1
|
Zhang Y, Xu S, Jiang F, Hu M, Han Y, Wang Y, Liu Z. A comprehensive insight into the role of molecular pathways affected by the Angiopoietin and Tie system involved in hematological malignancies' pathogenesis. Pathol Res Pract 2023; 248:154677. [PMID: 37467636 DOI: 10.1016/j.prp.2023.154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Angiogenesis has been recognized as a critical factor in developing solid tumors and hematological malignancies. How angiogenesis affects the molecular pathways in malignancies is still a mystery. The angiopoietin family, one of the known molecular mediators for angiogenesis, encourages angiogenesis by attaching to Tie receptors on cell surfaces. Angiopoietin, Tie, and particularly the molecular pathways they mediate have all been the subject of recent studies that have established their diagnostic, prognostic, and therapeutic potential. Here, we've reviewed the function of molecular pathways impacted by the Angiogenin and Tie system in hematological malignancies.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
2
|
Zaka Khosravi S, Molaei Ramshe S, Allahbakhshian Farsani M, Moonesi M, Marofi F, Hagh MF. An overview of the molecular and clinical significance of the angiopoietin system in leukemia. J Recept Signal Transduct Res 2023:1-12. [PMID: 37186553 DOI: 10.1080/10799893.2023.2204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The angiogenesis efficacy in solid tumors and hematological malignancies has been identified for more than twenty years. Although the exact role of angiogenesis in leukemia as a common hematological malignancy has not yet been extensively studied, its effect is demonstrated on the initiation and maintenance of a favorable microenvironment for leukemia cell proliferation. The angiopoietin family is a defined molecular mediator for angiogenesis, which contributes to vascular permeability and angiogenesis initiation. They participate in the angiogenesis process by binding to tyrosine kinase receptors (Tie) on endothelial cells. Considering the role of angiogenesis in leukemia development and the crucial effects of the Ang-Tie system in angiogenesis regulation, many studies have focused on the correlation between the Ang-Tie system and leukemia diagnosis, monitoring, and treatment. In this study, we reviewed the Ang-Tie system's potential diagnostic and therapeutic effects in different types of leukemia in the gene expression level analysis approach. The angiopoietin family context-dependent manner prevents us from defining its actual function in leukemia, emphasizing the need for more comprehensive studies.
Collapse
Affiliation(s)
- Saeed Zaka Khosravi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Molaei Ramshe
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mehdi Allahbakhshian Farsani
- Department of Laboratory Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Moonesi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
4
|
Chen Y, Li J, Xu L, Găman MA, Zou Z. The genesis and evolution of acute myeloid leukemia stem cells in the microenvironment: From biology to therapeutic targeting. Cell Death Discov 2022; 8:397. [PMID: 36163119 PMCID: PMC9513079 DOI: 10.1038/s41420-022-01193-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by cytogenetic and genomic alterations. Up to now, combination chemotherapy remains the standard treatment for leukemia. However, many individuals diagnosed with AML develop chemotherapeutic resistance and relapse. Recently, it has been pointed out that leukemic stem cells (LSCs) are the fundamental cause of drug resistance and AML relapse. LSCs only account for a small subpopulation of all leukemic cells, but possess stem cell properties, including a self-renewal capacity and a multi-directional differentiation potential. LSCs reside in a mostly quiescent state and are insensitive to chemotherapeutic agents. When LSCs reside in a bone marrow microenvironment (BMM) favorable to their survival, they engage into a steady, continuous clonal evolution to better adapt to the action of chemotherapy. Most chemotherapeutic drugs can only eliminate LSC-derived clones, reducing the number of leukemic cells in the BM to a normal range in order to achieve complete remission (CR). LSCs hidden in the BM niche can hardly be targeted or eradicated, leading to drug resistance and AML relapse. Understanding the relationship between LSCs, the BMM, and the generation and evolution laws of LSCs can facilitate the development of effective therapeutic targets and increase the efficiency of LSCs elimination in AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 545005, China.
| |
Collapse
|
5
|
Reikvam H, Hatfield KJ, Wendelbo Ø, Lindås R, Lassalle P, Bruserud Ø. Endocan in Acute Leukemia: Current Knowledge and Future Perspectives. Biomolecules 2022; 12:biom12040492. [PMID: 35454082 PMCID: PMC9027427 DOI: 10.3390/biom12040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Endocan is a soluble dermatan sulfate proteoglycan expressed by endothelial cells and detected in serum/plasma. Its expression is increased in tumors/tumor vessels in several human malignancies, and high expression (high serum/plasma levels or tumor levels) has an adverse prognostic impact in several malignancies. The p14 endocan degradation product can also be detected in serum/plasma, but previous clinical studies as well as previously unpublished results presented in this review suggest that endocan and p14 endocan fragment levels reflect different biological characteristics, and the endocan levels seem to reflect the disease heterogeneity in acute leukemia better than the p14 fragment levels. Furthermore, decreased systemic endocan levels in previously immunocompetent sepsis patients are associated with later severe respiratory complications, but it is not known whether this is true also for immunocompromised acute leukemia patients. Finally, endocan is associated with increased early nonrelapse mortality in (acute leukemia) patients receiving allogeneic stem cell transplantation, and this adverse prognostic impact seems to be independent of the adverse impact of excessive fluid overload. Systemic endocan levels may also become important to predict cytokine release syndrome after immunotherapy/haploidentical transplantation, and in the long-term follow-up of acute leukemia survivors with regard to cardiovascular risk. Therapeutic targeting of endocan is now possible, and the possible role of endocan in acute leukemia should be further investigated to clarify whether the therapeutic strategy should also be considered.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (Ø.W.); (R.L.)
| | - Kimberley Joanne Hatfield
- Department of Transfusion Medicine and Immunology, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Øystein Wendelbo
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (Ø.W.); (R.L.)
| | - Roald Lindås
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (Ø.W.); (R.L.)
| | - Philippe Lassalle
- Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019-UMR9017, University of Lille, 59000 Lille, France;
- Center for Infection and Immunity, le Centre Nationale de la Recherche Scientifique, Univeristy of Lille, 59000 Lille, France
- Centre d’Infection et d’Immunité de Lille, Equipe Immunité Pulmonaire, University of Lille, 59000 Lille, France
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (Ø.W.); (R.L.)
- Correspondence:
| |
Collapse
|
6
|
Tosato G, Feng JX, Ohnuki H, Sim M. Bone marrow niches in myelodysplastic syndromes. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34746416 PMCID: PMC8570581 DOI: 10.20517/2394-4722.2021.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic and epigenetic lesions within hematopoietic cell populations drive diverse hematological malignancies. Myelodysplastic syndromes (MDS) are a group of myeloid neoplasms affecting the hematopoietic stem cells characterized by recurrent genetic abnormalities, myelodysplasia (a pathological definition of abnormal bone marrow structure), ineffective hematopoiesis resulting in blood cytopenia, and a propensity to evolve into acute myelogenous leukemia. Although there is evidence that the accumulation of a set of genetic mutations is an essential event in MDS, there is an increased appreciation of the contribution of specific microenvironments, niches, in the pathogenesis of MDS and response to treatment. In physiologic hematopoiesis, niches are critical functional units that maintain hematopoietic stem and progenitor cells and regulate their maturation into mature blood cells. In MDS and other hematological malignancies, altered bone marrow niches can promote the survival and expansion of mutant hematopoietic clones and provide a shield from therapy. In this review, we focus on our understanding of the composition and function of hematopoietic niches and their role in the evolution of myeloid malignancies, with an emphasis on MDS.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jing-Xin Feng
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Minji Sim
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Mosteo L, Storer J, Batta K, Searle EJ, Duarte D, Wiseman DH. The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Front Cell Dev Biol 2021; 9:635189. [PMID: 33777944 PMCID: PMC7991089 DOI: 10.3389/fcell.2021.635189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.
Collapse
Affiliation(s)
- Laura Mosteo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Joanna Storer
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Kiran Batta
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Emma J Searle
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.,Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
8
|
Yuan Q, Wang JX, Li RL, Jia ZZ, Wang SX, Guo H, Chai LJ, Hu LM. Effects of salvianolate lyophilized injection combined with Xueshuantong injection in regulation of BBB function in a co-culture model of endothelial cells and pericytes. Brain Res 2020; 1751:147185. [PMID: 33129805 DOI: 10.1016/j.brainres.2020.147185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The combined use of two or more different drugs can better promote nerve recovery and its prognosis for treatment of stroke. The salvianolate lyophilized injection (SLI) and Xueshuantong Injection (XST) are two standardized Chinese medicine injections which have been widely used in the treatment of cerebrovascular diseases. Salvianolic acid B (Sal B) and Notoginsenoside R1 (NR1) is respectively one of the active constituents of SLI and XST, which have certain effects on stroke. In this study, we established a co-culture of endothelial cells and pericytes for oxygen-glucose deprivation/reperfusion (OGD/R) injury model to study the effects of SLI and Sal B or XST and NR1 alone, or with their combinations (1S1X) in regulation of BBB function. The results showed that compared with the OGD/R group, treatment with SLI, XST and SalB and NR1 can significantly increase the TEER, reduce the permeability of Na-Flu, enhance the expression of tight junctions (TJs) between cells, and stabilize the basement membrane (BM) composition. In addition, the combination of 1S1X is superior to the XST or SLI alone in enhancing the TJs between cells and stabilizing the BM. And the active components SalB and NR1 can play a strong role in these two aspects, even with the whole effects. Furthermore, the study showed that XST, Sal B and NR1 increases in Ang-1and Tie2, while decrease in Ang-2 and VEGF protein expressions. Overall, these findings suggest that SLI combined with XST (1X1S) has protective effects on co-culture of endothelial cells and pericytes after OGD/R. Moreover, its protective effect might be associated with increase of TJs and BMs through activation of Ang/Tie-2 system signaling pathway.
Collapse
Affiliation(s)
- Qing Yuan
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin-Xin Wang
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Zhuang-Zhuang Jia
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shao-Xia Wang
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Guo
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-Juan Chai
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Li-Min Hu
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Reikvam H. Inhibition of NF-κB Signaling Alters Acute Myelogenous Leukemia Cell Transcriptomics. Cells 2020; 9:E1677. [PMID: 32664684 PMCID: PMC7408594 DOI: 10.3390/cells9071677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myelogenous leukemia (AML) is an aggressive hematological malignancy. The pathophysiology of the disease depends on cytogenetic abnormalities, gene mutations, aberrant gene expressions, and altered epigenetic regulation. Although new pharmacological agents have emerged during the last years, the prognosis is still dismal and new therapeutic strategies are needed. The transcription factor nuclear factor-κB (NF-κB) is regarded a possible therapeutic target. In this study, we investigated the alterations in the global gene expression profile (GEP) in primary AML cells derived from 16 consecutive patients after exposure to the NF-κB inhibitor BMS-345541. We identified a profound and highly discriminative transcriptomic profile associated with NF-κB inhibition. Bioinformatical analyses identified cytokine/interleukin signaling, metabolic regulation, and nucleic acid binding/transcription among the major biological functions influenced by NF-κB inhibition. Furthermore, several key genes involved in leukemogenesis, among them RUNX1 and CEBPA, in addition to NFKB1 itself, were influenced by NF-κB inhibition. Finally, we identified a significant impact of NF-κB inhibition on the expression of genes included in a leukemic stem cell (LSC) signature, indicating possible targeting of LSCs. We conclude that NF-κB inhibition significantly altered the expression of genes central to the leukemic process.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- Down-Regulation/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Ontology
- Gene Regulatory Networks
- Genes, Neoplasm
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- NF-kappa B/metabolism
- Signal Transduction
- Transcriptome/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Håkon Reikvam
- Institute of Clinical Science, University of Bergen, 5020 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
10
|
Aasebø E, Berven FS, Hovland R, Døskeland SO, Bruserud Ø, Selheim F, Hernandez-Valladares M. The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles. Cancers (Basel) 2020; 12:cancers12061466. [PMID: 32512867 PMCID: PMC7352627 DOI: 10.3390/cancers12061466] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of the patients who receive the most intensive treatment develop chemoresistant leukemia relapse. Although the leukemogenic events leading to relapse seem to differ between patients (i.e., regrowth from a clone detected at first diagnosis, progression from the original leukemic or preleukemic stem cells), a common characteristic of relapsed AML is increased chemoresistance. The aim of the present study was to investigate at the proteomic level whether leukemic cells from relapsed patients present overlapping molecular mechanisms that contribute to this chemoresistance. We used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to compare the proteomic and phosphoproteomic profiles of AML cells derived from seven patients at the time of first diagnosis and at first relapse. At the time of first relapse, AML cells were characterized by increased levels of proteins important for various mitochondrial functions, such as mitochondrial ribosomal subunit proteins (MRPL21, MRPS37) and proteins for RNA processing (DHX37, RNA helicase; RPP40, ribonuclease P component), DNA repair (ERCC3, DNA repair factor IIH helicase; GTF2F1, general transcription factor), and cyclin-dependent kinase (CDK) activity. The levels of several cytoskeletal proteins (MYH14/MYL6/MYL12A, myosin chains; VCL, vinculin) as well as of proteins involved in vesicular trafficking/secretion and cell adhesion (ITGAX, integrin alpha-X; CD36, platelet glycoprotein 4; SLC2A3, solute carrier family 2) were decreased in relapsed cells. Our study introduces new targetable proteins that might direct therapeutic strategies to decrease chemoresistance in relapsed AML.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (Ø.B.)
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
| | - Frode S. Berven
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Randi Hovland
- Department for Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | | | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (Ø.B.)
| | - Frode Selheim
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (Ø.B.)
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- Correspondence: ; Tel.: +47-5558-6368
| |
Collapse
|
11
|
Houshmand M, Blanco TM, Circosta P, Yazdi N, Kazemi A, Saglio G, Zarif MN. Bone marrow microenvironment: The guardian of leukemia stem cells. World J Stem Cells 2019; 11:476-490. [PMID: 31523368 PMCID: PMC6716085 DOI: 10.4252/wjsc.v11.i8.476] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease. Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.
Collapse
Affiliation(s)
- Mohammad Houshmand
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Teresa Mortera Blanco
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm 14183, Sweden
| | - Paola Circosta
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Narjes Yazdi
- Department of Molecular Genetics, Tehran Medical Branch, Islamic Azad University, Tehran 1916893813, Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran 146651157, Iran
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm 14183, Sweden
| |
Collapse
|
12
|
Wang A, Zhong H. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia. ACTA ACUST UNITED AC 2018; 23:729-739. [PMID: 29902132 DOI: 10.1080/10245332.2018.1486064] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To summarize the effects of the bone marrow niche on hematopoiesis and leukemogenesis and discuss the chemotherapy resistance that can arise from interactions between the niche and leukemia stem cells. METHODS We review the major roles of the bone marrow niche in cell proliferation, adhesion and drug resistance. The signaling pathways and major molecular participants in the niche are discussed. We also address potential niche-targeting strategies for the treatment of acute myeloid leukemia (AML). RESULTS The bone marrow niche supports normal hematopoiesis and affects acute myeloid leukemia (AML) initiation, progression and chemotherapy resistance. DISCUSSION AML is a group of heterogeneous malignant diseases characterized by the excessive proliferation of hematopoietic stem and/or progenitor cells. Even with intensive chemotherapy regimens and stem cell transplantation, the overall survival rate for AML is poor. The bone marrow niches of malignant cells are remodeled into a leukemia-permissive environment, and these reformed niches protect AML cells from chemotherapy-induced cell death. Inhibiting the cellular and molecular interactions between the niche and leukemia cells is a promising direction for targeted therapies for AML treatment. CONCLUSIONS Interactions between leukemia cells and the bone marrow niche influence hematopoiesis, leukemogenesis, and chemotherapy resistance in AML and require ongoing study. Understanding the mechanisms that underlie these interactions will help identify rational niche-targeting therapies to improve treatment outcomes in AML patients.
Collapse
Affiliation(s)
- Andi Wang
- a Department of Hematology , South Campus Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hua Zhong
- a Department of Hematology , South Campus Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
13
|
Hira VVV, Van Noorden CJF, Carraway HE, Maciejewski JP, Molenaar RJ. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches. Biochim Biophys Acta Rev Cancer 2017; 1868:183-198. [PMID: 28363872 DOI: 10.1016/j.bbcan.2017.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Cornelis J F Van Noorden
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Hetty E Carraway
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Leukemia Program, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Remco J Molenaar
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Blix ES, Husebekk A. Raiders of the lost mark - endothelial cells and their role in transplantation for hematologic malignancies. Leuk Lymphoma 2016; 57:2752-2762. [PMID: 27396981 DOI: 10.1080/10428194.2016.1201566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endothelial cells (EC) are crucial for normal angiogenesis and important for patients with leukemia, myeloma, and lymphoma during and after hematopoietic stem cell transplantation (HSCT). Knowledge of endothelial dysfunction in hematologic malignancies is provided by translational studies analyzing soluble endothelial markers, morphologic and functional changes of EC cultured in patients' sera or enumeration of circulating EC or endothelial progenitor cells (EPC). EC are important for stem cell homing and maintenance. Endothelial activation or damage is a central component in the pathogenesis of several complications after HSCT, like acute and chronic graft-versus-host disease, sinusoidal obstruction syndrome, capillary leak syndrome, engraftment syndrome, diffuse alveolar syndrome, idiopathic pneumonia syndrome, and transplant-associated microangiopathy. Finally, EC or EPC may facilitate tumor cell survival thus representing potential factors for both disease progression and relapse in hematologic malignancies.
Collapse
Affiliation(s)
- Egil S Blix
- a Immunology Research Group, Institute of Medical Biology , UiT the Arctic University of Norway , Tromsø , Norway.,b Department of Oncology , University Hospital of North Norway , Tromsø , Norway
| | - Anne Husebekk
- a Immunology Research Group, Institute of Medical Biology , UiT the Arctic University of Norway , Tromsø , Norway
| |
Collapse
|
15
|
Pizzo RJ, Azadniv M, Guo N, Acklin J, Lacagnina K, Coppage M, Liesveld JL. Phenotypic, genotypic, and functional characterization of normal and acute myeloid leukemia-derived marrow endothelial cells. Exp Hematol 2016; 44:378-89. [DOI: 10.1016/j.exphem.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 11/30/2022]
|
16
|
The role of microenvironment and immunity in drug response in leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:414-426. [DOI: 10.1016/j.bbamcr.2015.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/13/2015] [Accepted: 08/01/2015] [Indexed: 12/22/2022]
|
17
|
Shirzad R, Shahrabi S, Ahmadzadeh A, Kampen KR, Shahjahani M, Saki N. Signaling and molecular basis of bone marrow niche angiogenesis in leukemia. Clin Transl Oncol 2016; 18:957-71. [PMID: 26742939 DOI: 10.1007/s12094-015-1477-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Angiogenesis, the process of blood vessel formation, is necessary for tissue survival in normal and pathologic conditions. Increased angiogenesis in BM niche is correlated with leukemia progression and resistance to treatment. Angiogenesis can interfere with disease progression and several angiogenic (such as vascular growth factors) as well as anti-angiogenic factors (i.e. angiostatin) can affect angiogenesis. Furthermore, miRs can affect the angiogenic process by inhibiting angiogenesis or increasing the expression of growth factors. Given the importance of angiogenesis in BM for maintenance of leukemic clones, recognition of angiogenic and anti-angiogenic factors and miRs as well as drug resistance mechanisms of leukemic blasts can improve the therapeutic strategies. We highlight the changes in angiogenic balance within the BM niche in different leukemia types. Moreover, we explored the pathways leading to drug resistance in relation to angiogenesis and attempted to assign interesting candidates for future research.
Collapse
Affiliation(s)
- R Shirzad
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - A Ahmadzadeh
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - K R Kampen
- Department of Pediatric Oncology/Hematology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Shahjahani
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - N Saki
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Cogle CR, Bosse RC, Brewer T, Migdady Y, Shirzad R, Kampen KR, Saki N. Acute myeloid leukemia in the vascular niche. Cancer Lett 2015; 380:552-560. [PMID: 25963886 DOI: 10.1016/j.canlet.2015.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
The greatest challenge in treating acute myeloid leukemia (AML) is refractory disease. With approximately 60-80% of AML patients dying of relapsed disease, there is an urgent need to define and target mechanisms of drug resistance. Unfortunately, targeting cell-intrinsic resistance has failed to improve clinical outcomes in AML. Emerging data show that cell-extrinsic factors in the bone marrow microenvironment protect and support AML cells. The vascular niche, in particular, regulates AML cell survival and cell cycling by both paracrine secretion and adhesive contact with endothelial cells. Moreover, AML cells can functionally integrate within vascular endothelia, undergo quiescence, and resist cytotoxic chemotherapy. Together, these findings support the notion of blood vessels as sanctuary sites for AML. Therefore, vascular targeting agents may serve to remit AML. Several early phase clinical trials have tested anti-angiogenic agents, leukemia mobilizing agents, and vascular disrupting agents in AML patients. In general, these agents can be safely administered to AML patients and cardiovascular side effects were reported. Response rates to vascular targeting agents in AML have been modest; however, a majority of vascular targeting trials in AML are monotherapy in design and indiscriminate in patient recruitment. When considering the chemosensitizing effects of targeting the microenvironment, there is a strong rationale to build upon these early phase clinical trials and initiate phase IB/II trials of combination therapy where vascular targeting agents are positioned as priming agents for cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Raphael C Bosse
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Takae Brewer
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yazan Migdady
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Reza Shirzad
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kim Rosalie Kampen
- Department of Pediatric Oncology/Hematology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Najmaldin Saki
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Reikvam H, Hoang TTV, Bruserud Ø. Emerging therapeutic targets in human acute myeloid leukemia (part 2) – bromodomain inhibition should be considered as a possible strategy for various patient subsets. Expert Rev Hematol 2015; 8:315-27. [DOI: 10.1586/17474086.2015.1036025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Reikvam H, Hauge M, Brenner AK, Hatfield KJ, Bruserud Ø. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication. Expert Rev Hematol 2015; 8:299-313. [PMID: 25835070 DOI: 10.1586/17474086.2015.1032935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
21
|
Piesche M, Ho VT, Kim H, Nakazaki Y, Nehil M, Yaghi NK, Kolodin D, Weiser J, Altevogt P, Kiefel H, Alyea EP, Antin JH, Cutler C, Koreth J, Canning C, Ritz J, Soiffer RJ, Dranoff G. Angiogenic cytokines are antibody targets during graft-versus-leukemia reactions. Clin Cancer Res 2015; 21:1010-8. [PMID: 25538258 PMCID: PMC4348150 DOI: 10.1158/1078-0432.ccr-14-1956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The graft-versus-leukemia (GVL) reaction is an important example of immune-mediated tumor destruction. A coordinated humoral and cellular response accomplishes leukemia cell killing, but the specific targets remain largely uncharacterized. To learn more about the antigens that elicit antibodies during GVL reactions, we analyzed patients with advanced myelodysplasia (MDS) and acute myelogenous leukemia (AML) who received an autologous, granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell vaccine early after allogeneic hematopoietic stem cell transplantation (HSCT). EXPERIMENTAL DESIGN A combination of tumor-derived cDNA expression library screening, protein microarrays, and antigen-specific ELISAs were used to characterize sera obtained longitudinally from 15 patients with AML/MDS who were vaccinated early after allogeneic HSCT. RESULTS A broad, therapy-induced antibody response was uncovered, which primarily targeted intracellular proteins that function in growth, transcription/translation, metabolism, and homeostasis. Unexpectedly, antibodies were also elicited against eight secreted angiogenic cytokines that play critical roles in leukemogenesis. Antibodies to the angiogenic cytokines were evident early after therapy, and in some patients manifested a diversification in reactivity over time. Patients that developed antibodies to multiple angiogenic cytokines showed prolonged remission and survival. CONCLUSIONS These results reveal a potent humoral response during GVL reactions induced with vaccination early after allogeneic HSCT and raise the possibility that antibodies, in conjunction with natural killer cells and T lymphocytes, may contribute to immune-mediated control of myeloid leukemias.
Collapse
Affiliation(s)
- Matthias Piesche
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vincent T Ho
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Haesook Kim
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Yukoh Nakazaki
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Nehil
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nasser K Yaghi
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dmitriy Kolodin
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Jeremy Weiser
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peter Altevogt
- Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Helena Kiefel
- Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Edwin P Alyea
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph H Antin
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Corey Cutler
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John Koreth
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christine Canning
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert J Soiffer
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Glenn Dranoff
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
22
|
Reikvam H, Nepstad I, Bruserud Ø, Hatfield KJ. Pharmacological targeting of the PI3K/mTOR pathway alters the release of angioregulatory mediators both from primary human acute myeloid leukemia cells and their neighboring stromal cells. Oncotarget 2014; 4:830-43. [PMID: 23919981 PMCID: PMC3757241 DOI: 10.18632/oncotarget.971] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects.
Collapse
Affiliation(s)
- Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | | | | | | |
Collapse
|
23
|
Fan AC, O'Rourke JJ, Praharaj DR, Felsher DW. Real-time nanoscale proteomic analysis of the novel multi-kinase pathway inhibitor rigosertib to measure the response to treatment of cancer. Expert Opin Investig Drugs 2013; 22:1495-509. [PMID: 23937225 DOI: 10.1517/13543784.2013.829453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rigosertib (ON01910.Na), is a targeted therapeutic that inhibits multiple kinases, including PI3K and PIk-1. Rigosertib has been found to induce the proliferative arrest and apoptosis of myeloblasts but not of other normal hematopoietic cells. Rigosertib has significant clinical activity as a therapy for patients with high-risk myelodysplastic syndrome who are otherwise refractory to DNA methyltransferase inhibitors. Moreover, rigosertib has potential clinical activity in a multitude of solid tumors. AREAS COVERED The objective of this review is to evaluate the mechanism of activity, efficacy and dosing of rigosertib. Furthermore, the challenge in the clinical development of rigosertib, to identify the specific patients that are most likely to benefit from this therapeutic agent, is discussed. A PubMed search was performed using the following key words: rigosertib and ON01910.Na. EXPERT OPINION We describe the application of a novel nanoscale proteomic assay, the nanoimmunoassay, a tractable approach for measuring the activity and predicting the efficacy of rigosertib, in real-time, using limited human clinical specimens. Our strategy suggests a possible paradigm where proteomic analysis during the pre-clinical and clinical development of a therapy can be used to uncover biomarkers for the analysis and prediction of efficacy in human patients.
Collapse
Affiliation(s)
- Alice C Fan
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology , Stanford, CA , USA
| | | | | | | |
Collapse
|
24
|
Ribatti D. Angiogenesis as a treatment target in leukemia. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The importance of angiogenesis in the growth and survival of leukemia has been well established and confirmed by several studies. In the last 20 years, several antiangiogenic agents have been used in preclinical and clinical studies of the treatment of leukemia. This review article summarizes the literature focusing on the relationship between angiogenesis and disease progression, and the advantages and limits of the antiangiogenic treatment of leukemia.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neuroscience, & Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
25
|
The snake venom rhodocytin from Calloselasma rhodostoma- a clinically important toxin and a useful experimental tool for studies of C-type lectin-like receptor 2 (CLEC-2). Toxins (Basel) 2013; 5:665-74. [PMID: 23594438 PMCID: PMC3705285 DOI: 10.3390/toxins5040665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/01/2013] [Accepted: 04/07/2013] [Indexed: 12/21/2022] Open
Abstract
The snake venom, rhodocytin, from the Malayan viper, Calloselasma rhodostoma, and the endogenous podoplanin are identified as ligands for the C-type lectin-like receptor 2 (CLEC-2). The snakebites caused by Calloselasma rhodostoma cause a local reaction with swelling, bleeding and eventually necrosis, together with a systemic effect on blood coagulation with distant bleedings that can occur in many different organs. This clinical picture suggests that toxins in the venom have effects on endothelial cells and vessel permeability, extravasation and, possibly, activation of immunocompetent cells, as well as effects on platelets and the coagulation cascade. Based on the available biological studies, it seems likely that ligation of CLEC-2 contributes to local extravasation, inflammation and, possibly, local necrosis, due to microthrombi and ischemia, whereas other toxins may be more important for the distant hemorrhagic complications. However, the venom contains several toxins and both local, as well as distant, symptoms are probably complex reactions that cannot be explained by the effects of rhodocytin and CLEC-2 alone. The in vivo reactions to rhodocytin are thus examples of toxin-induced crosstalk between coagulation (platelets), endothelium and inflammation (immunocompetent cells). Very few studies have addressed this crosstalk as a part of the pathogenesis behind local and systemic reactions to Calloselasma rhodostoma bites. The author suggests that detailed biological studies based on an up-to-date methodology of local and systemic reactions to Calloselasma rhodostoma bites should be used as a hypothesis-generating basis for future functional studies of the CLEC-2 receptor. It will not be possible to study the effects of purified toxins in humans, but the development of animal models (e.g., cutaneous injections of rhodocytin to mimic snakebites) would supplement studies in humans.
Collapse
|
26
|
Kupsa T, Milos Horacek J, Jebavy L. The role of cytokines in acute myeloid leukemia: A systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:291-301. [DOI: 10.5507/bp.2012.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022] Open
|
27
|
Zhang J, Ma D, Ye J, Zang S, Lu F, Yang M, Qu X, Sun X, Ji C. Prognostic impact of δ-like ligand 4 and Notch1 in acute myeloid leukemia. Oncol Rep 2012; 28:1503-11. [PMID: 22858860 DOI: 10.3892/or.2012.1943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/03/2012] [Indexed: 11/06/2022] Open
Abstract
Notch signaling plays a critical role in embryonic vascular development and tumor angiogenesis. The present study was conducted to investigate the prognostic role of the angiogenesis-related Notch ligand and the receptor in acute myeloid leukemia (AML) and assess whether their expression correlates with that of the vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2. Bone marrow mononuclear cells from 60 untreated AML patients and 40 healthy controls were obtained. Real-time RT-PCR was performed to evaluate the mRNA expression of δ-like ligand 4 (Dll4), Notch1, VEGF, VEGF receptor (VEGFR)-1, VEGFR-2, Ang-1, Ang-2 and Tie2. Western blot analysis was used to determine the protein levels of Dll4 and Notch1. The results demonstrated that Dll4, Notch1, VEGF, VEGFR-2 and Ang-2 expression were significantly higher in untreated AML patients than in the controls. Univariate analysis of factors associated with the overall survival showed a significantly shorter survival in patients with the unfavorable karyotype, higher Dll4 expression, higher Notch1 expression, higher VEGF expression or higher Ang-2 expression. Furthermore, multivariate analysis revealed that the karyotype and expression levels of Notch1, Dll4, VEGF and Ang-2 were independent prognostic factors for overall survival. Additionally, the prognostic value of Dll4 expression (but not Notch1) was more significant in the subgroup consisting of patients with intermediate-risk cytogenetics. Subgroup analysis showed that Notch1 and Dll4 expression levels had a prognostic impact on patients with high VEGF or Ang-2 levels. Taken together, our data provide evidence that the activation of the Notch pathway may indicate an unfavorable prognosis in AML. In particular, Dll4 may be a relevant prognostic marker in intermediate-risk AML.
Collapse
Affiliation(s)
- Jingru Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Reikvam H, Hatfield KJ, Ersvaer E, Hovland R, Skavland J, Gjertsen BT, Petersen K, Bruserud O. Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status--consequences and potentials for pharmacological intervention. Br J Haematol 2011; 156:468-80. [PMID: 22150087 DOI: 10.1111/j.1365-2141.2011.08960.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist proteins in their folding to native structures. HSPs are regarded as possible therapeutic targets in acute myeloid leukaemia (AML). We used bioinformatical approaches to characterize the HSP profile in AML cells from 75 consecutive patients, in addition to the effect of the HSP90 inhibitor 17-DMAG. Patients harbouring a FLT3-internal tandem duplication (FLT3-ITD) were extensively overrepresented in the cluster with high HSP levels, indicating a strong dependence of HSPs in stabilizing FLT3-ITD encoded oncoproteins. FLT3 ligation further increased the levels of HSP90 and its co-chaperone HSP70. HSP90 inhibition had a stronger pro-apoptotic effect for AML cells with FLT3-ITD than for cells with wild-type FLT3, whereas the anti-proliferative effect of HSP90 inhibition was similar for the two patient subsets. HSP90 inhibition altered the constitutive cytokine release profile in an anti-angiogenic direction independent of FLT3 mutational status: (i) pro-angiogenic CXCL8, MMP-2 and MMP-9 showed a stronger decrease than anti-angiogenic CXCL9-11, (ii) the Tie-2 agonist Ang-1 showed a stronger decrease than the potentially antagonistic Ang-2, and (iii) VEGF and HGF levels were decreased. Finally, HSP90 inhibition counteracted the leukaemia-stimulating effect of endothelial cells. Our studies demonstrate that HSP90 inhibition mediates anti-leukaemic effects through both direct and indirect activity.
Collapse
Affiliation(s)
- Håkon Reikvam
- Division for Haematology, Institute of Medicine, University of Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
29
|
What role for angiogenesis in childhood acute lymphoblastic leukaemia? Adv Hematol 2011; 2011:274628. [PMID: 22110504 PMCID: PMC3216383 DOI: 10.1155/2011/274628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/15/2011] [Indexed: 01/08/2023] Open
Abstract
The role of angiogenesis in acute leukaemia has been discussed since the cloning of the gene of vascular endothelial growth factor (VEGF) from the acute myelogenous leukemia cell line (HL60) and, thereafter, when the first studies reported increased bone marrow vascularity and elevation of angiogenic cytokines in acute lymphoblastic leukaemia (ALL). VEGF and basic fibroblast growth factor (bFGF) are the major proangiogenic cytokines that have been studied, and evaluation of their prognostic impact in childhood ALL has been reported in several studies, though with controversial results. The antiangiogenic response, contributing to the angiogenic balance, has scarcely been reported. The origin of the factors, their prognostic value, and their relevance as good markers of what really happens in the bone marrow are discussed in this paper. The place of antiangiogenic drugs in ALL has to be defined in the global treatment strategy.
Collapse
|
30
|
Angiogenesis in acute myeloid leukemia and opportunities for novel therapies. JOURNAL OF ONCOLOGY 2011; 2012:128608. [PMID: 21904549 PMCID: PMC3167188 DOI: 10.1155/2012/128608] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/03/2011] [Accepted: 07/05/2011] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) arises from neoplastic transformation of hematopoietic stem and progenitor cells, and relapsed disease remains one of the greater challenges in treating this hematologic malignancy. This paper focuses on angiogenic aspects of AML including the significance and prognostic value of bone marrow microvessel density and circulating cytokine levels. We show three general mechanisms whereby AML exploits angiogenic pathways, including direct induction of angiogenesis, paracrine regulation, and autocrine stimulation. We also present early evidence that leukemia cells contribute directly to vascular endothelia. Novel treatment strategies are proposed, and a review of relevant antiangiogenic clinical trials is presented. By understanding how blood vessels can serve as a reservoir for refractory and relapsed AML, new diagnostics and promising treatment strategies can be developed.
Collapse
|
31
|
Liesveld JL, Rosell KE, Bechelli J, Lu C, Messina P, Mulford D, Ifthikharuddin JJ, Jordan CT, Phillips Ii GL. Proteasome inhibition in myelodysplastic syndromes and acute myelogenous leukemia cell lines. Cancer Invest 2011; 29:439-50. [PMID: 21740082 PMCID: PMC4557209 DOI: 10.3109/07357907.2011.590567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this work, effects of bortezomib on apoptosis, clonal progenitor growth, cytokine production, and NF-κB expression in patients with MDS with cytopenias requiring transfusion support are examined. Bortezomib increased apoptosis in marrow mononuclear cells but had no effects on CFU-GM, BFU-E, or CFU-L content. No consistent effects on NF-κB activation in vivo were noted. To further define the role of bortezomib in AML and MDS, we examined it in combination with several targeted agents and chemotherapeutic agents in vitro. Combinations with arsenic trioxide, sorafenib, and cytarabine demonstrated synergistic in vitro effects in AML cell lines.
Collapse
Affiliation(s)
- Jane L Liesveld
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA. jane
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bruserud Ø, Reikvam H. Therapeutic targeting of NF-κB in myelodysplastic syndromes and acute myeloid leukaemia - the biological heterogeneity. Expert Opin Ther Targets 2011; 14:1139-42. [PMID: 20942744 DOI: 10.1517/14728222.2010.525021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NF-κB usually has antiapotptic effects and is involved in regulation of cell proliferation and intercellular communication. This is also true for the malignant cells in acute myeloid leukaemia (AML) and myelodysplastic syndromes (MDS), including the malignant stem cells. However, both AML and MDS patients are heterogeneous with regard to the effect of pharmacological NF-κB inhibition, and the final effect will probably also depend on the pharmacological agent used for the inhibition, e.g. proteasomal inhibitiors versus specific inhibitors. Even though initial studies suggest that NF-κB inhibitors have antileukemic effects, their future clinical use will also depend on their toxicity profile.
Collapse
Affiliation(s)
- Øystein Bruserud
- University of Bergen, Institute of Internal Medicine, Bergen, Norway.
| | | |
Collapse
|
33
|
Breccia M, Alimena G. NF-κB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia. Expert Opin Ther Targets 2011; 14:1157-76. [PMID: 20858024 DOI: 10.1517/14728222.2010.522570] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD The inactive NF-κB-inhibitor of NF-κB (IκB) complex is activated by stimuli including pro-inflammatory cytokines, mitogens, growth factors and stress-inducing agents. The release of NF-κB facilitates its translocation to the nucleus, where it promotes cell survival by initiating transcription of genes encoding stress-response enzymes, cell-adhesion molecules, pro-inflammatory cytokines and anti-apoptotic proteins. NF-κB and associated regulatory factors (IκB kinase subunits and bcl-3) are implicated in hematological and solid tumour malignancies. NF-κB appears to be involved in cell proliferation control, apoptosis control, angiogenesis promotion and possibly regulation of diffusion of metastases. There are several reports that inhibition of NF-κB as a therapeutic target may have a role in tumour cell death or growth inhibition. AREA COVERED IN THIS REVIEW We review data about inhibition of NF-κB in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). We describe the molecular mechanisms underlying NF-κB deregulation in these haematological malignancies. WHAT THE READER WILL GAIN Constitutive activation of NF-κB in the nucleus has been reported in some varieties of MDS/AML. The in vitro and in vivo results of NF-κB inhibition in myeloid malignancies are highlighted. TAKE HOME MESSAGE NF-κB selective inhibitory drugs may be useful, either as single agents or associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Massimo Breccia
- Sapienza University, Department of Human Biotechnologies and Hematology, Rome, Italy.
| | | |
Collapse
|
34
|
Bruserud Ø, Reikvam H. Heat shock protein 90 (HSP90) inhibition—From experimental to clinical studies. Leuk Res 2010; 34:1422-3. [DOI: 10.1016/j.leukres.2010.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
35
|
Future perspectives: therapeutic targeting of notch signalling may become a strategy in patients receiving stem cell transplantation for hematologic malignancies. BONE MARROW RESEARCH 2010; 2011:570796. [PMID: 22046566 PMCID: PMC3200006 DOI: 10.1155/2011/570796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/30/2010] [Indexed: 12/26/2022]
Abstract
The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects.
Collapse
|
36
|
Abstract
Acute myelogenous leukemias (AMLs) and endothelial cells depend on each other for survival and proliferation. Monotherapy antivascular strategies such as targeting vascular endothelial growth factor (VEGF) has limited efficacy in treating AML. Thus, in search of a multitarget antivascular treatment strategy for AML, we tested a novel vascular disrupting agent, OXi4503, alone and in combination with the anti-VEGF antibody, bevacizumab. Using xenotransplant animal models, OXi4503 treatment of human AML chloromas led to vascular disruption in leukemia cores that displayed increased leukemia cell apoptosis. However, viable rims of leukemia cells remained and were richly vascular with increased VEGF-A expression. To target this peripheral reactive angiogenesis, bevacizumab was combined with OXi4503 and abrogated viable vascular rims, thereby leading to enhanced leukemia regression. In a systemic model of primary human AML, OXi4503 regressed leukemia engraftment alone and in combination with bevacizumab. Differences in blood vessel density alone could not account for the observed regression, suggesting that OXi4503 also exhibited direct cytotoxic effects on leukemia cells. In vitro analyses confirmed this targeted effect, which was mediated by the production of reactive oxygen species and resulted in apoptosis. Together, these data show that OXi4503 alone is capable of regressing AML by a multitargeted mechanism and that the addition of bevacizumab mitigates reactive angiogenesis.
Collapse
|