phthalimide by Microbial Hydroxylation. Biosci Biotechnol Biochem 1999; 63:1497-500. [PMID: 27389513 DOI: 10.1271/bbb.63.1497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A microbial screening indicated that two fungal strains, Beauveria bassiana DSM 1344=ATCC 7159 and Cunninghamella elegans DSM 1908=ATCC 9245, as well as four bacterial strains belonging to the genus Streptomyces were able to hydroxylate 4,5-dianilinophthalimide (DAPH, CGP52411) to 4-(4'-hydroxyanilino)-5-anilinophthalimide. Cunninghamella elegans DSM 1908 turned out to be the most active biocatalyst and was also able to form the dihydroxy derivative, 4,5-bis(4'-hydroxyanilino)phthalimide. The reaction for the monohydroxylated biotransformation product was carried out on a preparative scale, and the culture conditions for the formation of 4-(4'-hydroxy- anilino)-5-anilinophthalimide with this strain were op-timized.
Collapse
|
48
|
Boschelli DH, Wu Z, Klutchko SR, Showalter HD, Hamby JM, Lu GH, Major TC, Dahring TK, Batley B, Panek RL, Keiser J, Hartl BG, Kraker AJ, Klohs WD, Roberts BJ, Patmore S, Elliott WL, Steinkampf R, Bradford LA, Hallak H, Doherty AM. Synthesis and tyrosine kinase inhibitory activity of a series of 2-amino-8H-pyrido[2,3-d]pyrimidines: identification of potent, selective platelet-derived growth factor receptor tyrosine kinase inhibitors. J Med Chem 1998; 41:4365-77. [PMID: 9784112 DOI: 10.1021/jm980398y] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Screening of a compound library led to the identification of 2-amino-6-(2,6-dichlorophenyl)-8-methylpyrido[2,3-d]pyrimidine (1) as a inhibitor of the platelet-derived growth factor receptor (PDGFr), fibroblast growth factor receptor (FGFr), and c-src tyrosine kinases (TKs). Replacement of the primary amino group at C-2 of 1 with a 4-(N,N-diethylaminoethoxy)phenylamino group yielded 2a, which had greatly increased activity against all three TKs. In the present work, variation of the aromatic group at C-6 and of the alkyl group at N-8 of the pyrido[2,3-d]pyrimidine core provided several analogues that retained potency, including derivatives that were biased toward inhibition of the TK activity of PDGFr. Analogues of 2a with a 3-thiophene or an unsubstituted phenyl group at C-6 were the most potent inhibitors. Compound 54, which had IC50 values of 31, 88, and 31 nM against PDGFr, FGFr, and c-src TK activity, respectively, was active in a variety of PDGF-dependent cellular assays and blocked the in vivo growth of three PDGF-dependent tumor lines.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Biological Availability
- CSK Tyrosine-Protein Kinase
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Humans
- Male
- Mice
- Mice, Nude
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Phosphorylation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyridones/chemical synthesis
- Pyridones/chemistry
- Pyridones/pharmacokinetics
- Pyridones/pharmacology
- Pyrimidines/chemical synthesis
- Pyrimidines/chemistry
- Pyrimidines/pharmacokinetics
- Pyrimidines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/metabolism
- Structure-Activity Relationship
- Transplantation, Heterologous
- Tumor Cells, Cultured
- src-Family Kinases
Collapse
Affiliation(s)
- D H Boschelli
- Departments of Medicinal Chemistry, Cancer Research, Vascular, Cardiac Diseases, Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Boschelli DH, Wu Z, Klutchko SR, Showalter HDH, Hamby JM, Lu GH, Major TC, Dahring TK, Batley B, Panek RL, Keiser J, Hartl BG, Kraker AJ, Klohs WD, Roberts BJ, Patmore S, Elliott WL, Steinkampf R, Bradford LA, Hallak H, Doherty AM. Synthesis and Tyrosine Kinase Inhibitory Activity of a Series of 2-Amino-8 H-pyrido[2,3- d]pyrimidines: Identification of Potent, Selective Platelet-Derived Growth Factor Receptor Tyrosine Kinase Inhibitors. J Med Chem 1998. [DOI: 10.1021/jm980398y 50022-2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Diane H. Boschelli
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Zhipei Wu
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Sylvester R. Klutchko
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - H. D. Hollis Showalter
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - James M. Hamby
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Gina H. Lu
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Terry C. Major
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Tawny K. Dahring
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Brian Batley
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Robert L. Panek
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Joan Keiser
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Brian G. Hartl
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Alan J. Kraker
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Wayne D. Klohs
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Bill J. Roberts
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Sandra Patmore
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - William L. Elliott
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Randy Steinkampf
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Laura A. Bradford
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Hussein Hallak
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| | - Annette M. Doherty
- Departments of Medicinal Chemistry, Cancer Research, Vascular and Cardiac Diseases, and Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105
| |
Collapse
|
50
|
Bullington JL, Cameron JC, Davis JE, Dodd JH, Harris CA, Henry JR, Pellegrino-Gensey JL, Rupert KC, Siekierka JJ. The development of novel and selective p56lck tyrosine kinase inhibitors. Bioorg Med Chem Lett 1998; 8:2489-94. [PMID: 9873567 DOI: 10.1016/s0960-894x(98)00445-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Early T-cell receptor mediated signal transduction involves the activation of several tyrosine protein kinases. One of these tyrosine kinases, p56lck, is expressed primarily in T-cells and Natural Killer (NK) cells and has been shown to be critical for their proliferative and effector functions. Indandiones have been identified as a potent and selective chemical class that inhibits p56lck.
Collapse
Affiliation(s)
- J L Bullington
- R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ 08869, USA
| | | | | | | | | | | | | | | | | |
Collapse
|