1
|
Vicente ATS, Salvador JAR. PROteolysis-Targeting Chimeras (PROTACs) in leukemia: overview and future perspectives. MedComm (Beijing) 2024; 5:e575. [PMID: 38845697 PMCID: PMC11154823 DOI: 10.1002/mco2.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin-proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.
Collapse
Affiliation(s)
- André T. S. Vicente
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| |
Collapse
|
2
|
Biological characteristics of aging in human acute myeloid leukemia cells: the possible importance of aldehyde dehydrogenase, the cytoskeleton and altered transcriptional regulation. Aging (Albany NY) 2020; 12:24734-24777. [PMID: 33349623 PMCID: PMC7803495 DOI: 10.18632/aging.202361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Patients with acute myeloid leukemia (AML) have a median age of 65-70 years at diagnosis. Elderly patients have more chemoresistant disease, and this is partly due to decreased frequencies of favorable and increased frequencies of adverse genetic abnormalities. However, aging-dependent differences may also contribute. We therefore compared AML cell proteomic and phosphoproteomic profiles for (i) elderly low-risk and younger low-risk patients with favorable genetic abnormalities; and (ii) high-risk patients with adverse genetic abnormalities and a higher median age against all low-risk patients with lower median age. Elderly low-risk and younger low-risk patients showed mainly phosphoproteomic differences especially involving transcriptional regulators and cytoskeleton. When comparing high-risk and low-risk patients both proteomic and phosphoproteomic studies showed differences involving cytoskeleton and immunoregulation but also transcriptional regulation and cell division. The age-associated prognostic impact of cyclin-dependent kinases was dependent on the cellular context. The protein level of the adverse prognostic biomarker mitochondrial aldehyde dehydrogenase (ALDH2) showed a similar significant upregulation both in elderly low-risk and elderly high-risk patients. Our results suggest that molecular mechanisms associated with cellular aging influence chemoresistance of AML cells, and especially the cytoskeleton function may then influence cellular hallmarks of aging, e.g. mitosis, polarity, intracellular transport and adhesion.
Collapse
|
3
|
Brattås MK, Reikvam H, Tvedt THA, Bruserud Ø. Precision medicine for TP53-mutated acute myeloid leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1644164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med Res Rev 2018; 39:461-516. [PMID: 30341778 DOI: 10.1002/med.21529] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Pteridines are aromatic compounds formed by fused pyrazine and pyrimidine rings. Many living organisms synthesize pteridines, where they act as pigments, enzymatic cofactors, or immune system activation molecules. This variety of biological functions has motivated the synthesis of a huge number of pteridine derivatives with the aim of studying their therapeutic potential. This review gathers the state-of-the-art of pteridine derivatives, describing their biological activities and molecular targets. The antitumor activity of pteridine-based compounds is one of the most studied and advanced therapeutic potentials, for which several molecular targets have been identified. Nevertheless, pteridines are also considered as very promising therapeutics for the treatment of chronic inflammation-related diseases. On the other hand, many pteridine derivatives have been tested for antimicrobial activities but, although some of them resulted to be active in preliminary assays, a deeper research is needed in this area. Moreover, pteridines may be of use in the treatment of many other diseases, such as diabetes, osteoporosis, ischemia, or neurodegeneration, among others. Thus, the diversity of the biological activities shown by these compounds highlights the promising therapeutic use of pteridine derivatives. Indeed, methotrexate, pralatrexate, and triamterene are Food and Drug Administration approved pteridines, while many others are currently under study in clinical trials.
Collapse
Affiliation(s)
- Violeta Carmona-Martínez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - María Vera
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Antonio Guirado
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
#2714, a novel active inhibitor with potent G2/M phase arrest and antitumor efficacy in preclinical models. Cell Death Discov 2018. [PMID: 29531821 PMCID: PMC5841443 DOI: 10.1038/s41420-018-0032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arresting cell cycle has been one of the most common approaches worldwide in cancer therapy. Specifically, arresting cells in the G2/M phase is a promising therapeutic approach in the battle against lung cancer. In the present study, we demonstrated the anticancer activities and possible mechanism of compound #2714, which can prompt G2/M phase arrest followed by cell apoptosis induction in Lewis lung carcinoma LL/2 cells. In vitro, #2714 significantly inhibited LL/2 cell viability in a concentration- and time-dependent manner while exhibiting few toxicities on non-cancer cells. The mechanism study showed that cell proliferation inhibition due to the treatment with #2714 correlated with G2/M phase arrest and was followed by LL/2 cell apoptosis. The characterized changes were associated with the downregulation of phosphorylated cell division cycle 25C (Cdc25C) and upregulation of p53. Apoptosis-associated activation of cleaved caspase-3 was also detected. Moreover, #2714 strongly attenuated LL/2 cell proliferation by disrupting the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). In vivo, intraperitoneal administration of #2714 (25–100 mg/kg/day) to mice bearing established tumors in xenograft models significantly prevented LL/2 tumor growth (58.1%) without detectable toxicity. Compound #2714 significantly increased apoptosis in LL/2 lung cancer cells in mice models, as observed via terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay, and the data from an immunohistochemical analysis showed that #2714 remarkably inhibited the proliferation and angiogenesis of lung cancer in vivo. Taken together, our data suggest that #2714 has a high potential anti-lung cancer efficacy with a pathway-specific mechanism of G2/M phase arrest and subsequent apoptosis induction both in vitro and in vivo; its potential to be an anticancer candidate warrants further investigation.
Collapse
|
6
|
Reikvam H, Grønningsæter IS, Mosevoll KA, Lindås R, Hatfield K, Bruserud Ø. Patients with Treatment-Requiring Chronic Graft versus Host Disease after Allogeneic Stem Cell Transplantation Have Altered Metabolic Profiles due to the Disease and Immunosuppressive Therapy: Potential Implication for Biomarkers. Front Immunol 2018; 8:1979. [PMID: 29416533 PMCID: PMC5787552 DOI: 10.3389/fimmu.2017.01979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic graft versus host disease (cGVHD) is a common long-term complication after allogeneic hematopoietic stem cell transplantation. The objective of our study was to compare the metabolic profiles for allotransplant recipients and thereby identify metabolic characteristics of patients with treatment-requiring cGVHD. The study included 51 consecutive patients (29 men and 22 women; median age: 44 years, range: 15–66 years) transplanted with peripheral blood stem cells derived from human leukocyte antigen-matched family donors. All serum samples investigated by global metabolomic profiling were collected approximately 1 year posttransplant (median 358 days). Thirty-one of the 51 patients (61%) had cGVHD 1 year posttransplant. The affected organs were (number of patients) liver/bile duct (23), eyes (15), gastrointestinal tract (14), skin (13), mouth (10), lungs (3), and urogenital tract (1). We compared the metabolic profile for patients with and without cGVHD, and a Random Forrest Classification Analysis then resulted in 75% accuracy in differentiating the two groups. The 30 top-ranked metabolites from this comparison included increased levels of bile acids, several metabolites from the cytokine-responsive kynurenine pathway for tryptophan degradation, pro-inflammatory lipid metabolites, phenylalanine and tyrosine metabolites derived from the gut microbial flora, and metabolites reflecting increased oxidative stress. However, nine of these 30 top-ranked metabolites were probably altered due to cyclosporine or steroid treatment, and we therefore did a hierarchical clustering analysis including all 51 patients but only based on the other 21 cGVHD-specific metabolites. This analysis identified three patient subsets: one cluster included mainly patients without cGVHD and had generally low metabolite levels; another cluster included mainly patients with cGVHD (most patients with at least three affected organs) and high metabolite levels, and the last intermediate group including cGVHD patients with limited organ involvement. We conclude that allotransplant recipients with cGVHD have an altered metabolic profile caused both by the disease and its immunosuppressive treatment.
Collapse
Affiliation(s)
- Håkon Reikvam
- Section Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ida-Sofie Grønningsæter
- Section Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Knut Anders Mosevoll
- Section Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roald Lindås
- Section Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Øystein Bruserud
- Section Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Gopalakrishnan B, Cheney C, Mani R, Mo X, Bucci D, Walker A, Klisovic R, Bhatnagar B, Walsh K, Rueter B, Waizenegger IC, Heider KH, Blum W, Vasu S, Muthusamy N. Polo-like kinase inhibitor volasertib marginally enhances the efficacy of the novel Fc-engineered anti-CD33 antibody BI 836858 in acute myeloid leukemia. Oncotarget 2018. [PMID: 29515764 PMCID: PMC5839395 DOI: 10.18632/oncotarget.23880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is the second most common type of leukemia in adults. Incidence of AML increases with age with a peak incidence at 67 years. Patients older than 60 years have an unfavorable prognosis due to resistance to conventional chemotherapy. Volasertib (BI 6727) is a cell-cycle regulator targeting polo-like kinase which has been evaluated in clinical trials in AML. We evaluated effects of volasertib in primary patient samples and NK cells. At equivalent doses, volasertib is cytotoxic to AML blasts but largely spares healthy NK cells. We then evaluated the effect of volasertib treatment in combination with BI 836858 on primary AML blast samples using antibody-dependent cellular cytotoxicity (ADCC) assays. Volasertib treatment of NK cells did not impair NK function as evidenced by comparable levels of BI 836858 mediated ADCC in both volasertib-treated and control-treated NK cells. In summary, volasertib is cytotoxic to AML blasts while sparing NK cell viability and function. Higher BI 836858 mediated ADCC was observed in patient samples pretreated with volasertib. These findings provide a strong rationale to test combination of BI 836858 and volasertib in AML.
Collapse
Affiliation(s)
| | - Carolyn Cheney
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajeswaran Mani
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Donna Bucci
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alison Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rebecca Klisovic
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Katherine Walsh
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Bjoern Rueter
- Boehringer Ingelheim Pharma GmbH, Biberach/Riss, Germany
| | | | | | - William Blum
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Sumithira Vasu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Abstract
INTRODUCTION AML therapy remains very challenging despite our increased understanding of its molecular heterogeneity. Outcomes with chemotherapy and targeted therapy remain poor. Targeting cell cycle regulators might complement chemotherapy and targeted therapy and help in improving outcomes. Areas covered: Here we cover the pre-clinical and clinical data for both for cyclin dependent kinase (CDK) and cell-cycle checkpoint inhibitors. While CDK inhibition can inhibit proliferation, checkpoint inhibitors can facilitate cell cycle progression in presence of DNA damage and can induce mitotic catastrophe. Expert opinion: Though the preclinical data for cell cycle inhibitors in AML is compelling, the clinical translation so far has proven to be challenging. This is a reflection of the complexity of both, AML and cell cycle regulators. However, early introduction of cell-cycle active agents in combination with chemotherapy or targeted agents, identifying right sequence of use and identifying right biomarkers might pave the way into successful clinical translation.
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
9
|
Reikvam H, Hoang TTV, Bruserud Ø. Emerging therapeutic targets in human acute myeloid leukemia (part 2) – bromodomain inhibition should be considered as a possible strategy for various patient subsets. Expert Rev Hematol 2015; 8:315-27. [DOI: 10.1586/17474086.2015.1036025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Reikvam H, Hauge M, Brenner AK, Hatfield KJ, Bruserud Ø. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication. Expert Rev Hematol 2015; 8:299-313. [PMID: 25835070 DOI: 10.1586/17474086.2015.1032935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
11
|
Münch C, Dragoi D, Frey AV, Thurig K, Lübbert M, Wäsch R, Bogatyreva L, Hauschke D, Lassmann S, Werner M, May AM. Therapeutic polo-like kinase 1 inhibition results in mitotic arrest and subsequent cell death of blasts in the bone marrow of AML patients and has similar effects in non-neoplastic cell lines. Leuk Res 2015; 39:462-70. [PMID: 25697066 DOI: 10.1016/j.leukres.2015.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 12/14/2022]
Abstract
Polo-like kinase 1 (PLK1) is an important regulator of the cell cycle and is overexpressed in various solid and hematological malignancies. Small molecule inhibitors targeting PLK1, such as BI2536 or BI6727 (Volasertib) are a promising therapeutic approach in such malignancies. Here, we show a loss of specifically localized PLK1 in AML blasts in vivo, accompanied by mitotic arrest with transition into apoptosis, in bone marrow biopsies of AML patients after treatment with BI2536. We verify these results in live cell imaging experiments with the AML cell line HL-60, and demonstrate that non-neoplastic, immortalized lymphoblastoid cells are also sensitive to PLK1 inhibition. It is demonstrated that normal granulopoietic precursors have similar PLK1 expression levels as leukemic blasts. These results are in line with the adverse effects of PLK1 inhibition and underline the great potential of PLK1 inhibitors in the treatment of AML.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antimitotic Agents/pharmacology
- Apoptosis/drug effects
- Blast Crisis/drug therapy
- Blast Crisis/enzymology
- Blast Crisis/pathology
- Blotting, Western
- Bone Marrow/drug effects
- Bone Marrow/enzymology
- Bone Marrow/pathology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Male
- Mitosis/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Pteridines/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Claudia Münch
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Diana Dragoi
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Anna-Verena Frey
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Katja Thurig
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology and Oncology, University Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology and Oncology, University Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Lioudmila Bogatyreva
- Institute of Medical Biometry and Medical Informatics, University Medical Center, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Dieter Hauschke
- Institute of Medical Biometry and Medical Informatics, University Medical Center, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Silke Lassmann
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Martin Werner
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annette M May
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany.
| |
Collapse
|
12
|
Rudolph D, Impagnatiello MA, Blaukopf C, Sommer C, Gerlich DW, Roth M, Tontsch-Grunt U, Wernitznig A, Savarese F, Hofmann MH, Albrecht C, Geiselmann L, Reschke M, Garin-Chesa P, Zuber J, Moll J, Adolf GR, Kraut N. Efficacy and mechanism of action of volasertib, a potent and selective inhibitor of Polo-like kinases, in preclinical models of acute myeloid leukemia. J Pharmacol Exp Ther 2015; 352:579-89. [PMID: 25576074 DOI: 10.1124/jpet.114.221150] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a member of the Polo-like kinase family of serine/threonine kinases, is a key regulator of multiple steps in mitosis. Here we report on the pharmacological profile of volasertib, a potent and selective Plk inhibitor, in multiple preclinical models of acute myeloid leukemia (AML) including established cell lines, bone marrow samples from AML patients in short-term culture, and subcutaneous as well as disseminated in vivo models in immune-deficient mice. Our results indicate that volasertib is highly efficacious as a single agent and in combination with established and emerging AML drugs, including the antimetabolite cytarabine, hypomethylating agents (decitabine, azacitidine), and quizartinib, a signal transduction inhibitor targeting FLT3. Collectively, these preclinical data support the use of volasertib as a new therapeutic approach for the treatment of AML patients, and provide a foundation for combination approaches that may further improve and prolong clinical responses.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical/methods
- Female
- HeLa Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Mice
- Mice, Nude
- Mice, SCID
- Mice, Transgenic
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Pteridines/pharmacology
- Pteridines/therapeutic use
- Treatment Outcome
- Xenograft Model Antitumor Assays/methods
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Dorothea Rudolph
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Maria Antonietta Impagnatiello
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Claudia Blaukopf
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Christoph Sommer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Daniel W Gerlich
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Mareike Roth
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Ulrike Tontsch-Grunt
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Andreas Wernitznig
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Fabio Savarese
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Marco H Hofmann
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Christoph Albrecht
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Lena Geiselmann
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Markus Reschke
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Pilar Garin-Chesa
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Johannes Zuber
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Jürgen Moll
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Günther R Adolf
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (D.R., M.A.I., U.T.-G., A.W., F.S., M.H.H., C.A., L.G., M.R., P.G.-C., J.M., G.R.A., N.K.); Institute of Molecular Biotechnology, Vienna, Austria (C.B., C.S., D.W.G.); and Research Institute of Molecular Pathology, Vienna, Austria (M.R., J.Z.)
| |
Collapse
|
13
|
Wang NN, Li ZH, Zhao H, Tao YF, Xu LX, Lu J, Cao L, Du XJ, Sun LC, Zhao WL, Xiao PF, Fang F, Su GH, Li YH, Li G, Li YP, Xu YY, Zhou HT, Wu Y, Jin MF, Liu L, Ni J, Wang J, Hu SY, Zhu XM, Feng X, Pan J. Molecular targeting of the oncoprotein PLK1 in pediatric acute myeloid leukemia: RO3280, a novel PLK1 inhibitor, induces apoptosis in leukemia cells. Int J Mol Sci 2015; 16:1266-92. [PMID: 25574601 PMCID: PMC4307303 DOI: 10.3390/ijms16011266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/29/2014] [Indexed: 01/03/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Na-Na Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Zhi-Heng Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - He Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yan-Fang Tao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Li-Xiao Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Lan Cao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xiao-Juan Du
- Department of Gastroenterology, the 5th Hospital of Chinese People's Liberation Army (PLA), Yinchuan 750000, China.
| | - Li-Chao Sun
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.
| | - Wen-Li Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Pei-Fang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Guang-Hao Su
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yan-Hong Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Gang Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yi-Ping Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yun-Yun Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Hui-Ting Zhou
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yi Wu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Mei-Fang Jin
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Lin Liu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jian Ni
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing 210000, China.
| | - Jian Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xue-Ming Zhu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xing Feng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| |
Collapse
|
14
|
Gjertsen BT, Schöffski P. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia 2015; 29:11-9. [PMID: 25027517 PMCID: PMC4335352 DOI: 10.1038/leu.2014.222] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/05/2014] [Accepted: 07/02/2014] [Indexed: 11/09/2022]
Abstract
Owing to their integral involvement in cell cycle regulation, the Polo-like kinase (Plk) family, particularly Plk1, has emerged as an attractive therapeutic target in oncology. In recent years, several Plk1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials. This review focuses on volasertib (BI 6727; an investigational agent), a potent and selective Plk inhibitor. Volasertib has shown promising activity in various cancer cell lines and xenograft models of human cancer. Trials performed to date suggest that volasertib has clinical efficacy in a range of malignancies, with the most promising results seen in patients with acute myeloid leukemia (AML). Encouragingly, recent phase II data have demonstrated that volasertib combined with low-dose cytarabine (LDAC) was associated with higher response rates and improved event-free survival than LDAC alone in patients with previously untreated AML. Based on these observations, and its presumably manageable safety profile, volasertib is currently in phase III development as a potential treatment for patients with AML who are ineligible for intensive remission induction therapy. Given that many patients with AML are of an older age and frail, this constitutes an area of major unmet need. In this review, we discuss the biologic rationale for Plk1 inhibitors in cancer, the clinical development of volasertib to date in solid tumors and AML, and the future identification of biomarkers that might predict response to volasertib and help determine the role of this agent in the clinic.
Collapse
Affiliation(s)
- B T Gjertsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - P Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Brenner AK, Reikvam H, Lavecchia A, Bruserud Ø. Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia--the possibility to target several kinases through inhibition of the various CDC25 isoforms. Molecules 2014; 19:18414-47. [PMID: 25397735 PMCID: PMC6270710 DOI: 10.3390/molecules191118414] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 01/26/2023] Open
Abstract
The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Håkon Reikvam
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway.
| |
Collapse
|
16
|
Bruserud Ø, Nepstad I, Hauge M, Hatfield KJ, Reikvam H. STAT3 as a possible therapeutic target in human malignancies: lessons from acute myeloid leukemia. Expert Rev Hematol 2014; 8:29-41. [PMID: 25374305 DOI: 10.1586/17474086.2015.971005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
STAT3 is important for transcriptional regulation in human acute myeloid leukemia (AML). STAT3 has thousands of potential DNA binding sites but usually shows cell type specific binding preferences to a limited number of these. Furthermore, AML is a very heterogeneous disease, and studies of the prognostic impact of STAT3 in human AML have also given conflicting results. A more detailed characterization of STAT3 functions and the expression of various isoforms in human AML will therefore be required before it is possible to design clinical studies of STAT3 inhibitors in this disease, and it will be especially important to investigate whether the functions of STAT3 differ between patients. Several other malignancies also show extensive biological heterogeneity, and the present discussion and the suggested scientific approaches may thus be relevant for other cancer patients.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
17
|
Hatfield KJ, Reikvam H, Bruserud Ø. Identification of a subset of patients with acute myeloid leukemia characterized by long-termin vitroproliferation and altered cell cycle regulation of the leukemic cells. Expert Opin Ther Targets 2014; 18:1237-51. [DOI: 10.1517/14728222.2014.957671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Spartà AM, Bressanin D, Chiarini F, Lonetti A, Cappellini A, Evangelisti C, Evangelisti C, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Martelli AM. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle 2014; 13:2237-47. [PMID: 24874015 PMCID: PMC4111679 DOI: 10.4161/cc.29267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/16/2014] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.
Collapse
Affiliation(s)
- Antonino Maria Spartà
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics; National Research Council; Bologna, Italy
- Muscoloskeletal Cell Biology Laboratory; IOR; Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Alessandra Cappellini
- Department of Human, Social, and Health Sciences; University of Cassino; Cassino, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics; National Research Council; Bologna, Italy
- Muscoloskeletal Cell Biology Laboratory; IOR; Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Hematology Unit ‘Lalla Seragnoli’; S. Orsola-Malpighi Hospital; University of Bologna; Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit ‘Lalla Seragnoli’; S. Orsola-Malpighi Hospital; University of Bologna; Bologna, Italy
| | - Alice Bertaina
- Oncoematologia Pediatrica; IRCCS Ospedale Pediatrico Bambino Gesú; Rome, Italy
| | - Franco Locatelli
- Oncoematologia Pediatrica; IRCCS Ospedale Pediatrico Bambino Gesú; Rome, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| |
Collapse
|
19
|
Reikvam H, Nepstad I, Tamburini J. Predicting effects of kinase inhibitor in therapy for myeloid malignancies – the challenges in capturing disease heterogeneity. Expert Opin Investig Drugs 2013; 22:1365-70. [DOI: 10.1517/13543784.2013.841137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Fan AC, O'Rourke JJ, Praharaj DR, Felsher DW. Real-time nanoscale proteomic analysis of the novel multi-kinase pathway inhibitor rigosertib to measure the response to treatment of cancer. Expert Opin Investig Drugs 2013; 22:1495-509. [PMID: 23937225 DOI: 10.1517/13543784.2013.829453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rigosertib (ON01910.Na), is a targeted therapeutic that inhibits multiple kinases, including PI3K and PIk-1. Rigosertib has been found to induce the proliferative arrest and apoptosis of myeloblasts but not of other normal hematopoietic cells. Rigosertib has significant clinical activity as a therapy for patients with high-risk myelodysplastic syndrome who are otherwise refractory to DNA methyltransferase inhibitors. Moreover, rigosertib has potential clinical activity in a multitude of solid tumors. AREAS COVERED The objective of this review is to evaluate the mechanism of activity, efficacy and dosing of rigosertib. Furthermore, the challenge in the clinical development of rigosertib, to identify the specific patients that are most likely to benefit from this therapeutic agent, is discussed. A PubMed search was performed using the following key words: rigosertib and ON01910.Na. EXPERT OPINION We describe the application of a novel nanoscale proteomic assay, the nanoimmunoassay, a tractable approach for measuring the activity and predicting the efficacy of rigosertib, in real-time, using limited human clinical specimens. Our strategy suggests a possible paradigm where proteomic analysis during the pre-clinical and clinical development of a therapy can be used to uncover biomarkers for the analysis and prediction of efficacy in human patients.
Collapse
Affiliation(s)
- Alice C Fan
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology , Stanford, CA , USA
| | | | | | | |
Collapse
|
21
|
Casolaro A, Golay J, Albanese C, Ceruti R, Patton V, Cribioli S, Pezzoni A, Losa M, Texido G, Giussani U, Marchesi F, Amboldi N, Valsasina B, Bungaro S, Cazzaniga G, Rambaldi A, Introna M, Pesenti E, Alzani R. The Polo-Like Kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+ acute monoblastic leukaemia. PLoS One 2013; 8:e58424. [PMID: 23520509 PMCID: PMC3592825 DOI: 10.1371/journal.pone.0058424] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/06/2013] [Indexed: 11/29/2022] Open
Abstract
CD56 is expressed in 15-20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56(+) monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MST = 28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56(+) AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML.
Collapse
MESH Headings
- Adult
- Animals
- CD56 Antigen
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Pyrazoles/pharmacology
- Quinazolines/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
| | - Josee Golay
- Laboratory of Cellular Therapy “G. Lanzani”, USC Haematology, Ospedali Riuniti, Bergamo, Italy
| | - Clara Albanese
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Roberta Ceruti
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Veronica Patton
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | | | - Alice Pezzoni
- Department of Oncology and Haematology, Istituto Clinico Humanitas, Rozzano, Milano, Italy
| | - Marco Losa
- Pathology, Fondazione Filarete, Milano, Italy
| | - Gemma Texido
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Ursula Giussani
- Department of Medical Genetics, Ospedali Riuniti, Bergamo, Italy
| | | | - Nadia Amboldi
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | | | - Silvia Bungaro
- Tettamanti Research Center, Pediatric Clinic, University of Milano–Bicocca, Monza, Italy
| | - Gianni Cazzaniga
- Tettamanti Research Center, Pediatric Clinic, University of Milano–Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Laboratory of Cellular Therapy “G. Lanzani”, USC Haematology, Ospedali Riuniti, Bergamo, Italy
| | - Martino Introna
- Laboratory of Cellular Therapy “G. Lanzani”, USC Haematology, Ospedali Riuniti, Bergamo, Italy
| | - Enrico Pesenti
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Rachele Alzani
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| |
Collapse
|