1
|
Issa DR, Nassar M, Elamrousy W. Immediately placed implants using simvastatin and autogenous tooth graft combination in periodontally compromised sites: a randomized controlled clinical trial. Clin Oral Investig 2024; 28:210. [PMID: 38467945 DOI: 10.1007/s00784-024-05596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES The present study aimed to assess clinically and radiographically the usage of autogenous tooth bone graft (ATBG) combined with and without Simvastatin (SMV) around immediately placed dental implants in periodontally compromised sites. METHODS Thirty-nine patients required a single extraction of periodontally compromised tooth were divided into three groups (13 patients each). Group I received immediate implant placement (IIP) without grafting. Group II received IIP with ATBG filling the gap around IIP. Group III received SMV gel mixed with ATBG around IIP. Radiographic changes were reported at the baseline, 6-, and 12-months post-surgery. RESULTS All implants achieved the success criteria with no complications. At 6- and 12-months post-surgery, group III showed a statistically lower mean ridge width loss compared to Group I and Group II (P < .001). Group II revealed less reduction in the mean alveolar ridge width compared to group I (P < .001). Group III showed a statistically significantly less MBL loss than group I and group II (P < .001). All groups showed a statistically significant increase in BD gain compared to baseline (P < .001). Group III showed statistically significant high BD compared to group II (P < .001). Group II showed statistically significantly higher mean BD gain than that of group I (P < .001). CONCLUSION SMV combined with ATBG boosts the hard tissue parameters around dental implants over ATBG alone. Clinical trial registration was on August 1, 2021 (NCT04992416). CLINICAL RELEVANCE ATBG with SMV in periodontally compromised sites could improve implant osseointegration and promote favorable changes in peri-implant tissues.
Collapse
Affiliation(s)
- Dalia Rasheed Issa
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Kafrelsheikh University, Kafr El-sheikh, Egypt.
| | - Mohamed Nassar
- Department of Oral Medicine, Oral Diagnosis, and Radiology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Walid Elamrousy
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Kafrelsheikh University, Kafr El-sheikh, Egypt
| |
Collapse
|
2
|
Granat MM, Eifler-Zydel J, Kolmas J. Statins-Their Role in Bone Tissue Metabolism and Local Applications with Different Carriers. Int J Mol Sci 2024; 25:2378. [PMID: 38397055 PMCID: PMC10888549 DOI: 10.3390/ijms25042378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Statins, widely prescribed for lipid disorders, primarily target 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase competitively and reversibly, resulting in reduced low-density lipoprotein cholesterol (LDL-C). This mechanism proves effective in lowering the risk of lipid-related diseases such as ischemic cerebrovascular and coronary artery diseases. Beyond their established use, statins are under scrutiny for potential applications in treating bone diseases. The focus of research centers mainly on simvastatin, a lipophilic statin demonstrating efficacy in preventing osteoporosis and aiding in fracture and bone defect healing. Notably, these effects manifest at elevated doses (20 mg/kg/day) of statins, posing challenges for systematic administration due to their limited bone affinity. Current investigations explore intraosseous statin delivery facilitated by specialized carriers. This paper outlines various carrier types, characterizing their structures and underscoring various statins' potential as local treatments for bone diseases.
Collapse
Affiliation(s)
- Marcin Mateusz Granat
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Eifler-Zydel
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Kolmas
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| |
Collapse
|
3
|
Cruz R, Moraschini V, Calasans-Maia MD, de Almeida DCF, Sartoretto SC, Granjeiro JM. Clinical efficacy of simvastatin gel combined with polypropylene membrane on the healing of extraction sockets: A triple-blind, randomized clinical trial. Clin Oral Implants Res 2021; 32:711-720. [PMID: 33715258 DOI: 10.1111/clr.13740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 10/24/2022]
Abstract
OBJECTIVES This study aimed to evaluate dimensional changes, level of soft tissue healing, and pain/discomfort perception in post-extraction sockets filling with 1.2% simvastatin (SIM) gel covered with polypropylene membranes (PPPM). MATERIAL AND METHODS Twenty-six post-extraction sockets of posterior teeth were randomly allocated in two groups: (a) socket filling with 1.2% SIM gel and covered with PPPM (n = 13) and (b) socket filling with placebo gel and covered with PPPM (n = 13). Cone-beam computed tomography (CBCT) images before and 90 days after the extraction enabled alveolar bone dimensional changes calculation using horizontal and vertical measurements. The measurements occurred at three different levels for thickness located 1, 3, and 5 mm from the top of the bone crest. The vertical (depth) measure was assessed from the most apical portion of the socket to the bone crest's most coronal portion. Seven days after the extractions, the level of soft tissue healing and pain perception were also analyzed. RESULTS After 90 days of extractions, the dimensional changes in thickness in the test group were significantly smaller in sections A (p = .044), B (p = .036) and C (p = .048) when compared to the control group. The test group showed a significantly lower height-dimensional change than the control group (p < .0001). Soft tissue healing index (p = .63), perception of pain (p = .23), and number of analgesics consumed (p = .25) were similar between groups. CONCLUSIONS Simvastatin at 1.2% compared with placebo effectively reduced the dimensional changes in post-extraction sockets covered with PPPM. There was no significant difference in the level of soft tissue healing and postoperative pain between the test and control groups.
Collapse
Affiliation(s)
- Rebecca Cruz
- Doctoral Program, Fluminense Federal University, Niteroi Rio de Janeiro, Brazil
| | - Vittorio Moraschini
- Department of Periodontology, Dental Research Division, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
| | | | | | - Suelen Cristina Sartoretto
- Department of Periodontology, Dental Research Division, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
| | - José Mauro Granjeiro
- Department of Dental Technics, School of Dentistry, Fluminense Federal University, Niterói, Brazil.,National Institute of Metrology, Quality, and Technology (INMETRO), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Li B, Zhang L, Wang D, Peng F, Zhao X, Liang C, Li H, Wang H. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111878. [DOI: 10.1016/j.msec.2021.111878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
|
5
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|
6
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
7
|
Degala S, Bathija NA. Evaluation of the Efficacy of Simvastatin in Bone Regeneration after Surgical Removal of Bilaterally Impacted Third Molars-A Split-Mouth Randomized Clinical Trial. J Oral Maxillofac Surg 2018; 76:1847-1858. [PMID: 29859160 DOI: 10.1016/j.joms.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE Simvastatin has been reported to promote osteoblastic activity, inhibit osteoclastic activity, and support osteoblast differentiation induced by bone morphogenetic protein. This split-mouth randomized clinical trial evaluated the effect of local application of simvastatin (10 mg) on bone regeneration after surgical removal of bilaterally impacted mandibular third molars. MATERIALS AND METHODS A randomized, split-mouth, single-blinded, single-center trial was performed in 30 patients 18 to 40 years old requiring surgical extraction of bilaterally impacted mandibular third molars. These patients underwent 2 surgical sessions, with extraction of 1 third molar during each session. Each participant was randomly assigned to receive Gelfoam soaked with normal saline or with the drug simvastatin (10 mg) at the first session and were blinded to the use of drug for that particular socket. The alternate regimen was used during the second session. The study was conducted over a period of 3 months. Patients were evaluated for pain, postoperative swelling, and bone density measurement and analysis using intraoral periapical radiographs at the end of 1, 4, 8 and 12 weeks, respectively. In addition, cone-beam computed tomographic (CBCT) images were obtained for every fifth patient at the end of 12 weeks. RESULTS Mean gray-level histographic values were significantly higher for the study sockets at the end of 1, 4, 8, and 12 weeks (P = .001) compared with the control sockets (30 sockets each). CBCT analysis further substantiated accelerated bone regeneration in the study sockets. CONCLUSION The study was statistically and radiographically in favor of the drug, indicating that local application of simvastatin could be a cost-effective and simple way to stimulate and hasten osseous regeneration.
Collapse
Affiliation(s)
- Saikrishna Degala
- Professor and Head of Department, Department of Oral and Maxillofacial Surgery, JSS Dental College and Hospital (Constituent College), Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India.
| | - Nikita A Bathija
- Postgraduate Student, Department of Oral and Maxillofacial Surgery, JSS Dental College and Hospital (Constituent College), Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India
| |
Collapse
|
8
|
Wang X, Zhang Y, Ji W, Ao J. Categorising bone defect hematomas – Enhance early bone healing. Med Hypotheses 2018. [DOI: 10.1016/j.mehy.2018.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Recent Advances in the Development of Mammalian Geranylgeranyl Diphosphate Synthase Inhibitors. Molecules 2017; 22:molecules22060886. [PMID: 28555000 PMCID: PMC5902023 DOI: 10.3390/molecules22060886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
The enzyme geranylgeranyl diphosphate synthase (GGDPS) catalyzes the synthesis of the 20-carbon isoprenoid geranylgeranyl diphosphate (GGPP). GGPP is the isoprenoid donor for protein geranylgeranylation reactions catalyzed by the enzymes geranylgeranyl transferase (GGTase) I and II. Inhibitors of GGDPS result in diminution of protein geranylgeranylation through depletion of cellular GGPP levels, and there has been interest in GGDPS inhibitors as potential anti-cancer agents. Here we discuss recent advances in the development of GGDPS inhibitors, including insights gained by structure-function relationships, and review the preclinical data that support the continued development of this novel class of drugs.
Collapse
|
10
|
Kumar BS, Ravisankar A, Mohan A, Kumar DP, Katyarmal DT, Sachan A, Sarma KVS. Effect of oral hypoglycaemic agents on bone metabolism in patients with type 2 diabetes mellitus & occurrence of osteoporosis. Indian J Med Res 2016; 141:431-7. [PMID: 26112844 PMCID: PMC4510723 DOI: 10.4103/0971-5916.159287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background & objectives: Type 2 diabetes mellitus (T2DM) is considered to be a protective factor against development of osteoporosis. But oral hypoglycaemic agents (OHA) are likely to increase the risk of osteoporosis. This study was carried out to evaluate the effect of various OHA on bone mineral density (BMD) in patients with T2DM. Methods: Forty one patients (study group) with T2DM (mean age 51.9±5.5 yr; 31 females) receiving treatment with oral hypoglycaemic agents (OHA) [thiazolidinediones alone (n=14) or in combination with other OHA (n=27)] for a period of at least three consecutive years and 41 age- and gender-matched healthy controls (mean age 51.4±5.1 yr) were included in the study. A detailed clinical history was taken and all were subjected to physical examination and recording of anthropometric data. BMD was assessed for both patients and controls. Results: The mean body mass index (kg/m2) (26.5±4.90 vs 27.3 ±5.33) and median [inter-quartile range (IQR)] duration of menopause (yr) among women [6(2-12) vs 6(1-13)] were comparable between both groups. The bone mineral density (BMD; g/cm2) at the level of neck of femur (NOF) (0.761±0.112 vs 0.762±0.110), lumbar spine antero-posterior view (LSAP) (0.849±0.127 vs 0.854±0.135); median Z-score NOF {0.100[(-0.850)-(0.550)] vs -0.200[(-0.800)-(0.600)]}, LSAP {-1.200[(-1.700)-(-0.200)] vs -1.300 [(-1.85)-(-0.400)]} were also similar in study and control groups. Presence of normal BMD (9/41 vs 8/41), osteopenia (16/41 vs 18/41) and osteoporosis (16/41 vs 15/41) were comparable between the study and control groups. No significant difference was observed in the BMD, T-scores and Z-scores at NOF and LSAP among T2DM patients treated with thiazolidinediones; those treated with other OHA and controls. Interpretation & conclusions: The present findings show that the use of OHA for a period of three years or more does not significantly affect the BMD in patients with T2DM.
Collapse
Affiliation(s)
- B Siddhartha Kumar
- Division of Rheumatology, Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Baker N, Sohn J, Tuan RS. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis. Stem Cell Res Ther 2015; 6:238. [PMID: 26626726 PMCID: PMC4667507 DOI: 10.1186/s13287-015-0225-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 01/08/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022] Open
Abstract
Introduction Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Methods Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. Results LY294002 and Akt siRNA inhibited MSC osteogenesis. Methyl-β-cyclodextrin, which disrupts all membrane rafts, inhibited osteogenesis. Conversely, Cav-1 siRNA and cholesterol oxidase, which displaces Cav-1 from caveolae, enhanced Akt signaling induced by osteogenic supplements. In control cells, phosphorylated Akt began to accumulate in caveolae after 10 days of osteogenic differentiation. Conclusions PI3K/Akt signaling is a key pathway required for human MSC osteogenesis, and it is likely that localization of active Akt in non-caveolar and caveolar membrane rafts positively and negatively contributes to osteogenesis, respectively.
Collapse
Affiliation(s)
- Natasha Baker
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219-3143, USA. .,Present address: Kenneth P. Dietrich School of Arts and Sciences, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219-3143, USA.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219-3143, USA.
| |
Collapse
|
12
|
Campos-Obando N, Kavousi M, Roeters van Lennep JE, Rivadeneira F, Hofman A, Uitterlinden AG, Franco OH, Zillikens MC. Bone health and coronary artery calcification: The Rotterdam Study. Atherosclerosis 2015; 241:278-83. [PMID: 25690697 DOI: 10.1016/j.atherosclerosis.2015.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Vascular calcification has been associated inconsistently to low bone mineral density and fractures. The aims of the present study were to investigate the associations between coronary artery calcification (CAC) and BMD change, BMD and fracture risk in elderly subjects of the population-based Rotterdam Study. METHODS BMD was assessed through dual-energy X-ray absorptiometry and CAC through Electron-Beam Computed Tomography in 582 men and 694 women. We investigated the associations between BMD change (6.4 years follow-up) and CAC at follow-up and between BMD and CAC (measured simultaneously). In sensitivity analyses we stratified analyses for estradiol levels in women. The association between CAC and fracture risk (9 years follow-up) was tested through competing-risks models. Models were sex-stratified and adjusted for age, body mass index, smoking, bisphosphonate use and age at menopause. RESULTS There was no association between BMD change and CAC in men. In women, each 1% increase in annual BMD loss was significantly associated with higher follow-up CAC [β = 0.22 (0.06-0.38), p=0.006; prevalence ratio: 4%]. Stratified analyses showed significant associations between BMD loss and follow-up CAC only in women with lower estradiol levels. We found no association between CAC and fracture risk and no association between BMD and CAC cross-sectionally. CONCLUSIONS BMD loss was associated with higher follow-up CAC in women, which might be related to low estrogen levels. No association between CAC and BMD or fracture risk was found. Further studies are required to elucidate the mechanisms that might underlie the association between BMD change and coronary calcification in women.
Collapse
Affiliation(s)
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Ageing (NCHA), 2300 RC Leiden, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Ageing (NCHA), 2300 RC Leiden, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Ageing (NCHA), 2300 RC Leiden, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Ageing (NCHA), 2300 RC Leiden, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Ageing (NCHA), 2300 RC Leiden, The Netherlands.
| |
Collapse
|
13
|
Efficacy of Simvastatin in Bone Regeneration After Surgical Removal of Mandibular Third Molars: A Clinical Pilot Study. J Maxillofac Oral Surg 2014. [PMID: 26225047 DOI: 10.1007/s12663-014-0697-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Simvastatin, a common cholesterol-lowering drug that inhibits hepatic hydroxymethylglutaryl coenzyme A reductase, the rate-limiting enzyme in the mevalonate pathway, increases expression of the BMP-2 gene and thus promotes bone regeneration. MATERIALS AND METHODS A study was conducted in mandibular third molar sockets to study the efficacy of the drug by implanting it into sockets (experimental group) and observations were made over 3 months to compare the healing with the (control group). CONCLUSION The results showed faster regeneration of the bone in the simvastatin site using the gray level histogram values.
Collapse
|
14
|
Relationship between serum total cholesterol level and serum biochemical bone turnover markers in healthy pre- and postmenopausal women. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398397. [PMID: 24949440 PMCID: PMC4052088 DOI: 10.1155/2014/398397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022]
Abstract
Background. The presence of common risk factors suggests that there is a relationship between osteoporosis and cardiovascular disease, possibly via dyslipidemia and inflammation. We investigated the relationships among the lipid profile, the inflammation marker high-sensitivity C-reactive protein (hsCRP), bone turnover markers, and bone mineral density (BMD) to assess the correlation between osteoporosis and cardiovascular disease and identify factors predicting osteoporosis. Methods. The study included 759 Korean women older than 20 years of age. The BMD, serum lipid profile, and levels of hsCRP, cross-linked C-terminal peptide (CTX), and osteocalcin were measured. We compared the serum biomarkers between groups with normal and low BMD and assessed the correlations between the levels of bone turnover markers and the lipid profile and hsCRP level. Results. The concentrations of CTX, osteocalcin, and total cholesterol were significantly higher in the low BMD group than in the normal BMD group in premenopausal women group. However, hsCRP was not correlated with these parameters. Multivariate logistic regression analysis revealed that TC (OR, 1.647; 95% CI, 1.190–2.279) and osteocalcin (OR, 1.044; 95% CI, 1.002–1.088) had an increased risk of low BMD in premenopausal women. Conclusions. These results indicate that total cholesterol concentration is correlated with the levels of bone turnover markers, suggesting that it might predict osteoporosis in premenopausal women.
Collapse
|
15
|
Salai M, Somjen D, Gigi R, Yakobson O, Katzburg S, Dolkart O. Effects of commonly used medications on bone tissue mineralisation in SaOS-2 human bone cell line: an in vitro study. Bone Joint J 2013; 95-B:1575-80. [PMID: 24151282 DOI: 10.1302/0301-620x.95b11.31158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We analysed the effects of commonly used medications on human osteoblastic cell activity in vitro, specifically proliferation and tissue mineralisation. A list of medications was retrieved from the records of patients aged > 65 years filed in the database of the largest health maintenance organisation in our country (> two million members). Proliferation and mineralisation assays were performed on the following drugs: rosuvastatin (statin), metformin (antidiabetic), metoprolol (β-blocker), citalopram (selective serotonin reuptake inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)). All tested drugs significantly stimulated DNA synthesis to varying degrees, with rosuvastatin 5 µg/ml being the most effective among them (mean 225% (SD 20)), compared with metformin 10 µg/ml (185% (SD 10)), metoprolol 0.25 µg/ml (190% (SD 20)), citalopram 0.05 µg/ml (150% (sd 10)) and omeprazole 0.001 µg/ml (145% (SD 5)). Metformin and metoprolol (to a small extent) and rosuvastatin (to a much higher extent) inhibited cell mineralisation (85% (SD 5)). Our results indicate the need to evaluate the medications prescribed to patients in terms of their potential action on osteoblasts. Appropriate evaluation and prophylactic treatment (when necessary) might lower the incidence and costs associated with potential medication-induced osteoporosis.
Collapse
Affiliation(s)
- M Salai
- Tel-Aviv Sourasky Medical Center, Division of Orthopedic Surgery, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Hernandez-Vallejo SJ, Beaupere C, Larghero J, Capeau J, Lagathu C. HIV protease inhibitors induce senescence and alter osteoblastic potential of human bone marrow mesenchymal stem cells: beneficial effect of pravastatin. Aging Cell 2013; 12:955-65. [PMID: 23795945 DOI: 10.1111/acel.12119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2013] [Indexed: 12/22/2022] Open
Abstract
HIV-infected patients receiving antiretroviral therapy present an increased prevalence of age-related comorbidities, including osteoporosis. HIV protease inhibitors (PIs) have been suspected to participate to bone loss, but the mechanisms involved are unknown. In endothelial cells, some PIs have been shown to induce the accumulation of farnesylated prelamin-A, a biomarker of cell aging leading to cell senescence. Herein, we hypothesized that these PIs could induce premature aging of osteoblast precursors, human bone marrow mesenchymal stem cells (MSCs), and affect their capacity to differentiate into osteoblasts. Senescence was studied in proliferating human MSCs after a 30-day exposure to atazanavir and lopinavir with or without ritonavir. When compared to untreated cells, PI-treated MSCs had a reduced proliferative capacity that worsened with increasing passages. PI treatment led to increased oxidative stress and expression of senescence markers, including prelamin-A. Pravastatin, which blocks prelamin-A farnesylation, prevented PI-induced senescence and oxidative stress, while treatment with antioxidants partly reversed these effects. Moreover, senescent MSCs presented a decreased osteoblastic potential, which was restored by pravastatin treatment. Because age-related bone loss is associated with increased bone marrow fat, we also evaluated the capacity of PI-treated MSCs to differentiate into adipocyte. We observed an altered adipocyte differentiation in PI-treated MSCs that was reverted by pravastatin. We have shown that some PIs alter osteoblast formation by affecting their differentiation potential in association with altered senescence in MSCs, with a beneficial effect of statin. These data corroborate the clinical observations and allow new insight into pathophysiological mechanisms of PI-induced bone loss in HIV-infected patients.
Collapse
Affiliation(s)
- Sandra J. Hernandez-Vallejo
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| | - Carine Beaupere
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| | - Jerome Larghero
- Cell Therapy Unit; Hôpital Saint Louis; Paris France
- Univ Paris Diderot; Sorbonne Paris Cite; Paris France
- INSERM UMRS940; Hôpital Saint-Louis; Paris France
| | - Jacqueline Capeau
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
- APHP; Hôpital Tenon; Paris France
| | - Claire Lagathu
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| |
Collapse
|
17
|
Nath SD, Linh NTB, Sadiasa A, Lee BT. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration. J Biomater Appl 2013; 28:1151-63. [DOI: 10.1177/0885328213499272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main objective of this study was to fabricate a controlled drug delivery which is simultaneously effective for bone regeneration. We have encapsulated simvastatin, which enhances osteoblastic activity, in the poly (lactic-co-glycolic acid) microspheres. Loading of these microspheres inside the spongy scaffold of biphasic calcium phosphate with the help of Gelatin (Gel) hydrogel controls the delivery of the drug, and ensures a more favorable drug release profile. As a result, some significant benefits have been achieved, such as higher mechanical strength, excellent biocompatibility in in vitro experiments. For determining the characteristics of the composite scaffold, several analysis, such as scanning electron microscope, EDX, X-ray diffraction, FT-IR, and porosity were carried out. The in vitro drug release profile clearly indicates that simvastatin release from the microsphere was more controlled and prolonged after loading in the scaffold. Biocompatibility was certainly higher for the final composite scaffold compared to drug unloaded scaffold, as assessed through MTT assay and Confocal imaging with MC3T3-E1 pre-osteoblast cells. Cell attachment and proliferation were certainly higher in the presence of drug loaded microspheres. Bone remodeling gene and protein expression were observed by real-time polymerase chain reaction and Western blot respectively. Simvastatin loaded scaffold exhibited the best results in every determination which was carried out.
Collapse
Affiliation(s)
- Subrata D Nath
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| | - Nguyen TB Linh
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| | - Alexander Sadiasa
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| | - Byong T Lee
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| |
Collapse
|
18
|
Statins decrease lung inflammation in mice by upregulating tetraspanin CD9 in macrophages. PLoS One 2013; 8:e73706. [PMID: 24040034 PMCID: PMC3767596 DOI: 10.1371/journal.pone.0073706] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/22/2013] [Indexed: 01/06/2023] Open
Abstract
Tetraspanins organize protein complexes in tetraspanin-enriched membrane microdomains that are distinct from lipid rafts. Our previous studies suggested that reduction in the levels of tetraspanins CD9 and CD81 may be involved in the progression of inflammatory lung diseases, especially COPD. To search for agents that increase the levels of these tetraspanins, we screened 1,165 drugs in clinical use and found that statins upregulate CD9 and CD81 in RAW264.7 macrophages. The lipophilic statins, fluvastatin and simvastatin, reversed LPS-induced downregulation of CD9 and CD81, simultaneously preventing TNF-α and matrix metalloproteinase-9 production and spreading of RAW264.7 cells. These statins exerted anti-inflammatory effects in vitro in wild-type macrophages but not in CD9 knockout macrophages, and decreased lung inflammation in vivo in wild-type mice but not in CD9 knockout mice, suggesting that their effects are dependent on CD9. Mechanistically, the statins promoted reverse transfer of the LPS-signaling mediator CD14 from lipid rafts into CD9-enriched microdomains, thereby preventing LPS receptor formation. Finally, upregulation of CD9/CD81 by statins was related to blockade of GTPase geranylgeranylation in the mevalonate pathway. Our data underscore the importance of the negative regulator CD9 in lung inflammation, and suggest that statins exert anti-inflammatory effects by upregulating tetraspanin CD9 in macrophages.
Collapse
|
19
|
Fisher A, Srikusalanukul W, Davis M, Smith P. Cardiovascular diseases in older patients with osteoporotic hip fracture: prevalence, disturbances in mineral and bone metabolism, and bidirectional links. Clin Interv Aging 2013; 8:239-56. [PMID: 23460043 PMCID: PMC3585505 DOI: 10.2147/cia.s38856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Considerable controversy exists regarding the contribution of mineral/bone metabolism abnormalities to the association between cardiovascular diseases (CVDs) and osteoporotic fractures. AIMS AND METHODS To determine the relationships between mineral/bone metabolism biomarkers and CVD in 746 older patients with hip fracture, clinical data were recorded and serum concentrations of parathyroid hormone (PTH), 25-hydroxyvitamin D, calcium, phosphate, magnesium, troponin I, parameters of bone turnover, and renal, liver, and thyroid functions were measured. RESULTS CVDs were diagnosed in 472 (63.3%) patients. Vitamin D deficiency was similarly prevalent in patients with (78.0%) and without (82.1%) CVD. The CVD group had significantly higher mean PTH concentrations (7.6 vs 6.0 pmol/L, P < 0.001), a higher prevalence of secondary hyperparathyroidism (SPTH) (PTH > 6.8 pmol/L, 43.0% vs 23.3%, P < 0.001), and excess bone resorption (urinary deoxypyridinoline corrected by creatinine [DPD/Cr] > 7.5 nmol/μmol, 87.9% vs 74.8%, P < 0.001). In multivariate regression analysis, SHPT (odds ratio [OR] 2.6, P = 0.007) and high DPD/Cr (OR 2.8, P = 0.016) were independent indictors of CVD. Compared to those with both PTH and DPD/Cr in the normal range, multivariate-adjusted ORs for the presence of CVD were 17.3 (P = 0.004) in subjects with SHPT and 9.7 (P < 0.001) in patients with high DPD/Cr. CVD was an independent predicator of SHPT (OR 2.8, P = 0.007) and excess DPD/Cr (OR 2.5, P = 0.031). CVD was predictive of postoperative myocardial injury, while SHPT was also an independent predictor of prolonged hospital stay and in-hospital death. CONCLUSION SHPT and excess bone resorption are independent pathophysiological mediators underlying the bidirectional associations between CVD and hip fracture, and therefore are important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- A Fisher
- Department of Geriatric Medicine, The Canberra Hospital, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
20
|
Sinden NJ, Stockley RA. Chronic obstructive pulmonary disease: an update of treatment related to frequently associated comorbidities. Ther Adv Chronic Dis 2012; 1:43-57. [PMID: 23251728 DOI: 10.1177/2040622310370631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a pulmonary inflammatory response to inhaled substances, and individuals with COPD often have raised levels of several circulating inflammatory markers indicating the presence of systemic inflammation. Recently, there has been increasing interest in comorbidities associated with COPD such as skeletal muscle dysfunction, cardiovascular disease, osteoporosis, diabetes and lung cancer. These conditions are associated with a similar inflammation-based patho-physiology to COPD, and may represent a lung inflammatory 'overspill' to distant organs. Cardiovascular disease is a significant cause of mortality in COPD, and the concepts of an inflammatory link raise the possibility that treatment for one organ may show benefits to comorbidities in other organs. When considering treatment of COPD and its comorbidities, one approach is to target the pulmonary inflammation and hence reduce any 'overspill' effect of inflammatory mediators systemically as suggested by response to inhaled corticosteroids. Alternatively, treatment targeted towards comorbid organs may alter features of pulmonary disease as statins, angiotensin-converting enzyme (ACE) inhibitors and peroxisome proliferator-activated receptor (PPAR) agonists may have beneficial effects on COPD by reducing exacerbations and mortality. Newer anti-inflammatory treatments, such as phosphodiesterase 4 (PDE4), nuclear factor(NF)-kB, and p38 mitogen-activated protein kinase (MAPK) inhibitors, are given systemically and may confer benefits to both COPD and its comorbidities. With common inflammatory pathways it might be expected that successful anti-inflammatory therapy in one organ may also influence others. In this review we explore the concepts of systemic inflammation in COPD and current evidence for treatment of its related comorbidities.
Collapse
Affiliation(s)
- Nicola J Sinden
- Nicola J. Sinden, MBChB(Honours), MRCP (UK) University Hospital Birmingham NHS Foundation Trust - Respiratory Medicine, Birmingham, UK
| | | |
Collapse
|
21
|
Mo H, Yeganehjoo H, Shah A, Mo WK, Soelaiman IN, Shen CL. Mevalonate-suppressive dietary isoprenoids for bone health. J Nutr Biochem 2012; 23:1543-51. [DOI: 10.1016/j.jnutbio.2012.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022]
|
22
|
Ito T, Takemasa M, Makino K, Otsuka M. Preparation of calcium phosphate nanocapsules including simvastatin/deoxycholic acid assembly, and their therapeutic effect in osteoporosis model mice. J Pharm Pharmacol 2012; 65:494-502. [PMID: 23488777 DOI: 10.1111/jphp.12008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/18/2012] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Simvastatin has recently been demonstrated to serve as a therapeutic agent for osteoporosis. However, it is hard to dissolve in water and has side effects such as rhabdomyolysis. Solubilization of the drug by deoxycholate was attempted, and the resulting simvastatin/deoxycholate assembly (DeCA/Sim) was coated by calcium phosphate (CaP) to reduce the side effects of simvastatin. The aim of this study was to examine the therapeutic effects of the CaP-coated deoxycholate micelle containing simvastatin in osteoporosis model mice. METHODS Deoxycholate micelle containing simvastatin coated by CaP (CaP-DeCA/Sim) was prepared by immersion of deoxycholate/simvastatin assembly in simulated body fluid (SBF). The therapeutic effect of CaP-DeCA/Sim on osteoporosis model mice was evaluated by X-ray computed tomography, and also its effect on other body conditions. KEY FINDINGS The CaP coating remarkably reduced cytotoxicity in cultured cells. When CaP-DeCA/Sim was injected into ovariectomized mice, inflammation was suppressed, and led to a whole-body therapeutic effect (body weight, bone mineral content and bone mechanical strength). The deoxycholic acid/simvastatin assembly coated by CaP is thus useful for the treatment of osteoporosis. CONCLUSIONS Such biocompatible CaP nanocapsules including deoxycholate micelles is expected to be a novel strategy to construct an effective device for delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Tomoko Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Lazzerini PE, Capperucci C, Spreafico A, Capecchi PL, Niccolini S, Ferrata P, Frediani B, Galeazzi M, Laghi-Pasini F. Rosuvastatin inhibits spontaneous and IL-1β-induced interleukin-6 production from human cultured osteoblastic cells. Joint Bone Spine 2012; 80:195-200. [PMID: 22999910 DOI: 10.1016/j.jbspin.2012.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/05/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Experimental and clinical data suggest that statins may protect bone by inhibiting bone resorption and/or stimulating bone formation. Interleukin-6 (IL-6) is produced by osteoblasts, and potently stimulates osteoclast activation playing a key role in normal bone resorption as well as in post-menopausal and inflammation-driven osteoporosis. Although statins inhibit IL-6 production from different cell types, currently no data exist on osteoblasts. The aim of the study was to evaluate the effect of rosuvastatin on IL-6 production by human osteoblasts. METHODS Osteoblasts from osteoarthritic patients were incubated with rosuvastatin (0.1-10 μmol/L)±IL-1β, and IL-6 production was evaluated as cytokine concentration in the culture medium (ELISA), as well as mRNA expression in the cells (qPCR). Putative intracellular mechanisms of the drug, such as blocking HMG-CoA-reductase, and interference in the prenylation process were investigated by the addition of mevalonate and isoprenoids. The effect of rosuvastatin±IL-1β on the anti-resorptive molecule osteoprotegerin (OPG) was also assessed (ELISA). RESULTS Rosuvastatin significantly reduced IL-6 levels in the osteoblast culture medium, both in unstimulated and IL-1β-stimulated cells. This effect was reversed by mevalonate or geranylgeraniol, but not farnesol. Moreover, the drug decreased both spontaneous and IL-1β-induced IL-6 mRNA expression in osteoblasts. Conversely, rosuvastatin did not affect OPG levels in the culture medium. CONCLUSION Our results show that rosuvastatin decreases IL-6 production by osteoblasts, thereby suggesting a possible inhibiting activity on osteoclast function in an indirect way. These data may provide further rationale for employing rosuvastatin to beneficially affect bone metabolism in post-menopausal women and possibly in inflammation-driven osteoporosis.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Clinical Medicine and Immunological Sciences, Division of Clinical Immunology, University of Siena, Policlinico Le Scotte, Viale Bracci, Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev 2011; 64:102-46. [PMID: 22106090 DOI: 10.1124/pr.111.004994] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Statins, among the most commonly prescribed drugs worldwide, are cholesterol-lowering agents used to manage and prevent cardiovascular and coronary heart diseases. Recently, a multifaceted action in different physiological and pathological conditions has been also proposed for statins, beyond anti-inflammation and neuroprotection. Statins have been shown to act through cholesterol-dependent and -independent mechanisms and are able to affect several tissue functions and modulate specific signal transduction pathways that could account for statin pleiotropic effects. Typically, statins are prescribed in middle-aged or elderly patients in a therapeutic regimen covering a long life span during which metabolic processes, aging, and concomitant novel diseases, including cancer, could occur. In this context, safety, toxicity, interaction with other drugs, and the state of health have to be taken into account in subjects treated with statins. Some evidence has shown a dichotomous effect of statins with either cancer-inhibiting or -promoting effects. To date, clinical trials failed to demonstrate a reduced cancer occurrence in statin users and no sufficient data are available to define the long-term effects of statin use over a period of 10 years. Moreover, results from clinical trials performed to evaluate the therapeutic efficacy of statins in cancer did not suggest statin use as chemotherapeutic or adjuvant agents. Here, we reviewed the pharmacology of the statins, providing a comprehensive update of the current knowledge of their effects on tissues, biological processes, and pathological conditions, and we dissected the disappointing evidence on the possible future use of statin-based drugs in cancer therapy.
Collapse
Affiliation(s)
- Patrizia Gazzerro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (Salerno), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gotoh M, Mizuno K, Ono Y, Takahashi M. Fluvastatin increases bone mineral density in postmenopausal women. Fukushima J Med Sci 2011; 57:19-27. [PMID: 21701079 DOI: 10.5387/fms.57.19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although several studies have reported a lower risk of osteoporotic fracture in hypercholesterolemic patients (WHO IIa) treated with statin, longitudinal studies on the effects of statins on bone are lacking. The aim of the present study was to evaluate bone mineral density (BMD) and bone turnover changes induced by 3-year fluvastatin treatment in postmenopausal women. Twenty-eight consecutive postmenopausal non-diabetic, normotensive hypercholesterolemic women (64.0±3.6 years) were treated for 36 months with 30 mg/day fluvastatin and 28 non-diabetic, normotensive normocholesterolemic age- and body mass index-matched postmenopausal women served as the control subjects. The result revealed a significant increase of the BMD as compared with the level at the base line (p< 0.001) in the fluvastairn-treated group, from 6 months on ward after the start treatment. Significant differences of the BMD were found between the controls and fluvastatin-treated group (p< 0.001) were at 6, 12, 24 and 36 months after the start of the study. In conclusion our results, although obtained small sample of postmenopausal hypercholesterolemic women, suggest a probable favorable effect of fluvastatin on bone formation and BMD.
Collapse
Affiliation(s)
- Mituhiro Gotoh
- Department of Internal Medicine, Fukushima Rosai Hospital, Iwaki, Japan.
| | | | | | | |
Collapse
|
26
|
Bleicher K, Cumming RG, Naganathan V, Seibel MJ, Sambrook PN, Blyth FM, Le Couteur DG, Handelsman DJ, Creasey HM, Waite LM. Lifestyle factors, medications, and disease influence bone mineral density in older men: findings from the CHAMP study. Osteoporos Int 2011; 22:2421-37. [PMID: 21110006 DOI: 10.1007/s00198-010-1478-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/22/2010] [Indexed: 01/16/2023]
Abstract
UNLABELLED Aging alone is not the only factor accounting for poor bone health in older men. There are modifiable factors and lifestyle choices that may influence bone health and result in higher bone density and lower fracture risk even in very old men. INTRODUCTION The aim of this cross-sectional analysis was to identify the factors associated with areal bone mineral density (BMD) and their relative contribution in older men. METHODS The Concord Health and Ageing in Men Project is a population-based study in Sydney, Australia, involving 1,705 men aged 70-97. Data were collected using questionnaires and clinical assessments. BMD of the hip and spine was measured by dual X-ray absorptiometry. RESULTS In multivariate regression models, BMD of the hip was associated with body weight and bone loading physical activities, but not independently with age. The positive relationship between higher BMD and recreational activities is attenuated with age. Factors independently associated with lower BMD at the hip were inability to stand from sitting, a history of kidney stones, thyroxine use, and Asian birth and at the spine, chronic obstructive pulmonary disease, paternal fracture history, and thyroxine use. Higher body weight, participation in dancing, tennis or jogging, quadriceps strength, alcohol consumption, and statin use were associated with higher hip BMD, while older age, osteoarthritis, higher body weight, and aspirin use were associated with higher spinal BMD. CONCLUSION Maintaining body weight, physical activity, and strength were positively associated with BMD even in very elderly men. Other parameters were also found to influence BMD, and once these were included in multivariate analysis, age was no longer associated with BMD. This suggests that age-related diseases, lifestyle choices, and medications influence BMD rather than age per se.
Collapse
Affiliation(s)
- K Bleicher
- School of Public Health, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Weivoda MM, Hohl RJ. The effects of direct inhibition of geranylgeranyl pyrophosphate synthase on osteoblast differentiation. J Cell Biochem 2011; 112:1506-13. [PMID: 21503955 DOI: 10.1002/jcb.23087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. These effects have been attributed to the depletion of geranylgeranyl pyrophosphate (GGPP). In this study, we tested whether specific inhibition of GGPP synthase (GGPPS) with digeranyl bisphosphonate (DGBP) would similarly lead to increased osteoblast differentiation. DGBP concentration dependently decreased intracellular GGPP levels in MC3T3-E1 pre-osteoblasts and primary rat calvarial osteoblasts, leading to impaired Rap1a geranylgeranylation. In contrast to our hypothesis, 1 µM DGBP inhibited matrix mineralization in the MC3T3-E1 pre-osteoblasts. Consistent with this, DGBP inhibited the expression of alkaline phosphatase and osteocalcin in primary osteoblasts. By inhibiting GGPPS, DGBP caused an accumulation of the GGPPS substrate farnesyl pyrophosphate (FPP). This effect was observed throughout the time course of MC3T3-E1 pre-osteoblast differentiation. Interestingly, DGBP treatment led to activation of the glucocorticoid receptor in MC3T3-E1 pre-osteoblast cells, consistent with recent findings that FPP activates nuclear hormone receptors. These findings demonstrate that direct inhibition of GGPPS, and the resulting specific depletion of GGPP, does not stimulate osteoblast differentiation. This suggests that in addition to depletion of GGPP, statin-stimulated osteoblast differentiation may depend on the depletion of upstream isoprenoids, including FPP.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Pharmacology, 2-471 Bowen Science Building, 51 Newton Road, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
28
|
Weivoda MM, Hohl RJ. Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation. Endocrinology 2011; 152:3113-22. [PMID: 21586555 DOI: 10.1210/en.2011-0016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. Statins inhibit 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (HMGCR), the first step of the isoprenoid biosynthetic pathway, leading to the depletion of the isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The effects of statins on bone have previously been attributed to the depletion of GGPP, because the addition of exogenous GGPP prevented statin-stimulated osteoblast differentiation in vitro. However, in a recent report, we demonstrated that the specific depletion of GGPP did not stimulate but, in fact, inhibited osteoblast differentiation. This led us to hypothesize that isoprenoids upstream of GGPP play a role in the regulation of osteoblast differentiation. We demonstrate here that the expression of HMGCR and FPP synthase decreased during primary calvarial osteoblast differentiation, correlating with decreased FPP and GGPP levels during differentiation. Zaragozic acid (ZGA) inhibits the isoprenoid biosynthetic pathway enzyme squalene synthase, leading to an accumulation of the squalene synthase substrate FPP. ZGA treatment of calvarial osteoblasts led to a significant increase in intracellular FPP and resulted in inhibition of osteoblast differentiation as measured by osteoblastic gene expression, alkaline phosphatase activity, and matrix mineralization. Simultaneous HMGCR inhibition prevented the accumulation of FPP and restored osteoblast differentiation. In contrast, specifically inhibiting GGPPS to lower the ZGA-induced increase in GGPP did not restore osteoblast differentiation. The specificity of HMGCR inhibition to restore osteoblast differentiation of ZGA-treated cultures through the reduction in isoprenoid accumulation was confirmed with the addition of exogenous mevalonate. Similar to ZGA treatment, exogenous FPP inhibited the mineralization of primary calvarial osteoblasts. Interestingly, the effects of FPP accumulation on osteoblasts were found to be independent of protein farnesylation. Our findings are the first to demonstrate that the accumulation of FPP impairs osteoblast differentiation and suggests that the depletion of this isoprenoid may be necessary for normal and statin-induced bone formation.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1009, USA
| | | |
Collapse
|
29
|
Reyes-García R, Rozas-Moreno P, Muñoz-Torres M. Enfermedad cardiovascular y metabolismo óseo. ACTA ACUST UNITED AC 2011; 58:353-9. [DOI: 10.1016/j.endonu.2011.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
30
|
Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem 2011; 1:21-34. [PMID: 20126511 DOI: 10.4155/fmc.09.4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Until fairly recently, cathepsin K was recognized solely as a bone-resorbing enzyme expressed selectively in the osteoclast. Evidence of its requirement for normal bone remodeling has resulted in this protease receiving considerable attention from the pharmaceutical industry. In the last decade, intense research efforts were aimed at development of cathepsin K inhibitors for treatment of osteoporosis and other skeletal disorders associated with pathological bone loss. Emerging new evidence suggests that in addition to bone resorption, cathepsin K is involved in the turnover of extracellular matrix proteins in organs, such as the lung, thyroid and skin, and plays important roles in cardiovascular disease, inflammation and obesity. DISCUSSION This review highlights the physiological and pathophysiological implications of this potent protease, with a focus on recent developments in the design and use of cathepsin K inhibitors to target skeletal pathologies. Therapeutic implications of anticathepsin K drugs in the context of common links between bone disease and atherosclerosis are also discussed. CONCLUSION The association of cathepsin K with skeletal and cardiovascular disorders offers intriguing future applications for inhibitors of this potent protease.
Collapse
|
31
|
Blasco Valle M, Ferreras Amez JM, Vicente Molinero Á, Abadía Gallego V, Sarrat Torres M. Variación de la masa ósea tras tratamiento con atorvastatina. Estudio MOyAT. Aten Primaria 2011; 43:160-1. [DOI: 10.1016/j.aprim.2010.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022] Open
|
32
|
The Isoprenoid Biosynthetic Pathway and Statins. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-415922-8.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Osteogenic activity of locally applied small molecule drugs in a rat femur defect model. J Biomed Biotechnol 2010; 2010:597641. [PMID: 20625499 PMCID: PMC2896701 DOI: 10.1155/2010/597641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/30/2010] [Indexed: 11/17/2022] Open
Abstract
The long-term success of arthroplastic joints is dependent on the stabilization of the implant within the skeletal site. Movement of the arthroplastic implant within the bone can stimulate osteolysis, and therefore methods which promote rigid fixation or bone growth are expected to enhance implant stability and the long-term success of joint arthroplasty. In the present study, we used a simple bilateral bone defect model to analyze the osteogenic activity of three small-molecule drug implants via microcomputerized tomography (micro-CT) and histomorphometry. In this study, we show that local delivery of alendronate, but not lovastatin or omeprazole, led to significant new bone formation at the defect site. Since alendronate impedes osteoclast-development, it is theorized that alendronate treatment results in a net increase in bone formation by preventing osteoclast mediated remodeling of the newly formed bone and upregulating osteoblasts.
Collapse
|
34
|
Kanakaris NK, Petsatodis G, Tagil M, Giannoudis PV. Is there a role for bone morphogenetic proteins in osteoporotic fractures? Injury 2009; 40 Suppl 3:S21-6. [PMID: 20082786 DOI: 10.1016/s0020-1383(09)70007-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central role of bone morphogenetic proteins (BMPs) in the remodelling process of the human skeleton has been identified in numerous experimental and clinical studies. BMPs appear to be key agents in the osteoblastic differentiation of mesenchymal stem cells, and more recent evidence implicates them with the cells of the osteoclastic lineage. BMP-2, BMP-4, BMP-6 and BMP-7 have been studied in the context of osteoporosis and have been associated with its pathophysiological pathways. The theoretical advantages of local or systemic treatment of osteoporotic fractures with BMPs include the potential of inducing a rapid increase in bone strength locally at the fractured area and systemically in the entire skeleton, as well as accelerating the bone-healing period. Animal models of osteoporotic fractures suggested that the induction of new bone by local or systemic use of BMP-7 should be investigated as potential bone augmentation therapy to improve bone quality in symptomatic spinal osteoporosis. As our knowledge expands, new innovations may provide clinicians with advanced biologically-based therapies for the successful treatment of osteoporotic fractures.
Collapse
|
35
|
Persy V, D'Haese P. Vascular calcification and bone disease: the calcification paradox. Trends Mol Med 2009; 15:405-16. [PMID: 19733120 DOI: 10.1016/j.molmed.2009.07.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 02/06/2023]
Abstract
Vascular calcification or ectopic mineralization in blood vessels is an active, cell-regulated process, increasingly recognized as a general cardiovascular risk factor. Remarkably, ectopic artery mineralization is frequently accompanied by decreased bone mineral density or disturbed bone turnover. This contradictory association, observed mainly in osteoporosis and chronic kidney disease, is called the 'calcification paradox'. Here, we review recent advances in our understanding of the calcification paradox, including protein expression patterns governing both normal and ectopic mineralization, the conversion of vascular smooth muscle cells to bone-like cells, and the regulatory pathways involved in both bone and vessel mineralization. Further elucidation of the mechanisms underlying the calcification paradox is crucial in order to develop preventive and therapeutic strategies to deal with vascular calcification and reduce the associated cardiovascular risk.
Collapse
|
36
|
Goldenberg N, Glueck C. Efficacy, effectiveness and real life goal attainment of statins in managing cardiovascular risk. Vasc Health Risk Manag 2009; 5:369-76. [PMID: 19475774 PMCID: PMC2686255 DOI: 10.2147/vhrm.s3241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Statins became available for the treatment of hypercholesterolemia in 1987. Multiple, well-designed, placebo-controlled, double-blind studies revealed that each 1% reduction in serum cholesterol level was associated with about 1% reduction in risk of cardiovascular events. Low-density lipoprotein (LDL) cholesterol reduction to less than 78 mg/dL may be associated with reduction of atheroma burden. Patients with high levels of high specificity C-reactive protein and having LDL cholesterol less than 3.4 mmol/L (130 mg/dL) in primary prevention settings benefited from aggressive LDL cholesterol reduction with rosuvastatin over a 2-year period. However, in real life practice, about half of patients who are prescribed statins discontinue the medication by the end of the year. Medication adherence is lower in younger patients, women, and absence of known coronary heart disease. Personal features of the prescribing physician and dispensing pharmacies also affect patients’ compliance. More studies are needed to evaluate if “compliance packets” would benefit patients in a real life situation.
Collapse
Affiliation(s)
- Naila Goldenberg
- Cholesterol and Metabolism Center of Jewish Hospital, Cincinnati, Ohio, USA
| | | |
Collapse
|
37
|
Osteogenic effects of D+beta-3,4-dihydroxyphenyl lactic acid (salvianic acid A, SAA) on osteoblasts and bone marrow stromal cells of intact and prednisone-treated rats. Acta Pharmacol Sin 2009; 30:321-32. [PMID: 19262556 DOI: 10.1038/aps.2009.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM Previous studies have shown that D(+)beta-3,4-dihydroxyphenyl lactic acid (salvianic acid A, SAA) has anabolic effects on prednisone (GC)-induced osteoporosis in rats. The current study aims to investigate the molecular mechanism of SAA's impact on osteogenesis and adipogenesis in bone marrow stromal cells in intact and GC-treated rats. METHODS For in vitro study, newborn rat calvaria osteoblasts (rOBs) and rat bone marrow stromal cells (rMSCs) were isolated, identified and cultured with SAA at different concentrations to evaluate SAA's influence on osteogenesis and adipogenesis. In addition, 3-month-old Sprague-Dawley (SD) male rats were treated with distilled water, prednisone alone (3.0 mgxkg(-1)xd(-1)) or prednisone (3.0 mgxkg(-1)xd(-1)) and SAA (25 mgxkg(-1)xd(-1)) for 45 d. At the end point, the different groups of rMSCs were isolated by density-gradient centrifugation and cultured. RESULTS (1) At 0.1-10.0 mg/L, SAA increased ALP activity, type I collagen (Coll-I) mRNA and OPG mRNA expression and stimulated nodule mineralization of rOBs. SAA (0.5 mg/L) also significantly increased the ALP activity of rMSCs without a need for osteogenesis-inducing medium. At 5.0 mg/L, SAA decreased the number of adipocytes with less lipid droplet formation from the rMSCs, which typically undergo adipocyte induction. (2) Coll-I expression was markedly decreased, whereas lipoprotein lipase (LPL) mRNA expression increased by 98% when compared with the first generation of rMSCs in GC-treated rats. The SAA-treated rats demonstrated an over 2-fold increase in Coll-I expression when compared with intact rats and further showed a significant decrease in LPL expression when compared with GC-treated rats. When rMSCs were co-cultured with SAA (0.5 mg/L) in vitro, SAA did not affect Coll-I and LPL gene expression in intact rats but significantly increased Coll-I and decreased LPL gene expression in GC-treated rats. CONCLUSION SAA protected bone from GC-induced bone marrow impairment by stimulating osteogenesis and depressing adipogenesis in bone marrow stromal cells both in vivo and in vitro. The data indicated that aqueous extract of Salvia miltiorrhiza, which include SAA, may serve as an active anabolic agent and a useful therapeutic strategy for the treatment of GC-associated osteoporosis.
Collapse
|