1
|
Investigation of IL-17A Serum Levels in Patients with Nonmelanoma Skin Cancer. Dermatol Res Pract 2021; 2021:5540163. [PMID: 34239554 PMCID: PMC8233089 DOI: 10.1155/2021/5540163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/11/2021] [Indexed: 01/13/2023] Open
Abstract
Background Role of interleukin 17A (IL-17A) in carcinogenesis and cancer growth is controversial. Although some researches support its antitumor activity, some others suggest that it promotes the growth and development of different types of cancer including skin cancer by activation of STAT3. Although the function of the cytokines such as IL-17A has been extensively studied in various types of cancer, nonmelanoma skin cancer (NMSC) has not received much attention. Therefore, the present study was aimed to investigate the serum levels of IL-17A in NMSC patients. Methods This cross-sectional study was performed on 60 patients with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) as well as 57 age-sex matched healthy individuals as control group. Measurement of IL-17A serum levels in both case and control groups was performed by a commercially reliable sandwich enzyme-linked immunosorbent assay (ELISA) kit. Results In this study, we observed that IL-17A serum levels in NMSC patients were significantly higher than the control group (P < 0.001). Also, both BCC and SCC patients had higher levels of IL-17A in their sera in comparison to the controls (P=0.001 and P < 0.001, respectively). However, there was no significant difference between SCC and BCC patients regarding serum levels of IL-17A. Conclusion According to our results, it can be concluded that IL-17A may play a role in inducing the growth and progression of NMSC and it can be used as a therapeutic target in these patients in future.
Collapse
|
2
|
Frasch SC, McNamee EN, Kominsky D, Jedlicka P, Jakubzick C, Zemski Berry K, Mack M, Furuta GT, Lee JJ, Henson PM, Colgan SP, Bratton DL. G2A Signaling Dampens Colitic Inflammation via Production of IFN-γ. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1425-34. [PMID: 27402702 PMCID: PMC4975950 DOI: 10.4049/jimmunol.1600264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022]
Abstract
Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the G protein-coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A(-/-) mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening, histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A(-/-) colons showed significantly more TNF-α(+) and Ly6C(hi)MHCII(-) proinflammatory monocytes and eosinophils than in wild-type colons. Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A(-/-) mice. G2A(-/-) mice also had less IFN-γ in inflamed colon tissues than wild-type mice. Fewer CD4(+) lymphocytes were recruited to inflamed G2A(-/-) colons, and fewer colonic lymphocytes produced IFN-γ upon ex vivo stimulation. Administration of IFN-γ to G2A(-/-) mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil numbers to levels seen in wild-type mice. Furthermore, IFN-γ reduced the numbers of TNF-α(+) monocyte and enhanced their maturation from Ly6C(hi)MHCII(-) to Ly6C(int)MHCII(+) Taken together, the data suggest that G2A signaling serves to dampen intestinal inflammation via the production of IFN-γ, which, in turn, enhances monocyte maturation to a less inflammatory program and ultimately reduces eosinophil-induced injury of colonic tissues.
Collapse
Affiliation(s)
| | - Eóin N McNamee
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Douglas Kominsky
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Paul Jedlicka
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Claudia Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80206
| | - Karin Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - Matthias Mack
- Department of Internal Medicine, University of Regensburg, 93042 Regensburg, Germany
| | - Glenn T Furuta
- Digestive Health Institute, Children's Hospital Colorado, Aurora, CO 80045; Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ 85259
| | - Peter M Henson
- Department of Pediatrics, National Jewish Health, Denver, CO 80206
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, CO 80206
| |
Collapse
|
3
|
Abstract
Chronic inflammation is linked to the development and progression of multiple cancers, including those of the lung, stomach, liver, colon, breast and skin. Inflammation not only drives the oncogenic transformation of epithelial cells under the stress of chronic infection and autoimmune diseases, but also promotes the growth, progression and metastatic spread of cancers. Tumor-infiltrating inflammatory cells are comprised of a diverse population of myeloid and immune cell types, including monocytes, macrophages, dendritic cells, T and B cells, and others. Different myeloid and lymphoid cells within tumor microenvironment exert diverse, often contradicting, effects during skin cancer development and progression. The nature of tumor-immune interaction determines the rate of cancer progression and the outcome of cancer treatment. Inflammatory environment within skin tumor also inhibits naturally occurring anti-tumor immunity and limits the efficacy of cancer immunotherapy. In this article we aim to give an overview on the mechanism by which inflammation interferes with the development and therapeutic intervention of cancers, especially those of the skin.
Collapse
|
4
|
Li Z, Beeram SR, Bi C, Suresh D, Zheng X, Hage DS. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:1-39. [PMID: 26827600 DOI: 10.1016/bs.apcsb.2015.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sandya R Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - D Suresh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
5
|
Abstract
The link between chronic inflammation and cancer has long been suspected, due to the pioneering work of Rudolf Virchow over 150 years ago. Yet the causal relationship between inflammation and cancer was only deciphered in the past decade or so, using animal models of various cancers. Up to 20% of all human cancers result from chronic inflammation and persistent infections. Proinflammatory cytokines and tumor-infiltrating myeloid and immune cells play critical roles in almost every developmental stages of inflammation-induced cancers, from initiation, promotion, and progression to malignant metastasis. However, even in cancers with no preceding inflammation, inflammatory cells infiltrate tumor stroma and contribute to cancer development. Such "tumor-elicited inflammation" further emphasizes the importance of inflammation in different types of cancers, including that of the colon. In this review, we summarize our current knowledge of the function and induction mechanisms of inflammatory cytokines during colorectal cancer development, and hope to provide insight into the development of novel anticancer therapies by modulating tumor-elicited inflammation.
Collapse
Affiliation(s)
- Kepeng Wang
- Departments of Pharmacology and Pathology, Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, California, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, California, USA.
| |
Collapse
|
6
|
Auer K, Trachter R, Van den Bogaerde J, Bassaganya-Riera J, Sorrentino D. Translational research and efficacy of biologics in Crohn's disease: a cautionary tale. Expert Rev Clin Immunol 2014; 10:219-29. [PMID: 24410538 DOI: 10.1586/1744666x.2014.877839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last several years many biologic agents for Crohn's disease have been developed. Due to their unique molecular specificity biologics are de facto indicators of the ultimate significance of the molecule targeted by the biologic itself. Here, we have reviewed many clinical studies that have used biologics for Crohn's disease. Their results show that despite potentially sound theoretical mechanisms of action and some initially promising data, most biologics - with few notable exceptions - have failed. Pharmacologic, study design or patient-related issues might explain these findings in some studies. However in many cases clinical failure of biologics might highlight the complexity of in vivo events and the potential deficiencies of current experimental settings. Hence, these observations call for new and efficient ways of predicting drug efficacy in clinical trials based on bench research. Conceivably, computer-based pathogenetic models could be used to simulate and predict clinical studies results in vivo.
Collapse
Affiliation(s)
- Keil Auer
- Sunshine Coast Clinical School, Nambour, QLD 4560, Australia
| | | | | | | | | |
Collapse
|
7
|
Kretsos K, Golor G, Jullion A, Hickling M, McCabe S, Shaw S, Jose J, Oliver R. Safety and pharmacokinetics of olokizumab, an anti-IL-6 monoclonal antibody, administered to healthy male volunteers: A randomized phase I study. Clin Pharmacol Drug Dev 2014; 3:388-95. [PMID: 27129012 DOI: 10.1002/cpdd.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/20/2014] [Indexed: 11/08/2022]
Abstract
Interleukin-6 (IL-6) is implicated in the pathophysiology of several inflammatory conditions. Olokizumab, a humanized anti-IL-6 monoclonal antibody, selectively blocks the final assembly of the IL-6 signaling complex. A randomized, double-blind, placebo-controlled, phase I dose-escalation study assessed the safety and tolerability of escalating single doses of olokizumab administered intravenously (iv) or subcutaneously (sc) to 67 healthy male volunteers. The pharmacokinetics, pharmacodynamics and immunogenicity of olokizumab were also assessed. Olokizumab was tolerated at doses up to 3.0 mg/kg sc and 10.0 mg/kg iv; the maximum tolerated dose was not reached. No serious adverse events or withdrawals as a result of treatment-emergent adverse events were reported. Pharmacokinetic analysis showed that both maximum serum concentration and area under the concentration-time curve increased linearly with increasing dose. Mean terminal half-life was 31.5 days (standard deviation 12.4 days). The bioavailability of the sc doses ranged from 84.2% to 92.5%. Rapid decreases in C-reactive protein concentrations were observed, with no dose dependency.
Collapse
Affiliation(s)
| | | | | | | | | | - Stevan Shaw
- UCB Pharma, Slough, Berkshire, United Kingdom
| | - Joby Jose
- UCB Pharma, Slough, Berkshire, United Kingdom
| | - Ruth Oliver
- UCB Pharma, Slough, Berkshire, United Kingdom
| |
Collapse
|
8
|
Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS One 2014; 9:e86844. [PMID: 24489792 PMCID: PMC3904943 DOI: 10.1371/journal.pone.0086844] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/13/2013] [Indexed: 12/12/2022] Open
Abstract
Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4+ T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4+ T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4+ T cells and forkhead box P3 (FoxP3)+ regulatory T (Treg) cells. IFN-γ produced mainly by CD4+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.
Collapse
|
9
|
Wang K, Grivennikov SI, Karin M. Implications of anti-cytokine therapy in colorectal cancer and autoimmune diseases. Ann Rheum Dis 2013; 72 Suppl 2:ii100-3. [PMID: 23253923 DOI: 10.1136/annrheumdis-2012-202201] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up to 20% of all cancers have been linked to chronic inflammation and persistent infections. However, almost all solid tumours contain immune infiltrates, and tumour-associated inflammatory cells play broad roles in different stages of tumour development and malignant progression. Cytokines are important mediators of the inflammatory effect on tumorigenesis both in inflammation-induced cancer and in the inflammation that follows tumour development. We have shown interleukin (IL)-6 to be an important tumour promoter in early colitis-associated cancer (CAC). IL-6 is mainly produced by tumour-infiltrating myeloid cells under the control of NF-κB. IL-6 promotes proliferation of tumour-initiating cells derived from the intestinal epithelium and protects them from apoptotic elimination. These pro-survival and proliferative effects of IL-6 are mainly mediated by STAT3, whose ablation in intestinal epithelial cells significantly reduces CAC tumorigenesis. More recently, we found a critical role for IL-23 and its downstream cytokines IL-17 and IL-22 in the development of CAC. These findings suggest that such cytokines or the cells that produce them may provide new therapeutic or preventive targets in forms of colorectal cancer that are linked to inflammation.
Collapse
Affiliation(s)
- Kepeng Wang
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0723, USA
| | | | | |
Collapse
|
10
|
Wlodarczyk MF, Kraft AR, Chen HD, Kenney LL, Selin LK. Anti-IFN-γ and peptide-tolerization therapies inhibit acute lung injury induced by cross-reactive influenza A-specific memory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2736-46. [PMID: 23408839 DOI: 10.4049/jimmunol.1201936] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral infections have variable outcomes, with severe disease occurring in only few individuals. We hypothesized that this variable outcome could correlate with the nature of responses made to previous microbes. To test this, mice were infected initially with influenza A virus (IAV) and in memory phase challenged with lymphocytic choriomeningitis virus (LCMV), which we show in this study to have relatively minor cross-reactivity with IAV. The outcome in genetically identical mice varied from mild pneumonitis to severe acute lung injury with extensive pneumonia and bronchiolization, similar to that observed in patients who died of the 1918 H1N1 pandemic. Lesion expression did not correlate with virus titers. Instead, disease severity directly correlated with and was predicted by the frequency of IAV-PB1703- and IAV-PA224-specific responses, which cross-reacted with LCMV-GP34 and LCMV-GP276, respectively. Eradication or functional ablation of these pathogenic memory T cell populations, using mutant-viral strains, peptide-based tolerization strategies, or short-term anti-IFN-γ treatment, inhibited severe lesions such as bronchiolization from occurring. Heterologous immunity can shape outcome of infections and likely individual responses to vaccination, and can be manipulated to treat or prevent severe pathology.
Collapse
Affiliation(s)
- Myriam F Wlodarczyk
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
11
|
Ziegler A, Koch A, Krockenberger K, Großhennig A. Personalized medicine using DNA biomarkers: a review. Hum Genet 2012; 131:1627-38. [PMID: 22752797 PMCID: PMC3432208 DOI: 10.1007/s00439-012-1188-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Biomarkers are of increasing importance for personalized medicine, with applications including diagnosis, prognosis, and selection of targeted therapies. Their use is extremely diverse, ranging from pharmacodynamics to treatment monitoring. Following a concise review of terminology, we provide examples and current applications of three broad categories of biomarkers—DNA biomarkers, DNA tumor biomarkers, and other general biomarkers. We outline clinical trial phases for identifying and validating diagnostic and prognostic biomarkers. Predictive biomarkers, more generally termed companion diagnostic tests predict treatment response in terms of efficacy and/or safety. We consider suitability of clinical trial designs for predictive biomarkers, including a detailed discussion of validation study designs, with emphasis on interpretation of study results. We specifically discuss the interpretability of treatment effects if a large set of DNA biomarker profiles is available and the number of therapies is identical to the number of different profiles.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig–Holstein, Campus Lübeck, Maria-Goeppert-Str. 1, 23562 Lübeck, Germany
- Zentrum für Klinische Studien, Universität zu Lübeck, Lübeck, Germany
| | - Armin Koch
- Institut für Biometrie, Medizinische Hochschule Hannover, OE 8410, 30625 Hannover, Germany
| | | | - Anika Großhennig
- Institut für Biometrie, Medizinische Hochschule Hannover, OE 8410, 30625 Hannover, Germany
| |
Collapse
|