1
|
Zhang X, Wu S, Huang Q, Jing S, Yong P, Zhang L, Zhuang H. Cordycepin's therapeutic potential: in vivo transport, transbilayer diffusion and anti-aging effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40084500 DOI: 10.1002/jsfa.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Cordycepin (3'-deoxyadenosine) is a bioactive compound known for its numerous beneficial properties, including antioxidant, anti-aging and antitumor effects. Despite its promising therapeutic potential, the in vivo transport mechanisms of cordycepin remain inadequately understood. Previous studies have highlighted its biological activity, but there is limited information regarding its transport and distribution, as well as how it interacts with biological systems to exert these effects. The present study explored the transport mechanisms of cordycepin, specifically its interaction with bovine serum albumin (BSA) transporters and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes, and assessed its anti-aging effects through cellular experiments. RESULTS The study demonstrates that cordycepin effectively interacts with DPPC liposomes, improving its therapeutic efficacy. Spectral analysis shows strong binding between cordycepin and transporters, aiding its distribution in the bloodstream and targeted accumulation in tissues. Additionally, cellular tests reveal that cordycepin inhibits butyl hydroperoxide-induced cellular senescence in a dose-dependent manner. CONCLUSION The interaction of cordycepin with BSA transporters and DPPC liposomes enhances its distribution and therapeutic potential. The compound also shows promise as an anti-aging agent by reducing cellular senescence. These findings provide insight into cordycepin's in vivo behavior and suggest strategies to enhance its pharmacological effectiveness. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Qihan Huang
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Shubo Jing
- College of Materials Science and Engineering, Jilin University, Jilin, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Jilin, China
| |
Collapse
|
2
|
Zhuang H, Zhang X, Wu S, Mao C, Dai Y, Yong P, Niu X. Study transport of hesperidin based on the DPPC lipid model and the BSA transport model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124172. [PMID: 38513316 DOI: 10.1016/j.saa.2024.124172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Hesperidin (HE), a significant flavonoid polyphenolic compound present in citrus plants, exhibits diverse pharmacological effects. Considering the crucial involvement of biological membranes and transporter proteins in the transportation and biological processes of HE, it becomes essential to comprehend the potential mechanisms through which HE interacts with membranes and transporter proteins. In order to simulate the process of active molecule transport, a cell membrane model consisting of 1,2-dipalmitoyl-n-glycero-3-phosphatidylcholine (DPPC) and a transporter protein model of bovine serum albumin (BSA) were employed for investigation. The present study aimed to investigate the mechanism of action of hesperidin (HE) in DPPC and BSA using fluorescence quenching, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The localization and interaction of HE within liposomes were also elucidated. Furthermore, the binding of BSA and HE was analyzed through UV/Vis absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and computational biology techniques. Computational biology analysis revealed that the binding between HE and BSA primarily occurred via hydrogen bonding and hydrophobic interactions. This study aimed to investigate the role and mechanism of HE in the DPPC cell membrane model and the BSA transporter protein model, thereby offering novel insights into the action of HE in DPPC and BSA.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
3
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, İrfan Küfrevioğlu Ö, Beydemir Ş. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies. Bioorg Chem 2024; 145:107221. [PMID: 38387398 DOI: 10.1016/j.bioorg.2024.107221] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Despite significant developments in therapeutic strategies, Diabetes Mellitus remains an increasing concern, leading to various complications, e.g., cataracts, neuropathy, retinopathy, nephropathy, and several cardiovascular diseases. The polyol pathway, which involves Aldose reductase (AR) as a critical enzyme, has been focused on by many researchers as a target for intervention. On the other hand, spiroindoline-based compounds possess remarkable biological properties. This guided us to synthesize novel spiroindoline oxadiazolyl-based acetate derivatives and investigate their biological activities. The synthesized molecules' structures were confirmed herein, using IR, NMR (1H and 13C), and Mass spectroscopy. All compounds were potent inhibitors with KI constants spanning from 0.186 ± 0.020 μM to 0.662 ± 0.042 μM versus AR and appeared as better inhibitors than the clinically used drug, Epalrestat (EPR, KI: 0.841 ± 0.051 μM). Besides its remarkable inhibitory profile compared to EPR, compound 6k (KI: 0.186 ± 0.020 μM) was also determined to have an unusual pharmacokinetic profile. The results showed that 6k had less cytotoxic effect on normal mouse fibroblast (L929) cells (IC50 of 569.58 ± 0.80 μM) and reduced the viability of human breast adenocarcinoma (MCF-7) cells (IC50 of 110.87 ± 0.42 μM) more than the reference drug Doxorubicin (IC50s of 98.26 ± 0.45 μM and 158.49 ± 2.73 μM, respectively), thus exhibiting more potent anticancer activity. Moreover, molecular dynamic simulations for 200 ns were conducted to predict the docked complex's stability and reveal significant amino acid residues that 6k interacts with throughout the simulation.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Sakarya, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University, 55020 Samsun, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, 34010 İstanbul, Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
4
|
Kashyap K, Mahapatra PP, Ahmed S, Buyukbingol E, Siddiqi MI. Identification of Potential Aldose Reductase Inhibitors Using Convolutional Neural Network-Based in Silico Screening. J Chem Inf Model 2023; 63:6261-6282. [PMID: 37788831 DOI: 10.1021/acs.jcim.3c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aldose reductase (ALR2) is a notable enzyme of the polyol pathway responsible for aggravating diabetic neuropathy complications. The first step begins when it catalyzes the reduction of glucose to sorbitol with NADPH as a coenzyme. Elevated concentrations of sorbitol damage the tissues, leading to complications like neuropathy. Though considerable effort has been pushed toward the successful discovery of potent inhibitors, its discovery still remains an elusive task. To this end, we present a 3D convolutional neural network (3D-CNN) based ALR2 inhibitor classification technique by dealing with snapshots of images captured from 3D chemical structures with multiple rotations as input data. The CNN-based architecture was trained on the 360 sets of image data along each axis and further prediction on the Maybridge library by each of the models. Subjecting the retrieved hits to molecular docking leads to the identification of the top 10 molecules with high binding affinity. The hits displayed a better blood-brain barrier penetration (BBB) score (90% with more than four scores) as compared to standard inhibitors (38%), reflecting the superior BBB penetrating efficiency of the hits. Followed by molecular docking, the biological evaluation spotlighted five compounds as promising ALR2 inhibitors and can be considered as a likely prospect for further structural optimization with medicinal chemistry efforts to improve their inhibition efficacy and consolidate them as new ALR2 antagonists in the future. In addition, the study also demonstrated the usefulness of scaffold analysis of the molecules as a method for investigating the significance of structurally diverse compounds in data-driven studies. For reproducibility and accessibility purposes, all of the source codes used in our study are publicly available.
Collapse
Affiliation(s)
- Kushagra Kashyap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pinaki Prasad Mahapatra
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Erdem Buyukbingol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Türkeş C, Arslan M, Demir Y, Çoçaj L, Nixha AR, Beydemir Ş. N-substituted phthalazine sulfonamide derivatives as non-classical aldose reductase inhibitors. J Mol Recognit 2022; 35:e2991. [PMID: 36073557 DOI: 10.1002/jmr.2991] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023]
Abstract
Aldose reductase (AR, AKR1B1; EC 1.1.1.21) is an aldo-keto reductase that has been widely investigated as an enzyme crucially involved in the pathogenesis of several chronic complications, including nephropathy, neuropathy, retinopathy, and cataracts associated with diabetes mellitus. Although sulfonamides have been reported to possess many other biological activities, in continuation of our interest in designing and discovering potent inhibitors of AR, herein, we have evaluated the AR inhibitory potential of N-substituted phthalazine sulfonamide derivatives 5a-l. The biological studies revealed that all the derivatives show excellent activity against AR, with KI constants ranging from 67.73 to 495.20 nM. Among these agents, 4-(6-nitro-1,4-dioxo-1,2,3,4-tetrahydrophthalazine-2-carbonyl)benzenesulfonamide (5e) and 1,4-dioxo-3-(4-sulfamoylbenzoyl)-1,2,3,4-tetrahydrophthalazine-6-carboxylic acid (5f) showed prominent inhibitory activity with KI values of 67.73 and 148.20 nM, respectively, vs AR and were found to be more potent than epalrestat (KI = 852.50 nM), the only AR inhibitor currently used in the therapy. Moreover, molecular docking studies were also performed to rationalize binding site interactions of these sulfonamides (5a-l) with the target enzyme AR. According to ADME-Tox, predicts were also determined that these derivatives be ARIs displaying suitable drug-like properties. The sulfonamides identified in this study may be used to develop lead therapeutic agents inhibiting diabetic complications.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Liridon Çoçaj
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, Prishtina University, Republic of Kosova, Serbia
| | - Arleta Rifati Nixha
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, Prishtina University, Republic of Kosova, Serbia
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
6
|
Dutta D, Mohindra R, Kumar M, Kumar A, Sharma M. Ranirestat Improves Electrophysiologic but not Clinical Measures of Diabetic Polyneuropathy: A Meta-Analysis. Indian J Endocrinol Metab 2022; 26:399-406. [PMID: 36618527 PMCID: PMC9815196 DOI: 10.4103/ijem.ijem_242_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Ranirestat, an aldose reductase inhibitor evaluated in several randomised controlled trials (RCTs) in diabetic peripheral neuropathy (DPN). However, to date, no meta-analysis has evaluated the efficacy and safety of ranirestat in DPN. We undertook this meta-analysis to address this knowledge gap. Detailed search of electronic databases for RCTs published till December 2021 was done at Cochrane register, Medline, PubMed, Embase, clinicaltrials.gov, ctri.nic.in, global health and Google Scholar using the Boolean search strategy: ((ranirestat) OR (aldose reductase inhibitor)) AND ((diabetes) OR ("diabetes mellitus")). The primary outcome was to evaluate changes in nerve conduction velocities (NCV) of different nerves. The secondary outcomes were to evaluate alterations in amplitudes, F-wave latencies of nerves, modified Toronto Clinical Neuropathy Score (mTCNS) and adverse events. Data from 5 studies involving 1461 patients with DPN was analysed to establish the impact of ranirestat (20-40 mg/day) as compared to placebo on different electrophysiologic outcomes over a median follow-up of 52 weeks. Patients receiving ranirestat had significantly greater improvement in proximal median sensory NCV [MD 0.77 m/s (95%CI: 0.50-1.05); P < 0.01; I2 = 26%], distal median sensory NCV [MD 0.91 m/s (95%CI: 0.87-0.95); P < 0.01; I2 = 0%], median motor NCV [MD 0.63 m/s (95%CI: 0.60-0.66); P < 0.01; I2 = 0%], tibial motor NCV [MD 0.46 m/s (95%CI: 0.43-0.49); P < 0.01; I2 = 0%] and peroneal motor NCV [MD 0.80 m/s (95%CI: 0.66-0.93); P < 0.01; I2 = 0%]. mTCNS was not significantly different among groups. Treatment-emergent adverse events [risk ratio (RR) 0.85 (95%CI: 0.63-1.14); P = 0.28; I2 = 0%] and severe adverse events [RR 1.35 (95%CI: 0.86-2.11); P = 0.20; I2 = 0%] were comparable across study groups. In people with established DPN with long-standing diabetes, ranirestat is safe and effective in improving electrophysiologic but not clinical DPN.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology, Center for Endocrinology, Diabetes, Arthritis and Rheumatism (CEDAR) Super-Speciality Healthcare, Dwarka, New Delhi, India
| | - Ritin Mohindra
- Department of Medicine, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manoj Kumar
- Department of Endocrinology, CEDAR Superspeciality Healthcare, Zirakpur, Punjab, India
| | - Ashok Kumar
- Department of Endocrinology, CEDAR Superspeciality Healthcare, Panipat, Haryana, India
| | - Meha Sharma
- Department of Rheumatology, Center for Endocrinology, Diabetes, Arthritis and Rheumatism (CEDAR) Super-Speciality Healthcare, Dwarka, New Delhi, India
| |
Collapse
|
7
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
8
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
9
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
10
|
Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med Chem 2020; 12:1327-1358. [PMID: 32602375 DOI: 10.4155/fmc-2020-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldose Reductase 2 (ALR2), the rate-limiting enzyme of the polyol pathway, plays an important role in detoxification of some toxic aldehydes. Under hyperglycemia, this enzyme overactivates and causes diabetic complications (DC). Therefore, ALR2 inhibition has been established as a potential approach to manage these complications. Several ALR2 inhibitors have been reported, but none of them could reach US FDA approval. One of the main reasons is their poor selectivity over ALR1, which leads to the toxicity. The current review underlines the molecular connectivity of ALR2 with DC and comparative analysis of the catalytic domains of ALR2 and ALR1, to better understand the selectivity issues. This report also discusses the key features required for ALR2 inhibition and to limit toxicity due to off-target activity.
Collapse
|
11
|
Celestina SK, Sundaram K, Ravi S. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Bioorg Chem 2020; 97:103640. [PMID: 32086051 DOI: 10.1016/j.bioorg.2020.103640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 01/31/2023]
Abstract
Inhibitors of aldose reductase are rate-limiting enzymes and could play a key role to prevent the complications of diabetes. In our attempt to develop novel inhibitors of aldose reductase, the derivatives of rhodanine-3-hippuric acid-pyrazole hybrid were synthesized and characterised by spectral data. The biological studies reveal that all the compounds show an excellent activity against ALR2 with IC50 values ranging from 0.04 to 1.36 µM. Among these the synthesised compounds 6a-m, 6g and 6e showed specific inhibitory activity with IC50 values of 0.04 and 0.06 µM respectively against ALR2 and found to be more potent than epalrestat (IC50 = 0.87 μM), the only aldose reductase inhibitor currently used in the therapy. Molecular docking analysis using the AR-NADP+ complex as a receptor was performed with all the synthesized compounds. All the compounds exhibit a well-defined binding mode within the AR active site, similarly to previous described AR inhibitors, with the anion head group bound to the catalytic center, blocking thus its activity. By forming hydrogen bonds with Tyr48 and His110 of the protein from ALR2 (PDB ID: 2FZD), the compounds 6g and 6e interrupt the proton donation mechanism, which is necessary for the catalytic activity of ALR2.
Collapse
Affiliation(s)
- Stephen Kumar Celestina
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Kaveri Sundaram
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India.
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
12
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
13
|
Treps L, Conradi LC, Harjes U, Carmeliet P. Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers-A New Perspective? Pharmacol Rev 2016; 68:872-87. [PMID: 27363442 DOI: 10.1124/pr.116.012492] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Excessive angiogenesis (i.e., the formation of new blood vessels) contributes to different pathologies, among them cancer and ocular disorders. Conversely, dysfunction of endothelial cells (ECs) contributes to cardiovascular complications, as is the case in diabetes. Inhibition of pathologic angiogenesis in blinding eye disease and cancer by targeting growth factors such as vascular endothelial growth factor has become an accepted therapeutic strategy. However, recent studies also unveiled the emerging importance of EC metabolism in controlling angiogenesis. In this overview, we will discuss recent insights in the metabolic regulation of angiogenesis, focusing on the best-characterized metabolic pathways, and highlight deregulation of EC metabolism in cancer and diabetes. We will give an outlook on how targeting EC metabolism can be used for blocking pathologic angiogenesis and for normalizing EC dysfunction.
Collapse
Affiliation(s)
- Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| |
Collapse
|
14
|
Statil suppresses cancer cell growth and proliferation by the inhibition of tumor marker AKR1B10. Anticancer Drugs 2014; 25:930-7. [DOI: 10.1097/cad.0000000000000121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Giannoukakis N. Evaluation of ranirestat for the treatment of diabetic neuropathy. Expert Opin Drug Metab Toxicol 2014; 10:1051-9. [DOI: 10.1517/17425255.2014.916277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Eur J Med Chem 2014; 71:53-66. [DOI: 10.1016/j.ejmech.2013.10.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/13/2013] [Indexed: 02/05/2023]
|
17
|
Chatzopoulou M, Pegklidou K, Papastavrou N, Demopoulos VJ. Development of aldose reductase inhibitors for the treatment of inflammatory disorders. Expert Opin Drug Discov 2013; 8:1365-80. [PMID: 24090200 DOI: 10.1517/17460441.2013.843524] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Accumulating evidence attributes a significant role to aldose reductase (ALR2) in the pathogenesis of several inflammatory pathologies. Aldose reductase inhibitors (ARIs) were found to attenuate reactive oxygen species (ROS) production both in vitro and in vivo. Thus, they disrupt signaling cascades that lead to the production of cytokines/chemokines, which induce and exacerbate inflammation. As a result, ARIs might hold a significant therapeutic potential as alternate anti-inflammatory drugs. AREAS COVERED The authors present a comprehensive review of the current data that support the central role of ALR2 in several inflammatory pathologies (i.e., diabetes, cancer, sepsis, asthma and ocular inflammation). Further, the authors describe the potential underlying molecular mechanisms and provide a commentary on the status of ARIs in this field. EXPERT OPINION It is important that future efforts focus on delineating all the steps of the molecular mechanism that implicates ALR2 in inflammatory pathologies. At the same time, utilizing the previous efforts in the field of ARIs, several candidates that have been proven safe in the clinic may be evaluated for their clinical significance as anti-inflammatory medication. Finally, structurally novel ARIs, designed to target specifically the proinflammatory subpocket of ALR2, should be pursued.
Collapse
Affiliation(s)
- Maria Chatzopoulou
- Aristotle University of Thessaloniki, School of Pharmacy, Department of Pharmaceutical Chemistry , 54124 Thessaloniki , Greece ;
| | | | | | | |
Collapse
|
18
|
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 2012; 3:87. [PMID: 22582044 PMCID: PMC3348620 DOI: 10.3389/fphar.2012.00087] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/19/2012] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.
Collapse
Affiliation(s)
- Wai Ho Tang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University New Haven, CT, USA
| | | | | |
Collapse
|
19
|
Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash JM, LaBarbera DV. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One 2012; 7:e31399. [PMID: 22485126 PMCID: PMC3317655 DOI: 10.1371/journal.pone.0031399] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/06/2012] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus is recognized as a leading cause of new cases of blindness. The prevalence of diabetic eye disease is expected to continue to increase worldwide as a result of the dramatic increase in the number of people with diabetes. At present, there is no medical treatment to delay or prevent the onset and progression of cataract or retinopathy, the most common causes of vision loss in diabetics. The plant Emblica officinalis (gooseberry) has been used for thousands of years as a traditional Indian Ayurvedic preparation for the treatment of diabetes in humans. Extracts from this plant have been shown to be efficacious against the progression of cataract in a diabetic rat model. Aldose reductase (ALR2) is implicated in the development of secondary complications of diabetes including cataract and, therefore, has been a major drug target for the development of therapies to treat diabetic disease. Herein, we present the bioassay-guided isolation and structure elucidation of 1-O-galloyl-β-D-glucose (β-glucogallin), a major component from the fruit of the gooseberry that displays selective as well as relatively potent inhibition (IC50 = 17 µM) of AKR1B1 in vitro. Molecular modeling demonstrates that this inhibitor is able to favorably bind in the active site. Further, we show that β-glucogallin effectively inhibits sorbitol accumulation by 73% at 30 µM under hyperglycemic conditions in an ex-vivo organ culture model of lenses excised from transgenic mice overexpressing human ALR2 in the lens. This study supports the continued development of natural products such as β-glucogallin as therapeutic leads in the development of novel therapies to treat diabetic complications such as cataract.
Collapse
Affiliation(s)
- Muthenna Puppala
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Jessica Ponder
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Palla Suryanarayana
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | - J. Mark Petrash
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
The huge increase in type 2 diabetes is a burden worldwide. Many marketed compounds do not address relevant aspects of the disease; they may already compensate for defects in insulin secretion and insulin action, but loss of secreting cells (β-cell destruction), hyperglucagonemia, gastric emptying, enzyme activation/inhibition in insulin-sensitive cells, substitution or antagonizing of physiological hormones and pathways, finally leading to secondary complications of diabetes, are not sufficiently addressed. In addition, side effects for established therapies such as hypoglycemias and weight gain have to be diminished. At present, nearly 1000 compounds have been described, and approximately 180 of these are going to be developed (already in clinical studies), some of them directly influencing enzyme activity, influencing pathophysiological pathways, and some using G-protein-coupled receptors. In addition, immunological approaches and antisense strategies are going to be developed. Many compounds are derived from physiological compounds (hormones) aiming at improving their kinetics and selectivity, and others are chemical compounds that were obtained by screening for a newly identified target in the physiological or pathophysiological machinery. In some areas, great progress is observed (e.g., incretin area); in others, no great progress is obvious (e.g., glucokinase activators), and other areas are not recommended for further research. For all scientific areas, conclusions with respect to their impact on diabetes are given. Potential targets for which no chemical compound has yet been identified as a ligand (agonist or antagonist) are also described.
Collapse
Affiliation(s)
- E J Verspohl
- Department of Pharmacology, Institute of Medicinal Chemistry, University of Muenster, Hittorfstr. 58-62, 48149 Muenster, Germany.
| |
Collapse
|
21
|
Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 2011; 12:345-64. [PMID: 20860561 DOI: 10.1111/j.1399-5448.2010.00699.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Matthew P Krause
- Dept of Pathology & Molecular Medicine, McMaster University, 1200 Main St., W. Hamilton, ON, Canada L8N 3Z5
| | | | | |
Collapse
|
22
|
Zhong L, Shen H, Huang C, Jing H, Cao D. AKR1B10 induces cell resistance to daunorubicin and idarubicin by reducing C13 ketonic group. Toxicol Appl Pharmacol 2011; 255:40-7. [PMID: 21640744 DOI: 10.1016/j.taap.2011.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/13/2011] [Accepted: 05/15/2011] [Indexed: 12/12/2022]
Abstract
Daunorubicin, idarubicin, doxorubicin and epirubicin are anthracyclines widely used for the treatment of lymphoma, leukemia, and breast, lung, and liver cancers, but tumor resistance limits their clinical success. Aldo-keto reductase family 1 B10 (AKR1B10) is an NADPH-dependent enzyme overexpressed in liver and lung carcinomas. This study was aimed to determine the role of AKR1B10 in tumor resistance to anthracyclines. AKR1B10 activity toward anthracyclines was measured using recombinant protein. Cell resistance to anthracycline was determined by ectopic expression of AKR1B10 or inhibition by epalrestat. Results showed that AKR1B10 reduces C13-ketonic group on side chain of daunorubicin and idarubicin to hydroxyl forms. In vitro, AKR1B10 converted daunorubicin to daunorubicinol at V(max) of 837.42±81.39nmol/mg/min, K(m) of 9.317±2.25mM and k(cat)/K(m) of 3.24. AKR1B10 showed better catalytic efficiency toward idarubicin with V(max) at 460.23±28.12nmol/mg/min, K(m) at 0.461±0.09mM and k(cat)/K(m) at 35.94. AKR1B10 was less active toward doxorubicin and epirubicin with a C14-hydroxyl group. In living cells, AKR1B10 efficiently catalyzed reduction of daunorubicin (50nM) and idarubicin (30nM) to corresponding alcohols. Within 24h, approximately 20±2.7% of daunorubicin (1μM) or 23±2.3% of idarubicin (1μM) was converted to daunorubicinol or idarubicinol in AKR1B10 expression cells compared to 7±0.9% and 5±1.5% in vector control. AKR1B10 expression led to cell resistance to daunorubicin and idarubicin, but inhibitor epalrestat showed a synergistic role with these agents. Together our data suggest that AKR1B10 participates in cellular metabolism of daunorubicin and idarubicin, resulting in drug resistance. These data are informative for the clinical use of idarubicin and daunorubicin.
Collapse
Affiliation(s)
- Linlin Zhong
- Department of Medical Microbiology, Immunology, & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794-9626, USA
| | | | | | | | | |
Collapse
|
23
|
Shen Y, Zhong L, Markwell S, Cao D. Thiol-disulfide exchanges modulate aldo–keto reductase family 1 member B10 activity and sensitivity to inhibitors. Biochimie 2010; 92:530-7. [DOI: 10.1016/j.biochi.2010.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/01/2010] [Indexed: 12/30/2022]
|
24
|
Cativiela C, Ordóñez M. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary alpha-Amino Acids. TETRAHEDRON, ASYMMETRY 2009; 20:1-63. [PMID: 20300486 PMCID: PMC2839256 DOI: 10.1016/j.tetasy.2009.01.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The most recent papers describing the stereoselective synthesis of cyclic quaternary alpha-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton.
Collapse
Affiliation(s)
- Carlos Cativiela
- Departamento de Química Orgánica, ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza (Spain)
| | - Mario Ordóñez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos (México)
| |
Collapse
|
25
|
Vo T, Marcus KB. Ranirestat: A Selective Aldose Reductase Inhibitor for Diabetic Sensorimotor Polyneuropathy. J Pharm Technol 2008. [DOI: 10.1177/875512250802400605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To review the pharmacology, pharmacokinetics, clinical efficacy, and safety of ranirestat, an oral aldose reductase inhibitor with a unique chemical structure, as treatment of diabetic sensorimotor polyneuropathy in patients with diabetes mellitus. Data Sources: Primary literature and review articles were identified by searching MEDLINE (1950–June 2008), EMBASE (1991–June 2008), International Pharmaceutical Abstracts (1970–June 2008), and Google Scholar using the key terms ranirestat, AS-3201, SX-3030, aldose reductase inhibitors, diabetes mellitus, and peripheral neuropathy. Additional articles were identified from the bibliographies of the obtained literature. Study Selection and Data Extraction: Reviewed literature was restricted to available English-language articles. Preclinical and clinical trials were reviewed. One Phase 2 clinical trial and its extension study were identified. No data have yet been reported from Phase 3 trials that were conducted between 2004 and 2006. Data Synthesis: Ranirestat is a selective and reversible inhibitor of aldose reductase. Nerve damage is reduced by inhibiting this key enzyme in the polyol pathway, thus preventing the accumulation of sorbitol and fructose. Ranirestat has been compared with placebo in randomized, double-blind, controlled trials. Improvement in nerve function, sensation, and clinical grading scale were noted. Ranirestat was reported to be well tolerated. Conclusions: Ranirestat may offer a clinical advantage over current treatment modalities as the first agent to address one factor in the underlying cause of diabetic sensorimotor polyneuropathy. Further studies should be done on safety, efficacy, tolerability, and quality of life to determine how successful this agent will be in the treatment of diabetic sensorimotor polyneuropathy. ACPE Universal Program Numbers: 407-000-08-056-H01-P (Pharmacists); 407-000-08-056-H01-T (Technicians)
Collapse
Affiliation(s)
- Ty Vo
- TY VO PharmD BCPS, Assistant Professor, Department of Pharmacy Practice, School of Pharmacy, Pacific University, Hillsboro, OR
| | - Kristine B Marcus
- KRISTINE B MARCUS RPh BCPS, Assistant Professor, Department of Pharmacy Practice, School of Pharmacy, Pacific University
| |
Collapse
|