1
|
Dong X, Liu Y, Adcock AF, Sheriff K, Liang W, Yang L, Sun YP. Carbon-TiO 2 Hybrid Quantum Dots for Photocatalytic Inactivation of Gram-Positive and Gram-Negative Bacteria. Int J Mol Sci 2024; 25:2196. [PMID: 38396872 PMCID: PMC10889188 DOI: 10.3390/ijms25042196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Carbon-semiconductor hybrid quantum dots are classical carbon dots with core carbon nanoparticles doped with a selected nanoscale semiconductor. Specifically, on those with the nanoscale TiO2 doping, denoted as CTiO2-Dots, their synthesis and thorough characterization were reported previously. In this work, the CTiO2-Dots were evaluated for their visible light-activated antibacterial function, with the results showing the effective killing of not only Gram-positive but also the generally more resistant Gram-negative bacteria. The hybrid dots are clearly more potent antibacterial agents than their neat carbon dot counterparts. Mechanistically, the higher antibacterial performance of the CTiO2-Dots is attributed to their superior photoexcited state properties, which are reflected by the observed much brighter fluorescence emissions. Also considered and discussed is the possibility of additional contributions to the antibacterial activities due to the photosensitization of the nanoscale TiO2 by its doped core carbon nanoparticles.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (X.D.); (L.Y.)
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
| | - Yamin Liu
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Audrey F. Adcock
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (X.D.); (L.Y.)
| | - Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Weixiong Liang
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (X.D.); (L.Y.)
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Dzuvor CKO, Shen HH, Haritos VS, He L. Coassembled Multicomponent Protein Nanoparticles Elicit Enhanced Antibacterial Activity. ACS NANO 2024; 18:4478-4494. [PMID: 38266175 DOI: 10.1021/acsnano.3c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton, Victoria 3800, Australia
| | - Victoria S Haritos
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Elmongy EI, Alanazi WS, Aldawsari AI, Alfaouri AA, Binsuwaidan R. Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure. Pharmaceuticals (Basel) 2024; 17:188. [PMID: 38399403 PMCID: PMC10892651 DOI: 10.3390/ph17020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
This work describes the design and synthesis of three series of hybrids of thienopyrimidines and sulfonamides. Dihydrofolate reductase enzyme was selected as a target for the in-silico screening of the synthesized thienopyrimidine-sulfonamide hybrid as an antibacterial, while squalene epoxidase was selected as an antifungal target protein. All screened compounds showed promising binding affinity ranges, with perfect fitting not exceeding 1.9 Å. The synthesized compounds were tested for their antimicrobial activity using agar well diffusion and minimum inhibitory concentration tests against six bacterial strains in addition to two Candida strains. Compounds 8iii and 12ii showed varying degrees of inhibition against Staphylococcus aureus and Escherichia coli bacterial strains, whereas the best antifungal activity against Candida was displayed by compound 8iii. Compound 12ii, the cyclohexathienopyrimidine coupled with sulfadiazine at position 3, has the best antibacterial activity, which is consistent with molecular docking results at the active site of the oxidoreductase protein. Interestingly, compound 12ii also has the highest docking binding energy at the antifungal squalene epoxidase active site. Investigating the physicochemical properties of the synthesized hybrids revealed their high tolerability with cell membranes, and moderate to poor oral bioavailability, and that all are drug-like candidates, among which 4i, the cyclohexathieno[2,3-d] pyrimidine core with sulphaguanidine incorporated at position 4, recorded the best score (1.58).
Collapse
Affiliation(s)
- Elshaymaa I. Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo P.O. Box 11795, Egypt;
| | - Wejdan S. Alanazi
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Alhanouf I. Aldawsari
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Asma A. Alfaouri
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
4
|
Alobaidallah MSA, García V, Wellner SM, Thomsen LE, Herrero-Fresno A, Olsen JE. Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome. Antibiotics (Basel) 2024; 13:73. [PMID: 38247632 PMCID: PMC10812820 DOI: 10.3390/antibiotics13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The increasing prevalence of antimicrobial resistance and the limited availability of new antimicrobial agents have created an urgent need for new approaches to combat these issues. One such approach involves reevaluating the use of old antibiotics to ensure their appropriate usage and maximize their effectiveness, as older antibiotics could help alleviate the burden on newer agents. An example of such an antibiotic is chloramphenicol (CHL), which is rarely used due to its hematological toxicity. In the current study, we employed a previously published transposon mutant library in MG1655/pTF2::blaCTX-M-1, containing over 315,000 unique transposon insertions, to identify the genetic factors that play an important role during growth in the presence of CHL. The list of conditionally essential genes, collectively referred to as the secondary resistome (SR), included 67 genes. To validate our findings, we conducted gene knockout experiments on six genes: arcA, hfq, acrZ, cls, mdfA, and nlpI. Deleting these genes resulted in increased susceptibility to CHL as demonstrated by MIC estimations and growth experiments, suggesting that targeting the products encoded from these genes may reduce the dose of CHL needed for treatment and hence reduce the toxicity associated with CHL treatment. Thus, the gene products are indicated as targets for antibiotic adjuvants to favor the use of CHL in modern medicine.
Collapse
Affiliation(s)
- Mosaed Saleh A. Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade da Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Sandra M. Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
| | - Line E. Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Campus Terra, Universidade da Santiago de Compostela (USC), 27002 Lugo, Spain
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
| |
Collapse
|
5
|
Yaseen A, Sheikh BA, Bhat BA, Hamid S, Waseem MA, Zargar MI, Mir MA, Shah WA. Deciphering the chemical constituents and antimicrobial activity of Prangos pabularia Lindl. using LC-MS/MS in combination with experimental evaluation and computational studies. Nat Prod Res 2024:1-6. [PMID: 38192260 DOI: 10.1080/14786419.2023.2300394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
This study meticulously explores the antimicrobial potential of Prangos pabularia Lindl.'s aerial parts through a comprehensive blend of in vitro and in silico analysis. Extracts with varying polarities underwent LC-MS/MS identification of active components, followed by in vitro and in silico assessments of antimicrobial efficacy against Escherichia coli, Bacillus cereus, Candida albicans, Candida glabrata, and Candida paropsilosis. The methanolic extract exhibited significant antimicrobial activity with a MIC value of 48 μg/mL against all tested strains. Molecular docking revealed the compound 9-(3-methylbut-2-enoxy)-furo-(3,2-g)-chromen-7-one's highest binding affinity against the penicillin-binding protein (PBP) bacterial drug target molecule. Other compounds also displayed substantial interactions with key antimicrobial drug target proteins. Further, Molecular dynamics simulations affirmed the stability of protein and ligand conformations. Collectively, these results underscore Prangos pabularia Lindl.'s aerial parts as a promising botanical resource in combating diverse microbial infections. This comprehensive approach not only validates it's in vitro antimicrobial properties but also provides molecular insights into interaction mechanisms, advancing our comprehension of the plant's therapeutic potential.
Collapse
Affiliation(s)
- Aadil Yaseen
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, Srinagar, India
| | - Bashir A Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Basharat A Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, India
| | - Saima Hamid
- Department of Environmental Sciences, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India
| | - Malik A Waseem
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, Srinagar, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Wajaht A Shah
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
6
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
7
|
Moon BY, Ali MS, Kwon DH, Heo YE, Hwang YJ, Kim JI, Lee YJ, Yoon SS, Moon DC, Lim SK. Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020-2022. Antibiotics (Basel) 2023; 13:27. [PMID: 38247586 PMCID: PMC10812631 DOI: 10.3390/antibiotics13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.
Collapse
Affiliation(s)
- Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Md. Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ye-Eun Heo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yun Jin Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Chan Moon
- Division of Antimicrobial Resistance Research, Centre for Infectious Diseases Research, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| |
Collapse
|
8
|
Shao H, Zhou J, Lin X, Zhou Y, Xue Y, Hong W, Lin X, Jia X, Fan Y. Bio-inspired peptide-conjugated liposomes for enhanced planktonic bacteria killing and biofilm eradication. Biomaterials 2023; 300:122183. [PMID: 37302278 DOI: 10.1016/j.biomaterials.2023.122183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Developing new antimicrobial agents has become an urgent task to address the increasing prevalence of multidrug-resistant pathogens and the emergence of biofilms. Cationic antimicrobial peptides (AMPs) have been regarded as promising candidates due to their unique non-specific membrane rupture mechanism. However, a series of problems with the peptides hindered their practical application due to their high toxicity and low bioactivity and stability. Here, inspired by broadening the application of cell-penetrating peptides (CPPs), we selected five different sequences of cationic peptides which are considered as both CPPs and AMPs, and developed a biomimetic strategy to construct cationic peptide-conjugated liposomes with the virus-like structure for both enhancements of antibacterial efficacy and biosafety. The correlation between available peptide density/peptide variety and antimicrobial capabilities was evaluated from quantitative perspectives. Computational simulation and experimental investigations assisted to identify the optimal peptide-conjugated liposomes and revealed that the designed system provides high charge density for enhanced anionic bacterial membrane binding capability without compromised cytotoxicity, being capable of enhanced antibacterial efficacy of bacteria/biofilm of clinically important pathogens. The bio-inspired design has shown enhanced therapeutic efficiency of peptides and may promote the development of next-generation antimicrobials.
Collapse
Affiliation(s)
- Hui Shao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Xiaoqian Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yue Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yumeng Xue
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Weili Hong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xubo Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, And with the School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| |
Collapse
|
9
|
Li RS, Liu J, Wen C, Shi Y, Ling J, Cao Q, Wang L, Shi H, Huang CZ, Li N. Transformable nano-antibiotics for mechanotherapy and immune activation against drug-resistant Gram-negative bacteria. SCIENCE ADVANCES 2023; 9:eadg9601. [PMID: 37624881 PMCID: PMC10456869 DOI: 10.1126/sciadv.adg9601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
The dearth of antibiotic candidates against Gram-negative bacteria and the rise of antibiotic resistance create a global health concern. The challenge lies in the unique Gram-negative bacterial outer membrane that provides the impermeable barrier for antibiotics and sequesters antigen presentation. We designed a transformable nano-antibiotics (TNA) that can transform from nontoxic nanoparticles to bactericidal nanofibrils with reasonable rigidity (Young's modulus, 21.6 ± 5.9 MPa) after targeting β-barrel assembly machine A (BamA) and lipid polysaccharides (LPSs) of Gram-negative bacteria. After morphological transformation, the TNA can penetrate and damage the bacterial envelope, disrupt electron transport and multiple conserved biosynthetic and metabolic pathways, burst bacterial antigen release from the outer membrane, and subsequently activate the innate and adaptive immunity. TNA kills Gram-negative bacteria in vitro and in vivo with undetectable resistance through multiple bactericidal modes of action. TNA treatment-induced vaccination results in rapid and long-lasting immune responses, protecting against lethal reinfections.
Collapse
Affiliation(s)
- Rong Sheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Jiahui Liu
- Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, P. R. China
| | - Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yaru Shi
- School of Chemistry and Chemical Engineering, and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Jian Ling
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Qiue Cao
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Bio-medical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
10
|
Smitten K, Southam HM, Fairbanks S, Graf A, Chauvet A, Thomas JA. Clearing an ESKAPE Pathogen in a Model Organism; A Polypyridyl Ruthenium(II) Complex Theranostic that Treats a Resistant Acinetobacter baumannii Infection in Galleria mellonella. Chemistry 2023; 29:e202203555. [PMID: 36420820 PMCID: PMC10946903 DOI: 10.1002/chem.202203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In previous studies we have described the therapeutic action of luminescent dinuclear ruthenium(II) complexes based on the tetrapyridylphenazine, tpphz, bridging ligand on pathogenic strains of Escherichia coli and Enterococcus faecalis. Herein, the antimicrobial activity of the complex against pernicious Gram-negative ESKAPE pathogenic strains of Acinetobacter baumannii (AB12, AB16, AB184 and AB210) and Pseudomonas aeruginosa (PA2017, PA_ 007_ IMP and PA_ 004_ CRCN) are reported. Estimated minimum inhibitory concentrations and minimum bactericidal concentrations for the complexes revealed the complex shows potent activity against all A. baumannii strains, in both glucose defined minimal media and standard nutrient rich Mueller-Hinton-II. Although the activity was lower in P. aureginosa, a moderately high potency was observed and retained in carbapenem-resistant strains. Optical microscopy showed that the compound is rapidly internalized by A. baumannii. As previous reports had revealed the complex exhibited no toxicity in Galleria Mellonella up to concentrations of 80 mg/kg, the ability to clear pathogenic infection within this model was explored. The pathogenic concentrations to the larvae for each bacterium were determined to be≥105 for AB184 and≥103 CFU/mL for PA2017. It was found a single dose of the compound totally cleared a pathogenic A. baumannii infection from all treated G. mellonella within 96 h. Uniquely, in these conditions thanks to the imaging properties of the complex the clearance of the bacteria within the hemolymph of G. mellonella could be directly visualized through both optical and transmission electron microscopy.
Collapse
Affiliation(s)
- Kirsty Smitten
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Simon Fairbanks
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Arthur Graf
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Adrien Chauvet
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Jim A Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
11
|
Tesfa T, Mitiku H, Edae M, Assefa N. Prevalence and incidence of carbapenem-resistant K. pneumoniae colonization: systematic review and meta-analysis. Syst Rev 2022; 11:240. [PMID: 36380387 PMCID: PMC9667607 DOI: 10.1186/s13643-022-02110-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a gram-negative rod belonging to the order Enterobacterales and having a wide distribution in the environment, including the human colon. Recently, the bacterium is one of the known problems in the healthcare setting as it has become resistant to last-resort drugs like carbapenems. The colonized person can serve as a reservoir for his/herself and others, especially in the healthcare setting leading to nosocomial and opportunistic infections. Therefore, we aimed to quantitatively estimate the rate of prevalence and incidence of colonization with carbapenem-resistant K. pneumoniae. METHODS A literature search was conducted on PubMed/MEDLINE, Google Scholar, Science Direct, Cochrane Library, WHO Index Medicus, and university databases. The study includes all published and unpublished papers that addressed the prevalence or incidence of K. pneumoniae colonization. Data were extracted onto format in Microsoft Excel and pooled estimates with a 95% confidence interval calculated using Der-Simonian-Laird random-effects model. With the use of I2 statistics and prediction intervals, the level of heterogeneity was displayed. Egger's tests and funnel plots of standard error were used to demonstrate the publication bias. RESULTS A total of 35 studies were included in the review and 32 records with 37,661 patients for assessment of prevalence, while ten studies with 3643 patients for incidence of colonization. The prevalence of carbapenem-resistant K. pneumoniae colonization varies by location and ranges from 0.13 to 22%, with a pooled prevalence of 5.43%. (3.73-7.42). Whereas the incidence of colonization ranges from 2 to 73% with a pooled incidence of 22.3% (CI 12.74-31.87), both prevalence and incidence reports are majorly from developed countries. There was a variation in the distribution of carbapenem resistance genes among colonizing isolates with KPC as a prominent gene reported from many studies and NDM being reported mainly by studies from Asian countries. A univariate meta-regression analysis indicated continent, patient type, study design, and admission ward do not affect the heterogeneity (p value>0.05). CONCLUSION The review revealed that colonization with K. pneumoniae is higher in a healthcare setting with variable distribution in different localities, and resistance genes for carbapenem drugs also have unstable distribution in different geographic areas.
Collapse
Affiliation(s)
- Tewodros Tesfa
- Department of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, P.O.Box 235, Harar, Ethiopia.
| | - Habtamu Mitiku
- Department of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, P.O.Box 235, Harar, Ethiopia
| | - Mekuria Edae
- Hiwot Fana Specialized University Hospital, College of Health and Medical Sciences, Haramaya University, P.O.Box 235, Harar, Ethiopia
| | - Nega Assefa
- School of Nursing Midwifery, College of Health and Medical Sciences, Haramaya University, P.O.Box 235, Harar, Ethiopia
| |
Collapse
|
12
|
Chandrakar C, Shakya S, Patyal A, Jain A, Ali SL, Mishra OP. ERIC-PCR based molecular typing of multidrug resistant Escherichia coli isolated from houseflies (Musca domestica) in the environment of milk and meat shops. Lett Appl Microbiol 2022; 75:1549-1558. [PMID: 36038146 DOI: 10.1111/lam.13821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022]
Abstract
The emergence and spread of antimicrobial resistance has become a major global public health concern. A component of this problem is the spread of the antibiotic resistant bacteria. Flies move freely between habitats of food-producing animals and human beings and thus have great potential for dissemination of antimicrobial resistant bacteria from a contaminated environment to milk and meat markets, posing potential hazards for the consumers. During the present study, a total of 150 houseflies were captured from milk and meat shops located in Durg and Raipur city of Chhattisgarh, India. The E. coli were isolated from houseflies and characterized on the basis of cultural and molecular tests. Further, the isolates were subjected to antimicrobial susceptibility testing against frequently used antibiotics using disk diffusion method. The antibiotic resistance genes and int1 gene were detected using polymerase chain reaction (PCR). A total of 45 E. coli isolates were obtained from the fly samples with overall prevalence rate of 30.0%. Antibiogram results confirmed that E. coli isolates were resistant to multiple antibiotics. Out of the (45) isolates of E. coli, 17 (37.8%) isolates were extended spectrum beta-lactamase (ESBL) producer and multi-drug resistant (MDR). Out of the ESBL and MDR E.coli isolates, blaCTX-M (24.4%), blaTEM (11.1%), tetA (28.8%), tetB (26.7%), gyrA (26.7%), parC (31. 1%) and int1 genes (15.5%) were detected but none of the isolates were found positive for blaSHV gene. Findings of the present study confirm that MDR E. coli are widely distributed in houseflies and play an important role in transmission of antibiotic-resistant bacteria from contaminated environment to milk and meat shop environment.
Collapse
Affiliation(s)
- Choodamani Chandrakar
- Department of Veterinary Public Health and Epidemiology, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491001, India
| | - Sanjay Shakya
- Department of Veterinary Public Health and Epidemiology, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491001, India
| | - Anil Patyal
- Department of Veterinary Public Health and Epidemiology, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491001, India
| | - Asit Jain
- Department of Animal Genetics and Breeding, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491001, India
| | - Syed L Ali
- Department of Veterinary Medicine, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491001, India
| | - O P Mishra
- Department of Veterinary Physiology and Biochemistry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491001, India
| |
Collapse
|
13
|
Visualization of Antimicrobial-Induced Bacterial Membrane Disruption with a Bicolor AIEgen. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gram-negative bacteria are difficult to kill due to their complex cell envelope, including the outer membrane (OM) and cytoplasmic membrane (CM). To monitor the membranolytic action of antimicrobials on Gram-negative bacteria would facilitate the development of effective antimicrobials. In this paper, an aggregation-induced emission luminogen (AIEgen) with microenvironment-sensitive properties was employed to indicate the interaction of antimicrobials with the OM and CM of Gram-negative bacteria. The damaged extent of OM and CM caused by antimicrobials with the change of dosage and incubation time can be visually captured based on the variation of two emission colors of IQ-Cm responding to OM-defective (green) and CM-disruptive bacteria (orange). Meanwhile, the activity assessment of antimicrobials can be easily realized within 1~2 h based on the distinct response of IQ-Cm to live and dead E. coli, which is much faster than the agar plate culture. This probe may shed light on the understanding of the interaction between the membrane-active antimicrobials and cell envelope of Gram-negative bacteria and contribute to the future development of antimicrobials.
Collapse
|
14
|
Lai Z, Jian Q, Li G, Shao C, Zhu Y, Yuan X, Chen H, Shan A. Self-Assembling Peptide Dendron Nanoparticles with High Stability and a Multimodal Antimicrobial Mechanism of Action. ACS NANO 2021; 15:15824-15840. [PMID: 34549935 DOI: 10.1021/acsnano.1c03301] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembling nanometer-scale structured peptide polymers and peptide dendrimers have shown promise in biomedical applications due to their versatile properties and easy availability. Herein, self-assembling peptide dendron nanoparticles (SPDNs) with potent antimicrobial activity against a range of bacteria were developed based on the nanoscale self-assembly of an arginine-proline repeat branched peptide dendron bearing a hexadecanoic acid chain. The SPDNs are biocompatible, and our most active peptide dendron nanoparticle, C16-3RP, was found to have negligible toxicity after both in vitro and in vivo studies. Furthermore, the C16-3RP nanoparticles showed excellent stability under physiological concentrations of salt ions and against serum and protease degradation, resulting in highly effective treatment in a mouse acute peritonitis model. Comprehensive analyses using a series of biofluorescence, microscopy, and transcriptome sequencing techniques revealed that C16-3RP nanoparticles kill Gram-negative bacteria by increasing bacterial membrane permeability, inducing cytoplasmic membrane depolarization and drastic membrane disruption, inhibiting ribosome biogenesis, and influencing energy generation and other processes. Collectively, C16-3RP nanoparticles show promising biocompatibility and in vivo therapeutic efficacy without apparent resistance development. These advancements may facilitate the development of peptide-based antibiotics in clinical settings.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiao Jian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guoyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
15
|
González-Fernández C, Basauri A, Fallanza M, Bringas E, Oostenbrink C, Ortiz I. Fighting Against Bacterial Lipopolysaccharide-Caused Infections through Molecular Dynamics Simulations: A Review. J Chem Inf Model 2021; 61:4839-4851. [PMID: 34559524 PMCID: PMC8549069 DOI: 10.1021/acs.jcim.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Lipopolysaccharide
(LPS) is the primary component of the outer
leaflet of Gram-negative bacterial outer membranes. LPS elicits an
overwhelming immune response during infection, which can lead to life-threatening
sepsis or septic shock for which no suitable treatment is available
so far. As a result of the worldwide expanding multidrug-resistant
bacteria, the occurrence and frequency of sepsis are expected to increase;
thus, there is an urge to develop novel strategies for treating bacterial
infections. In this regard, gaining an in-depth understanding about
the ability of LPS to both stimulate the host immune system and interact
with several molecules is crucial for fighting against LPS-caused
infections and allowing for the rational design of novel antisepsis
drugs, vaccines and LPS sequestration and detection methods. Molecular
dynamics (MD) simulations, which are understood as being a computational
microscope, have proven to be of significant value to understand LPS-related
phenomena, driving and optimizing experimental research studies. In
this work, a comprehensive review on the methods that can be combined
with MD simulations, recently applied in LPS research, is provided.
We focus especially on both enhanced sampling methods, which enable
the exploration of more complex systems and access to larger time
scales, and free energy calculation approaches. Thereby, apart from
outlining several strategies for surmounting LPS-caused infections,
this work reports the current state-of-the-art of the methods applied
with MD simulations for moving a step forward in the development of
such strategies.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Arantza Basauri
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Marcos Fallanza
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
16
|
Khosravimelal S, Chizari M, Farhadihosseinabadi B, Moosazadeh Moghaddam M, Gholipourmalekabadi M. Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:114. [PMID: 34455501 PMCID: PMC8403119 DOI: 10.1007/s10856-021-06542-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/30/2021] [Indexed: 05/03/2023]
Abstract
Wound infections are still problematic in many cases and demand new alternatives for current treatment strategies. In recent years, biomaterials-based wound dressings have received much attention due to their potentials and many studies have been performed based on them. Accordingly, in this study, we fabricated and optimized an antibacterial chitosan/silk fibroin (CS/SF) electrospun nanofiber bilayer containing different concentrations of a cationic antimicrobial peptide (AMP) for wound dressing applications. The fabricated CS/SF nanofiber was fully characterized and compared to the electrospun silk fibroin and electrospun chitosan alone in vitro. Then, the release rate of different concentrations of peptide (16, 32, and 64 µg/ml) from peptide-loaded CS/SF nanofiber was investigated. Finally, based on cytotoxic activity, the antibacterial activity of scaffolds containing 16 and 32 µg/ml of the peptide was evaluated against standard and multi-drug resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa isolated from burn patients. The peptide-loaded CS/SF nanofiber displayed appropriate mechanical properties, high water uptake, suitable biodegradation rate, a controlled release without cytotoxicity on Hu02 human foreskin fibroblast cells at the 16 and 32 µg/ml concentrations of peptide. The optimized CS/SF containing 32 μg/ml peptide showed strong antibacterial activity against all experimental strains from standard to resistance. The results showed that the fabricated antimicrobial nanofiber has the potential to be applied as a wound dressing for infected wound healing, although further studies are needed in vivo.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Chizari
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World J Microbiol Biotechnol 2021; 37:139. [PMID: 34278535 PMCID: PMC8286942 DOI: 10.1007/s11274-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 11/02/2022]
Abstract
Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs.
Collapse
|
18
|
Murphy R, Kordbacheh S, Skoulas D, Ng S, Suthiwanich K, Kasko AM, Cryan SA, Fitzgerald-Hughes D, Khademhosseini A, Sheikhi A, Heise A. Three-dimensionally printable shear-thinning triblock copolypeptide hydrogels with antimicrobial potency. Biomater Sci 2021; 9:5144-5149. [PMID: 34236349 DOI: 10.1039/d1bm00275a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through rational design, block sequence controlled triblock copolypeptides comprising cysteine and tyrosine as well as a lysine or glutamic acid central block are devised. In these copolypeptides, each block contributes a specific property to the hydrogels to render them extrusion printable and antimicrobial. Three-dimensional (3D) printing of complex hydrogel structures with high shape retention is demonstrated. Moreover, composition dependent potent antimicrobial activity in contact-killing assays is elucidated.
Collapse
Affiliation(s)
- Robert Murphy
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Study of the solubilisation process of bacterial model membranes induced by DDAO. EUROPEAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.2478/afpuc-2020-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Solubilisation of two bacterial model membranes induced by N,N-dimethyl-1-dodecanamine-N-oxide (DDAO) was studied. The first model membrane consisted of a mixture of palmitoyloleoylphosphatidylethanolamine (POPE) and palmitoyloleoylphosphatidylglycerol (POPG) in a molar ratio 0.6:0.4 mol/mol, and a second model membrane was enriched with tetraoleoylcardiolipin (TOCL) with a composition POPE-POPG-TOCL = 0.67:0.23:0.1 mol/mol/mol. Solubilisation of these model membranes was studied by static light scattering (nephelometry). Effective ratio Re (the amount of DDAO integrated into the bilayer to the amount of lipid) at different steps of the solubilisation process was determined. The molar partition coefficient of DDAO was calculated – in case of the POPE-POPG membrane, Kp = 5,300 ± 400, for the POPE-POPG-TOCL membrane, Kp = 6,500 ± 500.
Collapse
|
20
|
Aliyu S, McGowan K, Hussain D, Kanawati L, Ruiz M, Yohannes S. Prevalence and Outcomes of Multi-Drug Resistant Blood Stream Infections Among Nursing Home Residents Admitted to an Acute Care Hospital. J Intensive Care Med 2021; 37:565-571. [PMID: 33938320 DOI: 10.1177/08850666211014450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The prevalence of multi-drug resistant organism (MDRO) colonization in nursing home residents has been well documented, but little is known about the impact of MDRO bloodstream infections (BSIs). The aim of this study was to assess the prevalence, cost, and outcomes of MDRO-BSI vs. non-MDRO-BSI among nursing home residents. DESIGN Retrospective cohort study. SETTING 960 bed tertiary academic medical center. PATIENTS Persons ≥18 years old admitted to an acute care tertiary hospital from Skilled Nursing Facilities with a diagnosis of sepsis between 2015 and 2018. INTERVENTIONS Retrospective analysis of prevalence and outcomes. MEASUREMENTS AND MAIN RESULTS Among patients admitted to the study hospital with a diagnosis of sepsis during the study period, 7% were from nursing homes. The prevalence of MDRO-BSI was 47%. We identified 54 (50%) gram positive BSIs, 48 (45%) gram negative BSI and 5 (5%) fungal BSI. Thirty-one (57%) of the gram-positive infections and 14 (30%) of the gram-negative infections were with MDROs. The prevalence of BSI organisms were Staphylococcus aureus in 24%, Escherichia coli in 14%, Proteus mirabilis in 13%, Staphylococcus epidermidis in 8%, Enterococcus faecalis in 7%, and Klebsiella pneumoniae in 6%. We found that intensive care unit length of stay (7 days vs 5 days, P = .009), direct cost ($13,639 vs $9,922, P = .027), and total cost ($23,752 vs $17,900 P = .032) were significantly higher in patients with MDRO-BSI vs. non-MDRO-BSI. Patients with MDRO-BSI were twice as likely to receive inappropriate empiric antiinfective therapy (31% vs 16%, P = .006) and were more likely to die (49.1% vs 29.6%, P = .049). CONCLUSION Nursing home residents have a high prevalence of MDRO-BSI, which is associated with higher risk of receiving inappropriate initial anti-infective therapy, higher cost, higher ICU LOS, and higher mortality. Our research adds new information about the prevalence of fungemia in this population.
Collapse
Affiliation(s)
- Sainfer Aliyu
- 8405MedStar Washington Hospital Center, Washington, DC, USA
| | - Kevin McGowan
- Georgetown University School of Medicine, Washington, DC, USA
| | - Dilbi Hussain
- 8405MedStar Washington Hospital Center, Washington, DC, USA
| | - Lama Kanawati
- 8405MedStar Washington Hospital Center, Washington, DC, USA
| | - Maria Ruiz
- 8405MedStar Washington Hospital Center, Washington, DC, USA
| | - Seife Yohannes
- 8405MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
21
|
Lin X, Mao Y, Li P, Bai Y, Chen T, Wu K, Chen D, Yang H, Yang L. Ultra-Conformable Ionic Skin with Multi-Modal Sensing, Broad-Spectrum Antimicrobial and Regenerative Capabilities for Smart and Expedited Wound Care. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004627. [PMID: 33977071 PMCID: PMC8097371 DOI: 10.1002/advs.202004627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Indexed: 05/18/2023]
Abstract
While rapid wound healing is essential yet challenging, there is also an unmet need for functional restoration of sensation. Inspired by natural skin, an ultra-conformable, adhesive multi-functional ionic skin (MiS) with multi-modal sensing capability is devised for smart and expedited wound care. The base of MiS is a unique skin-like, conductive and self-adaptive adhesive polyacrylamide/starch double-network hydrogel (PSH) and self-powered, flexible, triboelectric sensor(s) is integrated on top of PSH for multi-tactile sensing. MiS could enhance wound contraction, collagen deposition, angiogenesis, and epidermis formation in a full-thickness skin defect wound model in vivo, while significantly inhibiting the biofilm formation of a wide range of microorganisms. MiS also exhibits multi-modal sensing capability for smart and instant therapeutics and diagnostics, including skin displacement or joint motion, temperature, pressure and tissue exudate changes of wound bed, and locally releasing drugs in a pH-responsive manner. More importantly, MiS could restore the skin-mimicking tactile sensing function of both touch location and intensity, and thus could be used as a human-machine interface for accurate external robotic control. MiS demonstrates a new comprehensive paradigm of combining wound diagnosis and healing, broad-spectrum anti-microbial capability and restoration of multi-tactile sensing for the reparation of severe wound.
Collapse
Affiliation(s)
- Xiao Lin
- Orthopedic Institute and Department of OrthopedicsThe First Affiliated Hospital, Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Yuxuan Mao
- Orthopedic Institute and Department of OrthopedicsThe First Affiliated Hospital, Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Peng Li
- Orthopedic Institute and Department of OrthopedicsThe First Affiliated Hospital, Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Yanjie Bai
- School of Public HealthSoochow UniversitySuzhou215123P. R. China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric EngineeringSoochow UniversitySuzhou215123P. R. China
| | - Kang Wu
- Orthopedic Institute and Department of OrthopedicsThe First Affiliated Hospital, Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Dandan Chen
- National Institute for Food and Drug ControlBeijing102629P. R. China
| | - Huilin Yang
- Orthopedic Institute and Department of OrthopedicsThe First Affiliated Hospital, Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Lei Yang
- Orthopedic Institute and Department of OrthopedicsThe First Affiliated Hospital, Soochow UniversitySuzhouJiangsu215006P. R. China
- Center for Health Science and Engineering (CHSE), School of Materials Science and EngineeringHebei University of TechnologyTianjin300130P. R. China
- Tianjin Key Laboratory of Spine and Spinal CordTianjin Medical University General HospitalTianjin300130P. R. China
| |
Collapse
|
22
|
Mai B, Gao Y, Li M, Jia M, Liu S, Wang X, Zhang K, Liu Q, Wang P. Tailoring the cationic lipid composition of lipo-DVDMS augments the phototherapy efficiency of burn infection. Biomater Sci 2021; 9:2053-2066. [PMID: 33470996 DOI: 10.1039/d0bm01895c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increase in infections with Gram-negative Pseudomonas aeruginosa (P. aeruginosa) is a serious global challenge in healthcare. Sinoporphyrin sodium (DVDMS) combined with photodynamic antimicrobial chemotherapy (PACT) can effectively eradicate Gram-positive organisms. However, the poor penetration of DVDMS into the Gram-negative bacterial cell membrane and bacterial biofilm greatly limits the photo-inspired antimicrobial activity. This study optimized the cationic lipid-mediated nano-DVDMS delivery to improve the cellular uptake, and evaluated the antimicrobial efficacy of cationic DVDMS-liposome (CDL)-provoked PACT in both P. aeruginosa and its multidrug resistant strain. The results showed that the positively charged liposome modification promoted the enrichment of DVDMS in Gram-negative bacteria. CDL-PACT-produced ROS and caused bacterial death, accompanied by the decreased expression levels of virulence factor-related genes. The P. aeruginosa-infected burn model indicated satisfactory bacterial eradication and accelerated wound healing after CDL-PACT, in addition to gradually increasing bFGF, VEGF, TGF-β1 and Hyp levels and reducing TNF-α and IL-6, with no detectable side-effects. Overall, these findings provide fundamental knowledge that enables the design of feasible and efficient PACT treatments, including biophysical membrane permeabilization and photodynamic eradication, which are promising to overcome the infection and resistance of highly opportunistic Gram-negative bacteria.
Collapse
Affiliation(s)
- Bingjie Mai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sulfaguanidine Hybrid with Some New Pyridine-2-One Derivatives: Design, Synthesis, and Antimicrobial Activity against Multidrug-Resistant Bacteria as Dual DNA Gyrase and DHFR Inhibitors. Antibiotics (Basel) 2021; 10:antibiotics10020162. [PMID: 33562582 PMCID: PMC7915026 DOI: 10.3390/antibiotics10020162] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Herein, a series of novel hybrid sulfaguanidine moieties, bearing 2-cyanoacrylamide 2a-d, pyridine-2-one 3-10, and 2-imino-2H-chromene-3-carboxamide 11, 12 derivatives, were synthesized, and their structure confirmed by spectral data and elemental analysis. All the synthesized compounds showed moderate to good antimicrobial activity against eight pathogens. The most promising six derivatives, 2a, 2b, 2d, 3a, 8, and 11, revealed to be best in inhibiting bacterial and fungal growth, thus showing bactericidal and fungicidal activity. These derivatives exhibited moderate to potent inhibition against DNA gyrase and DHFR enzymes, with three derivatives 2d, 3a, and 2a demonstrating inhibition of DNA gyrase, with IC50 values of 18.17-23.87 µM, and of DHFR, with IC50 values of 4.33-5.54 µM; their potency is near to that of the positive controls. Further, the six derivatives exhibited immunomodulatory potential and three derivatives, 2d, 8, and 11, were selected for further study and displayed an increase in spleen and thymus weight and enhanced the activation of CD4+ and CD8+ T lymphocytes. Finally, molecular docking and some AMED studies were performed.
Collapse
|
24
|
Jia F, Wang J, Zhang L, Zhou J, He Y, Lu Y, Liu K, Yan W, Wang K. Multiple action mechanism and in vivo antimicrobial efficacy of antimicrobial peptide Jelleine-I. J Pept Sci 2020; 27:e3294. [PMID: 33283388 DOI: 10.1002/psc.3294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
With the extensive use of antibiotics in medicine, agriculture and food chemistry, the emergence of multi-drug resistant bacteria become more and more frequent and posed great threats to human health and life. So novel antimicrobial agents were urgently needed to defend the resistant bacteria. Jelleine-I was a small antimicrobial peptide (AMP) with eight amino acids in its sequence. It was believed to be an ideal template for developing antimicrobial agents. In the present study, the possible action mode against both gram-negative bacteria and gram-positive bacteria and in vivo antimicrobial activity was explored. Our results showed that Jelleine-I exhibits its antimicrobial activity mainly by disrupting the integrity of the cell membrane, which would not be affected by the conventional resistant mechanism. It also aims at some intracellular targets such as genomic DNA to inhibit the growth of microbes. In addition, the result of in vivo antimicrobial activity experiment showed that Jelleine-I performed a good therapeutic effect toward the mice with Escherichia coli infected peritonitis. Notably, Jelleine-I has negligible cytotoxicity toward the tested mammalian cells, indicating excellent cell selectivity between prokaryotic cells and eurkayotic cells. In summary, our results showed that Jelleine-I would be a potential candidate to be developed as a novel antimicrobial agent.
Collapse
Affiliation(s)
- Fengjing Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Jiayi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Lishi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Yaqi Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Kexin Liu
- School/Hospital of Stomatology, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| |
Collapse
|
25
|
Rezaei N, Hamidabadi HG, Khosravimelal S, Zahiri M, Ahovan ZA, Bojnordi MN, Eftekhari BS, Hashemi A, Ganji F, Darabi S, Gholipourmalekabadi M. Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates. Int J Biol Macromol 2020; 164:855-862. [DOI: 10.1016/j.ijbiomac.2020.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
|
26
|
Adekanmbi AO, Akinpelu MO, Olaposi AV, Oyelade AA. Diversity of Extended Spectrum Beta-lactamase (ESBL) genes in Escherichia coli isolated from wastewater generated by a Sick Bay located in a University Health Care Facility. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Padmini N, Rashiya N, Sivakumar N, Kannan ND, Manjuladevi R, Rajasekar P, Prabhu NM, Selvakumar G. In vitro and in vivo efficacy of methyl oleate and palmitic acid against ESBL producing MDR Escherichia coli and Klebsiella pneumoniae. Microb Pathog 2020; 148:104446. [PMID: 32810555 DOI: 10.1016/j.micpath.2020.104446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/19/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Antibiotic resistance is a huge problem that stays to challenge the healthcare sector in a large part of the world in both developing and developed countries. The spread of multi drug resistant (MDR) bacteria in hospital and community settings remains a widely uncertain problem and a heavy burden to health services. METHODS This study unveils the in vitro and in vivo anti-ESBL potential of Methyl oleate (MO) and Palmitic acid (PA) against ESBL producing MDR bacterial pathogens such as Escherichia coli and Klebsiella pneumoniae. Microscopic observations unveiled the anti-ESBL efficacy of test compounds. MTT assay, in vivo anti-infective efficiency of MO and PA was tested with different concentrations. RESULTS The pure compounds of MO and PA from Oxynema thaianum demonstrated high inhibitory activity in MIC and MBC assays against MDR E. coli and K. pneumoniae. Moreover, the anti-ESBL potential of MO and PA was validated through light, confocal laser scanning and scanning electron microscopic analyses. The IC50 values of MO and PA against A549 cells was recorded as 625 μg mL-1 and 514 μg mL-1, respectively. In Artemia nauplii cytotoxicity assay, the LC50 value of MO and PA were recorded as 53.33 μg mL-1 and 50 μg mL-1 respectively. The 96 h lethal concentrations obtained for Lobeo rohita treated with different concentrations of Methyl oleate and Palmitic acid. The LC50 for MO and PA was 50 mg L-1 and 100 mg L-1, respectively. CONCLUSION Therefore the study concluded that the promising effects of MO and PA can be used as an alternative biological agent which could be positively explored to treat ESBL producing MDR pathogens.
Collapse
Affiliation(s)
- Nagarajan Padmini
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Nagasundaram Rashiya
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Natesan Sivakumar
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | | | | | - Periyannan Rajasekar
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | | | - Gopal Selvakumar
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
28
|
Provenzani A, Hospodar AR, Meyer AL, Leonardi Vinci D, Hwang EY, Butrus CM, Polidori P. Multidrug-resistant gram-negative organisms: a review of recently approved antibiotics and novel pipeline agents. Int J Clin Pharm 2020; 42:1016-1025. [PMID: 32638294 DOI: 10.1007/s11096-020-01089-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Background The discovery of antibiotics several decades ago was a defining moment in history. They were used to treat previously incurable diseases and save many lives. However, the use of antibiotics is not benign. Antibiotic resistance occurs due to the natural evolution of bacteria and gene transfer between bacteria via vertical and horizontal routes, resulting in protective mechanisms that render antibacterial agents ineffective. Aim of the review To list and describe current, novel pipeline antibiotics indicated for multidrug-resistant gram-negative bacteria. This review discusses the limited number of novel pipeline drugs available to combat the rapidly increasing number of multidrug-resistant bacteria and the need for initiatives to research and discover more novel antibiotics. Method A search of MEDLINE/PubMed using the search terms antibacterial pipeline OR antibiotic pipeline including publications between 1 January 2018 through 23 January 2020 resulted in 230 items. The results obtained were narrowed by adding the search term AND multi-drug resistant which resulted in 12 items. Then, ClinicalTrials.gov was searched for phase 2-3 "interventional" trials registered between 1 January 2018 and 23 January 2020 with the status "recruiting" or "completed" function and including World Health Organization-defined priority pathogens in the "condition or disease" field. The search process was then completed by introducing the term antibacterial agents in the "other terms" field. The trials search and selection resulted in 13 items. Relevant English-language studies and those conducted in humans were considered. Those drugs belonging to new antibiotic classes or to antibiotic classes already known but with new chemical structure were defined as "novel antibiotics". Results The studies selected and reviewed were those referring to a novel antibiotics. Thus, from MEDLINE/PubMed, we found only 1 item referred to a novel chemical class (Murepavadin n = 1). From ClinicalTrials.gov a total of 4 citations were identified (Ftortiazinon n = 1, Zoliflodacin n = 1, Gepotidacin n = 1, ETX2514 + sulbactam n = 1). Conclusion The antibiotics annually approved by the Food and Drug Administration (FDA) mostly belong to existing classes of antibiotics and have specific indications, limiting their use in many multidrug-resistant infections. There are limited novel drug classes targeting gram-negative infections in the pipeline. Providers must be vigilant with the use of current antibiotics, especially until research and development (R&D) advancements are made.
Collapse
Affiliation(s)
- A Provenzani
- Department of Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Via E. Tricomi n. 5, 90127, Palermo, Italy.
| | - A R Hospodar
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - A L Meyer
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - D Leonardi Vinci
- School of Specialization in Hospital Pharmacy, University of Palermo, 90133, Palermo, Italy
| | - E Y Hwang
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - C M Butrus
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - P Polidori
- Department of Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Via E. Tricomi n. 5, 90127, Palermo, Italy
| |
Collapse
|
29
|
Guo R, Li K, Qin J, Niu S, Hong W. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli. NANOSCALE 2020; 12:11251-11266. [PMID: 32412567 DOI: 10.1039/d0nr01366h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Highly pathogenic Gram-negative bacteria (G-) are tenacious and pose a serious threat to public health, mainly because of three biological barriers: cell envelope blockages, biofilm protection, and macrophages shelter. One strategy to bypass the biological barriers and consequently achieve a satisfying G- bactericidal effect is to utilize polymeric micelles with superior bacterial recognition and binding capabilities. In the current study, we explored the biological barriers penetration ability of a traditional polycationic micellar system (PP-PEI) based on a copolymer of polylactide-poly (ethylene glycol)-polyethylenimine (PLA5K-PEG2K-PEI2K). Subsequently, tetracycline (TC) with good fluorescence property was encapsulated into the PLA core of the micelle (PP-PEI/TC) through hydrophobic interaction. The combination of a PEI shell and loaded antibiotic drug endowed the polycationic micelles with a greater capacity for killing drug-resistant bacteria, destructing biofilms, and eradicating intracellular bacteria, compared with free TC and micelles without the inoculation of a PEI moiety. Confocal laser scanning microscopy (CLSM) and flow cytometry illustrated that PP-PEI/TC could completely penetrate and accumulate in drug-resistant E. coli, biofilms, and infected macrophages. The efficient biological barrier penetration was elucidated as due to the strong electrostatic interactions between the polycationic PEI block and the anionic composition of the bacterial outer membrane (e.g., LPS), macrophage cell membrane (e.g., phospholipid), and extracellular polymeric substances (e.g., eDNA), which was confirmed by biolayer interferometry (BLI). Once the micellar system was bound to a negatively-charged surface, bacterial and cellular enzymes could degrade the PP-PEI core to release its antibacterial content and finally kill planktonic bacteria, bacteria over the depth of a biofilm, and/or intracellular bacteria. In vivo imaging indicated that fluorescent polycationic micelles accumulated in bacterial infection sites with strong fluorescence. In vivo antibacterial experiments showed that PP-PEI/TC could dramatically reduce the number of drug-resistant E. coli EB1-1 in the peritoneal cavity of acute peritonitis BALB/c mice compared with its counterparts. In conclusion, our study demonstrated that polycationic micelles with a PEI shell could penetrate into drug-resistant bacteria, the biofilm matrix, and infected macrophages and lead to the spatiotemporal release of antibacterial agents for the comprehensive treatment of drug-resistant relevant infections.
Collapse
Affiliation(s)
- Rong Guo
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| | - Keke Li
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Institute of Integrative Medicine, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Zhangheng Road 826, Shanghai, 200433, P. R. China
| | - Shengli Niu
- Key laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, P.R. China
| | - Wei Hong
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| |
Collapse
|
30
|
Guo L, Wang H, Wang Y, Liu F, Feng L. Organic Polymer Nanoparticles with Primary Ammonium Salt as Potent Antibacterial Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21254-21262. [PMID: 31909588 DOI: 10.1021/acsami.9b19921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infections induced by drug-resistant strains have become a global crisis. A membrane-disrupted mechanism is considered as an effective way to kill bacteria with little chance to trigger drug resistance. It is necessary to explore and develop new materials based on the membrane-disrupted mechanism to combat bacterial resistance. Here we report the design of organic nanoparticles based on a polymer (PDCP) as highly effective inhibition and bactericidal reagents. The PDCP is devised to have a hydrophobic skeleton and hydrophilic side chain modified with protonated primary amines, which could self-assemble to form organic nanoparticles (PDCP-NPs). By taking advantage of the large surface to volume ratio of nanoparticles, the synthesized PDCP-NPs have enriched positive charges and multiple membrane-binding sites. Research results display that PDCP-NPs have highly potent antibacterial activity in vitro and vivo, especially for Gram-negative bacteria with low toxicity against mammalian cells. This work design will inspire researchers to develop more membrane-disrupted bactericide and advance the applications of organic nanoparticles in the antibacterial area.
Collapse
Affiliation(s)
- Lixia Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Haoping Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
31
|
Caetano T, van der Donk W, Mendo S. Bacteroidetes can be a rich source of novel lanthipeptides: The case study of Pedobacter lusitanus. Microbiol Res 2020; 235:126441. [PMID: 32109689 DOI: 10.1016/j.micres.2020.126441] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
Lanthipeptides are intriguing peptides known since 1928, the year of penicillin's discovery. At that time, they were known as lantibiotics due to their (methyl)lanthionine amino acids and antibacterial activity. Their body of knowledge expanded tremendously over the last few years. Our analysis reveals that Bacteroidetes has a high state of clusters encoding the biosynthesis of class I lanthipeptides. We show that some strains of Pedobacter have a number of LanBs/genome comparable to that of some Actinobacteria. The case study selected was Pedobacter lusitanus NL19. Its clusters identified encode LanBs associated with LanCs as well as orphan LanBs. The first are concomitant with LanT transporters typical of class II lanthipeptides (and not class I), making their clusters into a hybrid class I and class II type. So far, this kind of operon was described only once and is involved in the production of pinensins, the first lanthipeptide with antifungal activity. A particular feature of pinensins is their splitted LanBs and we found that these enzymes are also widely encoded in Bacteroides. The function of a high percentage of proteins predicted to play a role in the production of Pedobacter lanthipeptides is unknown. Other major fraction of these proteins is expected to be enrolled in signal-transduction pathways. We demonstrate that the occurrence of lanthipeptides clusters in the genomes of Gram-negative bacteria is higher than previously reported. More importantly, we show that their genetic background is highly diverse, which is an undeniable foreshadowing of novel peptide structures, biochemistry and biological function.
Collapse
Affiliation(s)
- Tânia Caetano
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Wilfred van der Donk
- Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Sónia Mendo
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
32
|
Saeed HK, Sreedharan S, Thomas JA. Photoactive metal complexes that bind DNA and other biomolecules as cell probes, therapeutics, and theranostics. Chem Commun (Camb) 2020; 56:1464-1480. [DOI: 10.1039/c9cc09312e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using selected transition metal centres and linking ligand “building blocks” a modular approach to the development of cellular imaging agents and therapeutics is discussed and illustrated with examples from research by the Thomas group.
Collapse
Affiliation(s)
- Hiwa K Saeed
- Department of Chemistry
- Brooklyn College
- The City University of New York
- Brooklyn
- USA
| | - Sreejesh Sreedharan
- CRUK/MRC Oxford Institute for Radiation Oncology University of Oxford
- Oxford
- UK
| | - Jim A Thomas
- Department of Chemistry
- University of Sheffield
- Sheffield S10 2TN
- UK
| |
Collapse
|
33
|
Yang JY, Jia XD, Wang XY, Liu MX, Chen ML, Yang T, Wang JH. Discrimination of antibiotic-resistant Gram-negative bacteria with a novel 3D nano sensing array. Chem Commun (Camb) 2020; 56:1717-1720. [DOI: 10.1039/c9cc09462h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Triple optical response of a nano-composite facilitates discrimination of antibiotic-resistant Gram-negative bacteria from normal ones based on a sensing array technique.
Collapse
Affiliation(s)
- Jian-Yu Yang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xin-Di Jia
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xiao-Yan Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Meng-Xian Liu
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Ming-Li Chen
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Ting Yang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| |
Collapse
|
34
|
Prevalence and antimicrobial-resistance phenotypes and genotypes of Escherichia coli isolated from raw milk samples from mastitis cases in four regions of China. J Glob Antimicrob Resist 2019; 22:94-101. [PMID: 31887413 DOI: 10.1016/j.jgar.2019.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The objective was to find the differences in the prevalence and resistance of Escherischia coli isolated from raw milk samples from mastitis cases in four regions of China. METHODS A total of 750 bovine raw milk samples from mastitis cases were collected from four regions of China over two seasons. Antimicrobial resistance against 29 antimicrobial agents was determined, and 27 drug-resistant genes were tested. RESULTS Eighty-three strains (11.1%) of E. coli were isolated and identified. No significant differences in the number of E. coli isolates were observed between the two sampling seasons in the same regions (P>0.05). However, a significant difference in E. coli prevalence was found among the four different regions (P<0.01). The isolates were most frequently resistant to penicillin (100%), acetylspiramycin (100%), lincomycin (98.8%), oxacillin (98.8%) and sulphamethoxazole (53%). All the E. coli strains were multiresistant to at least three antimicrobial classes, and the most frequent multidrug-resistance patterns for the isolates were resistant to three (36.1%) or four (39.8%) classes of drugs simultaneously. The blaTEM gene (n=69; 83.1%) was the most frequently detected resistance gene. The most frequent gene combinations were a four-gene pattern of blaCTX-M-sulII-blaTEM-sulI (n=13; 15.7%) and a three-gene pattern of blaCTX-M-aph (3)-II-blaTEM (n=11; 13.3%). CONCLUSIONS This study indicated that there is a high incidence of E. coli with a great variation in resistance patterns and resistance genes; this is a matter of great concern for public and animal health in China.
Collapse
|
35
|
Jangra M, Kaur M, Podia M, Tambat R, Singh V, Chandal N, Mahey N, Maurya N, Nandanwar H. Purification and biological activity of natural variants synthesized by tridecaptin M gene cluster and in vitro drug-kinetics of this antibiotic class. Sci Rep 2019; 9:18870. [PMID: 31827113 PMCID: PMC6906472 DOI: 10.1038/s41598-019-54716-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022] Open
Abstract
The flexibility of the adenylation domains of non-ribosomal peptide synthetases (NRPSs) to different substrates creates a diversity of structurally similar peptides. In the present study, we investigated the antimicrobial activity of different natural variants synthesized by tridecaptin M gene cluster and performed the in vitro drug kinetics on this class. The natural variants were isolated and characterized using MALDI-MS and tandem mass spectrometry. All the peptides were studied for their antimicrobial activity in different pathogens, including colistin-resistant bacteria, and for haemolytic activity. Furthermore, in vitro drug kinetics was performed with tridecaptin M (or M1, the major product of the gene cluster). The natural variants displayed a varying degree of bioactivity with M11 showing the most potent antibacterial activity (MIC, 1–8 µg/ml), even against A. baumannii and P. aeruginosa strains. The in vitro kinetic studies revealed that tridecaptin M at a concentration of 16 µg/ml eradicated the bacteria completely in high-density culture. The compound demonstrated desirable post-antibiotic effect after two-hour exposure at MIC concentration. We also observed the reversal of resistance to this class of antibiotics in the presence of carbonyl cyanide m-chlorophenyl hydrazine (CCCP). Altogether, the study demonstrated that tridecaptins are an excellent drug candidate against drug-resistant Gram-negative bacteria. Future studies are required to design a superior tridecaptin by investigating the interactions of different natural variants with the target.
Collapse
Affiliation(s)
- Manoj Jangra
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Manpreet Kaur
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Mansi Podia
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Rushikesh Tambat
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Vidhu Singh
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Nishtha Chandal
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Nisha Mahey
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Navdezda Maurya
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India
| | - Hemraj Nandanwar
- Clinical Microbiology & Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh, 160036, India.
| |
Collapse
|
36
|
Kim H, Jang JH, Kim SC, Cho JH. Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. Eur J Med Chem 2019; 185:111814. [PMID: 31678742 DOI: 10.1016/j.ejmech.2019.111814] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Abstract
The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa, coupled with shrinking antibiotic pipelines, has increased the demand for new antimicrobials with novel mechanisms of action. As the indiscriminate nature of broad-spectrum antimicrobial toxicity may have negative clinical consequences and increase the incidence of resistance, we have developed a P. aeruginosa-selective antimicrobial peptide capable of preferentially killing P. aeruginosa relative to benign microorganisms. A targeting peptide (PA2) that binds specifically to OprF porin on P. aeruginosa was identified by phage display peptide library screening, and a hybrid peptide was constructed by addition of the targeting peptide to GNU7, a potent antimicrobial peptide. The resulting hybrid peptide PA2-GNU7 exhibited potent antimicrobial activity against P. aeruginosa without causing host toxicity. Confocal laser scanning microscopy analysis and time-kill experiments demonstrated that PA2-GNU7 exhibited a high degree of specificity for P. aeruginosa, and rapidly and selectively killed P. aeruginosa cells in mixed cultures. In addition, in vivo treatment efficacy of PA2-GNU7 was significantly greater than that of conventional antibiotics in a mouse model of MDR P. aeruginosa infection. Taken together, the data suggest that PA2-GNU7 may be a promising template for further development as a novel anti-MDR P. aeruginosa therapeutic agent.
Collapse
Affiliation(s)
- Hyun Kim
- Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ju Hye Jang
- Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Ju Hyun Cho
- Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
37
|
Varma GYN, Kummari G, Paik P, Kalle AM. Celecoxib potentiates antibiotic uptake by altering membrane potential and permeability in Staphylococcus aureus. J Antimicrob Chemother 2019; 74:3462-3472. [DOI: 10.1093/jac/dkz391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
We have shown previously that celecoxib enhances the antibacterial effect of antibiotics and has sensitized drug-resistant bacteria to antibiotics at low concentrations using in vitro and in vivo model systems and also using clinically isolated ESKAPE pathogens.
Objectives
To identify the mechanism of action of celecoxib in potentiating the effect of antibiotics on bacteria.
Methods
Toxicogenomic expression analysis of Staphylococcus aureus in the presence or absence of ampicillin, celecoxib or both was carried out by microarray followed by validation of microarray results by flow cytometry and real-time PCR analysis, cocrystal development and analysis.
Results
The RNA expression map clearly indicated a change in the global transcriptome of S. aureus in the presence of cells treated with ampicillin alone, which was similar to that of celecoxib-treated cells in co-treated cells. Several essential, non-essential and virulence genes such as α-haemolysin (HLA), enterotoxins and β-lactamase were differentially regulated in co-treated cells. Further detailed analysis of the expression data indicated that the ion transporters and enzymes of the lipid biosynthesis pathway were down-regulated in co-treated cells leading to decreased membrane permeability and membrane potential. Cocrystal studies using Powder-X-Ray Diffraction (PXRD) and differential scanning calorimetry (DSC) indicated interactions between celecoxib and ampicillin, which might help in the entry of antibiotics.
Conclusions
Although further studies are warranted, here we report that celecoxib alters membrane potential and permeability, specifically by affecting the Na+/K+ ion transporter, and thereby increases the uptake of ampicillin by S. aureus.
Collapse
Affiliation(s)
- Gajapati Y N Varma
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS, India
| | - Githavani Kummari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS, India
| | - Pradip Paik
- School of Engineering Sciences & Technology, University of Hyderabad, Hyderabad, TS, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS, India
| |
Collapse
|
38
|
Dapgh AN, Hakim AS, Abouelhag HA, Abdou AM, Elgabry EA. Detection of virulence and multidrug resistance operons in Pseudomonas aeruginosa isolated from Egyptian Baladi sheep and goat. Vet World 2019; 12:1524-1528. [PMID: 31849411 PMCID: PMC6868267 DOI: 10.14202/vetworld.2019.1524-1528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/26/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Pseudomonas aeruginosa is a pit of an enormous group of free-living bacteria that are able to live everywhere and suggested to be the causative agent of great scope of acute and chronic animal infections. Aim: The current study was carried out to illustrate the prevalence of P. aeruginosa in small ruminants and existence of some virulence operons as well as its antimicrobial resistance. Materials and Methods: A total of 155 samples from sheep and 105 samples from goats (mouth abscesses, fecal swabs, nasal, tracheal swabs, and lung tissue) were collected for bacteriological study, existence of some virulence expression operons with the study of their sensitivity to the antimicrobials using disc diffusion and presence of mexR operon which is responsible for multidrug resistance (MDR). Results: The bacteriological examination revealed that P. aeruginosa was isolated from nine out of 155 samples from sheep (5.8%) and four isolates out of 105 samples from goat (3.8%). It is found that 12 (92.3%), 10 (76.9 %), and 8 (61.5%) of P. aeruginosa isolates harbored hemolysin phospholipase gene (pcl H), gene (exo S), and enterotoxin gene (tox A), respectively. The results of antibiotic sensitivity test showed that all tested isolates were resistant to ampicillin, bacitracin, erythromycin, streptomycin, tetracycline, trimethoprim-sulfamethoxazole, and tobramycin but sensitive to ciprofloxacin and norfloxacin. The MDR (mex R) operon was existed in all isolates. Conclusion: There is a growing risk for isolation of virulent MDR P. aeruginosa from sheep and goat illness cases, and this should be regarded in the efficient control programs.
Collapse
Affiliation(s)
- A N Dapgh
- Department of Bacteriology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - A S Hakim
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| | - H A Abouelhag
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| | - A M Abdou
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| | - E A Elgabry
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
39
|
Fan CY, Lee WT, Hsu TC, Lee CH, Wang SP, Chen WS, Huang CH, Lee CC. Effect of chlorhexidine bathing on colonization or infection with Acinetobacter baumannii: a systematic review and meta-analysis. J Hosp Infect 2019; 103:284-292. [PMID: 31404567 DOI: 10.1016/j.jhin.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
Healthcare-associated infections (HAIs) caused by multi-drug-resistant Gram-negative bacteria (MDRGNB) have increased prevalence in intensive care units (ICUs). A common strategy to prevent HAIs is bathing patients with chlorhexidine gluconate (CHG). However, the effectiveness of CHG bathing against multidrug-resistant Acinetobacter baumannii (MDRAB) is still controversial. The aim of this study was to perform a systematic review and meta-analysis of the effectiveness of CHG bathing on Acinetobacter baumannii colonization and infection in the ICU setting. A systematic literature search of PubMed, EMBASE, Web of Science and CINAHL was performed from inception through to June 2018. Randomized controlled trials (RCTs), pre-post studies, or interrupted time series (ITS) studies were included. The numbers of patients with/without colonization or infection of A. baumannii in the experimental or control groups were extracted from each study. Quality assessment was performed by the related instruments of National Institute of Health. Pooled risk ratios (RRs) were calculated using the random-effects model. One RCT and 12 pre-post or ITS studies comprising 18,217 patients were included, of which 8069 were in the CHG bathing arm and 9051 in the control arm. CHG bathing was associated with a reduced colonization of A. baumannii (RR, 0.66; 95% confidence interval: 0.57-0.77; P<0.001). Chlorhexidine at 4% showed a better effect than 2% chlorhexidine (meta-regression P=0.044). CHG bathing was associated with a non-significant reduction of infection (pooled RR 0.41, 95% CI: 0.13-1.25). This study suggests that CHG bathing significantly reduces colonization of A. baumannii in the ICU setting. However, more trials are needed to confirm whether CHG bathing can reduce infections with A. baumannii.
Collapse
Affiliation(s)
- C-Y Fan
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - W-T Lee
- Department of Medicine, The University of Queensland, Queensland, Australia
| | - T-C Hsu
- Department of Emergency Medicine, National Taiwan University, Taipei, Taiwan
| | - C-H Lee
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-P Wang
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Emergency Medicine, National Taiwan University, Taipei, Taiwan
| | - W-S Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - C-H Huang
- Department of Emergency Medicine, National Taiwan University, Taipei, Taiwan
| | - C-C Lee
- Department of Emergency Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Coagulation factors VII, IX and X are effective antibacterial proteins against drug-resistant Gram-negative bacteria. Cell Res 2019; 29:711-724. [PMID: 31399697 PMCID: PMC6796875 DOI: 10.1038/s41422-019-0202-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Infections caused by drug-resistant “superbugs” pose an urgent public health threat due to the lack of effective drugs; however, certain mammalian proteins with intrinsic antibacterial activity might be underappreciated. Here, we reveal an antibacterial property against Gram-negative bacteria for factors VII, IX and X, three proteins with well-established roles in initiation of the coagulation cascade. These factors exert antibacterial function via their light chains (LCs). Unlike many antibacterial agents that target cell metabolism or the cytoplasmic membrane, the LCs act by hydrolyzing the major components of bacterial outer membrane, lipopolysaccharides, which are crucial for the survival of Gram-negative bacteria. The LC of factor VII exhibits in vitro efficacy towards all Gram-negative bacteria tested, including extensively drug-resistant (XDR) pathogens, at nanomolar concentrations. It is also highly effective in combating XDR Pseudomonas aeruginosa and Acinetobacter baumannii infections in vivo. Through decoding a unique mechanism whereby factors VII, IX and X behave as antimicrobial proteins, this study advances our understanding of the coagulation system in host defense, and suggests that these factors may participate in the pathogenesis of coagulation disorder-related diseases such as sepsis via their dual functions in blood coagulation and resistance to infection. Furthermore, this study may offer new strategies for combating Gram-negative “superbugs”.
Collapse
|
41
|
Wang M, Shi J, Mao H, Sun Z, Guo S, Guo J, Yan F. Fluorescent Imidazolium-Type Poly(ionic liquid)s for Bacterial Imaging and Biofilm Inhibition. Biomacromolecules 2019; 20:3161-3170. [PMID: 31291096 DOI: 10.1021/acs.biomac.9b00741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent imidazolium-type poly(ionic liquid)s (PIL)s were synthesized by anion exchange of bromide (Br-) in poly(3-butyl-1-vinylimidazolium bromide) (PIL-Br) with a fluorescent anion, namely, 3-(4-(1,2,2-triphenylvinyl)phenoxy)propane-1-sulfonate (TPESO3-). Such an anion exchange provided antibacterial PILs with aggregation-induced emission (AIE) properties that simultaneously kill and image bacteria. These fluorescence and antibacterial properties could be regulated by controlling the Br-/TPESO3- ratio. The fluorescence intensity increases as this ratio increases, while the antibacterial property exhibits an opposite trend. Moreover, the AIE-type PILs are useful for fluorescently imaging dead bacteria (macroscopically and microscopically) and could effectively inhibit biofilm growth. This study provided a convenient method to obtain fluorescent PILs with adjustable antibacterial and imaging properties.
Collapse
Affiliation(s)
- Mengyao Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jie Shi
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200438 , China
| | - Zhe Sun
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Siyu Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
42
|
Chen YF, Lai YD, Chang CH, Tsai YC, Tang CC, Jan JS. Star-shaped polypeptides exhibit potent antibacterial activities. NANOSCALE 2019; 11:11696-11708. [PMID: 31179463 DOI: 10.1039/c9nr02012h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peptide-based biomaterials are a promising class of antimicrobial agents that work by physically damaging bacterial cell membranes rather than targeting intracellular factors, resulting in less susceptibility to drug resistance. Herein we report the synthesis of cationic, star-shaped polypeptides with 3 to 8 arms and their evaluation as antimicrobial agents against different types of bacteria. The effects of the arm number and side chain group on their antimicrobial activities were systematically investigated. Compared to their linear counterparts, these star-shaped polypeptides exhibited potent antibacterial activity (which may involve adhesion and disruption processes). The increase of the arm number can efficiently increase the antibacterial activities up until 8 arms, which did not exhibit further improvement of antibacterial activities. Poly(l-lysine) (PLL) modified with an indole group (PLL-g-indo) exhibited the best antibacterial activity among all grafted copolypeptides and improved cytotoxic selectivity towards pathogens over mammalian cells without compromising their hemolytic activities. In vivo studies showed that the star-shaped PLL-g-indo can effectively suppress Enterohaemorrhagic E. coli (EHEC) infection and attenuate the clinical symptoms in mice, suggesting that they are promising antimicrobial agents.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | | | | | | | | | | |
Collapse
|
43
|
Colonization of intestinal microbiota with carbapenemase-producing Enterobacteriaceae in paediatric intensive care units in Cairo, Egypt. Arab J Gastroenterol 2019; 20:19-22. [DOI: 10.1016/j.ajg.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 12/26/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022]
|
44
|
Xiao F, Cao B, Wang C, Guo X, Li M, Xing D, Hu X. Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. ACS NANO 2019; 13:1511-1525. [PMID: 30632740 DOI: 10.1021/acsnano.8b07251] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Highly pathogenic Gram-negative bacteria and their drug resistance are a severe public health threat with high mortality. Gram-negative bacteria are hard to kill due to the complex cell envelopes with low permeability and extra defense mechanisms. It is challenging to treat them with current strategies, mainly including antibiotics, peptides, polymers, and some hybrid materials, which still face the issue of drug resistance, limited antibacterial selectivity, and severe side effects. Together with precise bacteria targeting, synergistic therapeutic modalities, including physical membrane damage and photodynamic eradication, are promising to combat Gram-negative bacteria. Herein, pathogen-specific polymeric antimicrobials were formulated from amphiphilic block copolymers, poly(butyl methacrylate)- b-poly(2-(dimethylamino) ethyl methacrylate- co-eosin)- b-ubiquicidin, PBMA- b-P(DMAEMA- co-EoS)-UBI, in which pathogen-targeting peptide ubiquicidin (UBI) was tethered in the hydrophilic chain terminal, and Eosin-Y was copolymerized in the hydrophilic block. The micelles could selectively adhere to bacteria instead of mammalian cells, inserting into the bacteria membrane to induce physical membrane damage and out-diffusion of intracellular milieu. Furthermore, significant in situ generation of reactive oxygen species was observed upon light irradiation, achieving further photodynamic eradication. Broad-spectrum bacterial inhibition was demonstrated for the polymeric antimicrobials, especially highly opportunistic Gram-negative bacteria, such as Pseudomona aeruginosa ( P. aeruginosa) based on the synergy of physical destruction and photodynamic therapy, without detectable resistance. In vivo P. aeruginosa-infected knife injury model and burn model both proved good potency of bacteria eradication and promoted wound healing, which was comparable with commercial antibiotics, yet no risk of drug resistance. It is promising to hurdle the infection and resistance suffered from highly opportunistic bacteria.
Collapse
Affiliation(s)
- Fengfeng Xiao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Bing Cao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Congyu Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Xujuan Guo
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Mengge Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
45
|
Wang J, Song J, Yang Z, He S, Yang Y, Feng X, Dou X, Shan A. Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria. J Med Chem 2019; 62:2286-2304. [PMID: 30742437 DOI: 10.1021/acs.jmedchem.8b01348] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poor proteolytic resistance is an urgent problem to be solved in the clinical application of antimicrobial peptides (AMPs), yet common solutions, such as complicated chemical modifications and utilization of d-amino acids, greatly increase the difficulty and cost of producing AMPs. In this work, a set of novel peptides was synthesized based on an antitrypsin/antichymotrypsin hydrolytic peptide structure unit (XYPX) n (X represents I, L, and V; Y represents R and K), which was designed using a systematic natural amino acid arrangement. Of these peptides, 16 with seven repeat units had the highest average selectivity index (GMSI = 99.07) for all of the Gram-negative bacteria tested and remained highly effective in combating Escherichia coli infection in vivo. Importantly, 16 also had dramatic resistance to a high concentration of trypsin/chymotrypsin hydrolysis and exerted bactericidal activity through a membrane-disruptive mechanism. Overall, these findings provide new approaches for the development of antiprotease hydrolytic peptides that target Gram-negative bacteria.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Jing Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Zhanyi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Shiqi He
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Xingjun Feng
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Xiujing Dou
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| |
Collapse
|
46
|
Zhang Y, Chen T, Pan Z, Sun X, Yin X, He M, Xiao S, Liang H. Theoretical Insights into the Interactions between Star-Shaped Antimicrobial Polypeptides and Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13438-13448. [PMID: 30350688 DOI: 10.1021/acs.langmuir.8b02677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A structurally nanoengineered antimicrobial polypeptide consisting of lysine and valine residues is a new class of antimicrobial agent with superior antibacterial activity against multidrug-resistant bacteria and low toxicity toward mammalian cells. Utilizing coarse-grained models, we studied the interactions of microbial cytoplasmic membranes with polypeptides of either (K2V1)5 (star-KV) or CM15 (star-CM15). Our computational results verify the low toxicity of polypeptides of (K2V1)5 toward the dipalmitoyl phosphatidylcholine bilayer. This low toxicity is demonstrated to originate from weakened hydrophobicity combined with its random coil conformation for (K2V1)5 because of the highly abundant valine residues, compared with the typical antimicrobial peptides, such as CM15. In the interactions with a palmitoyl-oleoyl-phosphatidylethanolamine/palmitoyl-oleoyl-phosphatidylglycerol bilayer, star-KV has greater ability in phase separation and generation of phase boundary defects not only in lipid redistribution but also in lateral dynamic movements, although both star-KV and star-CM15 can extract the phosphatidylglycerol lipids and purify the phosphatidylethanolamine lipids into continuum domains. We suggest that the polypeptide of (K2V1)5 can nondisruptively kill bacteria by hampering bacterial metabolism through reorganizing lipid domain distribution and simultaneously "freezing" lipid movement.
Collapse
Affiliation(s)
| | | | - Zhimeng Pan
- School of Computing , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | | | | | | | | |
Collapse
|
47
|
Aashima, Pandey SK, Singh S, Mehta SK. Biocompatible gadolinium oxide nanoparticles as efficient agent against pathogenic bacteria. J Colloid Interface Sci 2018; 529:496-504. [PMID: 29945019 DOI: 10.1016/j.jcis.2018.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/14/2023]
Abstract
The inappropriate and surfeit use of antibiotics have generated a hunt for safe and alternative antimicrobial agents against pathogenic bacteria. With the advancement in nanoscience and nanotechnology, promising opportunities for examining the bacterial effect of metal nanoparticles were demonstrated in literature. Focusing on this, our present study presentssynthesis of l-ascorbic coated gadolinium oxide nanoparticles via a simple precipitation route. Their complete characterization and detailed stability studies were carried out. The obtained nanoparticles were characterized by Fourier transform infrared (FT-IR) spectroscopy, confirming that l-ascorbic acid onto the surface of nanoparticles. The size and morphology were analyzed by Transmission electron Microcopy (TEM) and Field emission scanning electron microscopy (FE-SEM) which reveals their spherical nature. The stability studies were performed to know about their chemical and colloidal stability. The synthesized nanoparticles were found to be non-toxic to HaCaT cells upto the concentration of 125 µg/mL. The antimicrobial effect of nanoparticles was analyzed against three bacterial strains; E. coli, S. aureus and S. typhimurium. To summarize, the synthesized nanoparticles are found to be safe and protective against pathogenic bacteria. They further can be explored in biomedical applications considering their non-toxic nature.
Collapse
Affiliation(s)
- Aashima
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Satish Kumar Pandey
- CSIR - Central Scientific Instruments Organization, Sector-30, Chandigarh 160030, India
| | - Suman Singh
- CSIR - Central Scientific Instruments Organization, Sector-30, Chandigarh 160030, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
48
|
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, designated by the World Health Organization as a critical priority for development of new therapeutics due to high levels of intrinsic and acquired antibiotic resistance. Other challenges include its versatility (it can persist in the environment and most strains are capable of causing disease in compromised hosts), robust efflux mechanisms that limit drug penetration, and the propensity to form antimicrobial-tolerant biofilms. Novel therapeutics in development to prevent or treat P. aeruginosa infections include vaccines, biologics such as antimicrobial peptides and therapeutic antibodies, virulence inhibitors, antimicrobials with novel targets, antibody-drug conjugates, resistance inhibitor-antibiotic or antibiotic-potentiator combinations, and bacteriophages or phage-derived lysins.
Collapse
Affiliation(s)
- Lori L. Burrows
- Department of Biochemistry & Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 4H18 Health Sciences Centre, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
49
|
Farrell LJ, Lo R, Wanford JJ, Jenkins A, Maxwell A, Piddock LJV. Revitalizing the drug pipeline: AntibioticDB, an open access database to aid antibacterial research and development. J Antimicrob Chemother 2018; 73:2284-2297. [DOI: 10.1093/jac/dky208] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- L J Farrell
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - R Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - J J Wanford
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - A Jenkins
- British Society for Antimicrobial Chemotherapy, Griffin House, 53 Regent Place, Birmingham B1 3NJ, UK
| | - A Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - L J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
50
|
Kim MK, Jung M, Park KH, Chong Y. Quercetin-Pivaloxymethyl Conjugate Potentiates Antibiotics againstPseudomonas aeruginosaandAcinetobacter baumannii. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mi Kyoung Kim
- Department of Integrative Bioscience and Biotechnology; Bio/Molecular Informatics Center, Konkuk University; Seoul 143-701 South Korea
| | - Minji Jung
- Department of Infectious Disease; Kyung Hee University School of Medicine; Seoul South Korea
| | - Ki-Ho Park
- Department of Infectious Disease; Kyung Hee University School of Medicine; Seoul South Korea
| | - Youhoon Chong
- Department of Integrative Bioscience and Biotechnology; Bio/Molecular Informatics Center, Konkuk University; Seoul 143-701 South Korea
| |
Collapse
|