1
|
Carcione D, Intra J, Andriani L, Campanile F, Gona F, Carletti S, Mancini N, Brigante G, Cattaneo D, Baldelli S, Chisari M, Piccirilli A, Di Bella S, Principe L. New Antimicrobials for Gram-Positive Sustained Infections: A Comprehensive Guide for Clinicians. Pharmaceuticals (Basel) 2023; 16:1304. [PMID: 37765112 PMCID: PMC10536666 DOI: 10.3390/ph16091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance is a public health problem with increasingly alarming data being reported. Gram-positive bacteria are among the protagonists of severe nosocomial and community infections. The objective of this review is to conduct an extensive examination of emerging treatments for Gram-positive infections including ceftobiprole, ceftaroline, dalbavancin, oritavancin, omadacycline, tedizolid, and delafloxacin. From a methodological standpoint, a comprehensive analysis on clinical trials, molecular structure, mechanism of action, microbiological targeting, clinical use, pharmacokinetic/pharmacodynamic features, and potential for therapeutic drug monitoring will be addressed. Each antibiotic paragraph is divided into specialized microbiological, clinical, and pharmacological sections, including detailed and appropriate tables. A better understanding of the latest promising advances in the field of therapeutic options could lead to the development of a better approach in managing antimicrobial therapy for multidrug-resistant Gram-positive pathogens, which increasingly needs to be better stratified and targeted.
Collapse
Affiliation(s)
- Davide Carcione
- Laboratory of Medicine and Microbiology, Busto Arsizio Hospital—ASST Valle Olona, 21052 Busto Arsizio, VA, Italy; (D.C.); (G.B.)
| | - Jari Intra
- Clinical Chemistry Laboratory, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, MB, Italy;
| | - Lilia Andriani
- Clinical Pathology and Microbiology Unit, Hospital of Sondrio, 23100 Sondrio, Italy;
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy;
| | - Floriana Gona
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (S.C.)
| | - Silvia Carletti
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (S.C.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, 21100 Varese, Italy
| | - Gioconda Brigante
- Laboratory of Medicine and Microbiology, Busto Arsizio Hospital—ASST Valle Olona, 21052 Busto Arsizio, VA, Italy; (D.C.); (G.B.)
| | - Dario Cattaneo
- Department of Infectious Diseases ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Sara Baldelli
- Pharmacology Laboratory, Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Mattia Chisari
- Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical, and Health Sciences, Trieste University, 34129 Trieste, Italy;
| | - Luigi Principe
- Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| |
Collapse
|
2
|
Ambrosio FA, Costa G, Romeo I, Esposito F, Alkhatib M, Salpini R, Svicher V, Corona A, Malune P, Tramontano E, Ceccherini-Silberstein F, Alcaro S, Artese A. Targeting SARS-CoV-2 Main Protease: A Successful Story Guided by an In Silico Drug Repurposing Approach. J Chem Inf Model 2023; 63:3601-3613. [PMID: 37227780 DOI: 10.1021/acs.jcim.3c00282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Mohammad Alkhatib
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Romina Salpini
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Valentina Svicher
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Paolo Malune
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | | | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Zhou J, You X, Guo G, Ke M, Xu J, Ye L, Wu W, Huang P, Lin C. Ceftaroline Dosage Optimized for Pediatric Patients With Renal Impairment Using Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2021; 61:1646-1656. [PMID: 34329494 DOI: 10.1002/jcph.1944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
Ceftaroline fosamil is a fifth-generation cephalosporin approved as a treatment for adults and children with community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. However, its pharmacokinetics have not been fully evaluated in children with renal impairment. This study aimed to propose proper ceftaroline dosages optimized for the renally impaired pediatric population using physiologically based pharmacokinetic (PBPK) modeling. A PBPK model of ceftaroline was established and verified to simulate its disposition in the healthy population and renally impaired adults and to predict the exposure in renally impaired pediatric patients. Consistency was confirmed between simulated and observed data after intravenous administration of various ceftaroline regimens; fold errors were within the 2-fold error range. Among 6-year-old children, healthy subjects had 1.5-fold, 2-fold, and 2.6-fold lower areas under the plasma concentration-time curve (AUCs) than the moderate, severe, and end-stage renally impaired patient groups, respectively; among 1-year-old children, healthy subjects had 1.5-fold, 2.1-fold, and 2.5-fold lower AUCs than the respective renally impaired patient groups; among 1-month-old children, healthy subjects had 1.5-fold, 1.8-fold, and 2.2-fold lower AUCs than the respective renally impaired patient groups. The proposed dosage should be adjusted to 8, 6, and 5 mg/kg every 8 hours for patients aged ≥2 years to <18 years (≤33 kg) with moderate, severe, and end-stage renal impairment, respectively; 5, 4, and 3 mg/kg every 8 hours for patients aged 2 months to <2 years with moderate, severe, and end-stage renal impairment, respectively; 4, 3.5, and 2.5 mg/kg every 8 hours for patients 0 to <2 months of age with moderate, severe, and end-stage renal impairment, respectively. Furthermore, pharmacodynamic investigations demonstrated that adequate antimicrobial effects were attained at the proposed doses in 3 age groups. Hence, our PBPK model can be an effective tool to support ceftaroline dosage proposals for renally impaired pediatric patients.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiang You
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guimu Guo
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Meng Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jianwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Lingling Ye
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Wanhong Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
4
|
Biedenbach DJ, Alm RA, Lahiri SD, Reiszner E, Hoban DJ, Sahm DF, Bouchillon SK, Ambler JE. In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolated in 2012 from Asia-Pacific Countries as Part of the AWARE Surveillance Program. Antimicrob Agents Chemother 2016; 60:343-7. [PMID: 26503659 PMCID: PMC4704164 DOI: 10.1128/aac.01867-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022] Open
Abstract
Ceftaroline, the active metabolite of the prodrug ceftaroline-fosamil, is an advanced-generation cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA). This investigation provides in vitro susceptibility data for ceftaroline against 1,971 S. aureus isolates collected in 2012 from seven countries (26 centers) in the Asia-Pacific region as part of the Assessing Worldwide Antimicrobial Resistance and Evaluation (AWARE) program. Broth microdilution as recommended by the CLSI was used to determine susceptibility. In all, 62% of the isolates studied were MRSA, and the ceftaroline MIC90 for all S. aureus isolates was 2 μg/ml (interpretive criteria: susceptible, ≤1 μg/ml). The overall ceftaroline susceptibility rate for S. aureus was 86.9%, with 100% of methicillin-sensitive S. aureus isolates and 78.8% of MRSA isolates susceptible to this agent. The highest percentages of ceftaroline-nonsusceptible MRSA isolates came from China (47.6%), all of which showed intermediate susceptibility, and Thailand (37.1%), where over half (52.8%) of isolates were resistant to ceftaroline (MIC, 4 μg/ml). Thirty-eight ceftaroline-nonsusceptible isolates (MIC values of 2 to 4 μg/ml) were selected for molecular characterization. Among the isolates analyzed, sequence type 5 (ST-5) was the most common sequence type encountered; however, all isolates analyzed from Thailand were ST-228. Penicillin-binding protein 2a (PBP2a) substitution patterns varied by country, but all isolates from Thailand had the Glu239Lys substitution, and 12 of these also carried an additional Glu447Lys substitution. Ceftaroline-fosamil is a useful addition to the antimicrobial agents that can be used to treat S. aureus infections. However, with the capability of this species to develop resistance to new agents, it is important to recognize and monitor regional differences in trends as they emerge.
Collapse
Affiliation(s)
| | | | | | | | - Daryl J Hoban
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | | | | |
Collapse
|
5
|
Biedenbach DJ, Hoban DJ, Reiszner E, Lahiri SD, Alm RA, Sahm DF, Bouchillon SK, Ambler JE. In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolates Collected in 2012 from Latin American Countries as Part of the AWARE Surveillance Program. Antimicrob Agents Chemother 2015; 59:7873-7. [PMID: 26416860 PMCID: PMC4649166 DOI: 10.1128/aac.01833-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
The in vitro activities of ceftaroline and comparators, using broth microdilution, were determined against 1,066 Staphylococcus aureus isolates from hospitalized patients. Seventeen medical centers from Latin American countries contributed isolates. Methicillin-resistant S. aureus (MRSA) percentages ranged from 46% (Brazil) to 62% (Argentina). All methicillin-susceptible S. aureus (MSSA) isolates were susceptible to ceftaroline. Ceftaroline activity against MRSA varied with MIC90s of 0.5 (Venezuela) to 2 (Brazil, Chile, and Colombia) μg/ml, which was the highest MIC value. ST-5 was the most common sequence type.
Collapse
Affiliation(s)
| | - Daryl J Hoban
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | - Edina Reiszner
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| | | | - Richard A Alm
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | | | - Jane E Ambler
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| |
Collapse
|
6
|
Hoban D, Biedenbach D, Sahm D, Reiszner E, Iaconis J. Activity of ceftaroline and comparators against pathogens isolated from skin and soft tissue infections in Latin America - results of AWARE surveillance 2012. Braz J Infect Dis 2015; 19:596-603. [PMID: 26481631 PMCID: PMC9425381 DOI: 10.1016/j.bjid.2015.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/06/2015] [Accepted: 08/08/2015] [Indexed: 12/22/2022] Open
Abstract
As part of the Assessing Worldwide Antimicrobial Resistance Evaluation (AWARE) surveillance program in 2012 the in vitro activity of ceftaroline and relevant comparator antimicrobials was evaluated in six Latin American countries (Argentina, Brazil, Chile, Colombia, Mexico and Venezuela) against pathogens isolated from patients with hospital associated skin and soft tissue infections (SSTIs). The study documented that ceftaroline was highly active (MIC90 0.25mg/L/% susceptible 100%) against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus (MIC90 2mg/L/% susceptible 83.3%) and β-hemolytic streptococci (MIC90 0.008-0.015mg/L/% susceptible 100%). The activity of ceftaroline against selected species of Enterobacteriaceae was dependent upon the presence or absence of extended-spectrum β-lactamases (ESBLs). Against ESBL screen-negative Escherichia coli, Klebsiella pneumoniae, and Klebsiella oxytoca the MIC90 and percent susceptible for ceftaroline were (0.5mg/L/94.1%), (0.5mg/L/99.0%) and (0.5mg/L/91.5%), respectively. Ceftaroline demonstrated potent activity against a recent collection of pathogens associated with SSTI in six Latin American countries in 2012.
Collapse
Affiliation(s)
- Daryl Hoban
- International Health Management Associates Inc., Schaumburg, USA
| | | | - Daniel Sahm
- International Health Management Associates Inc., Schaumburg, USA
| | | | | |
Collapse
|
7
|
Kiang TKL, Wilby KJ, Ensom MHH. A critical review on the clinical pharmacokinetics, pharmacodynamics, and clinical trials of ceftaroline. Clin Pharmacokinet 2015; 54:915-31. [PMID: 25940827 DOI: 10.1007/s40262-015-0281-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Only a parenteral formulation of ceftaroline is commercially available, and the prodrug, ceftaroline fosamil, is hydrolyzed quickly and completely upon intravenous administration. Ceftaroline is relatively minimally bound to plasma proteins (15-28 %), with a volume of distribution of 30-40 L. Ceftaroline undergoes minimal metabolism and does not appear to be a cytochrome P450 substrate. Its renal clearance (e.g. 4-7 L/h after multiple dosing) approximates glomerular filtration rate, with a terminal half-life of ~2.6 h in healthy subjects. The pharmacokinetics of ceftaroline have been described thoroughly in clinical investigations primarily conducted by the manufacturer. Despite its indications for treating skin and skin structure infections (SSSI) or community-acquired pneumonia (CAP), some studies that contributed data to the final drug labelling were conducted only in healthy volunteers. A significant amount of data have been contributed by the drug maker, and the overall quality of the pharmacodynamics and clinical data, based on our critical analysis provided in this review, is strong. Ceftaroline can be considered as a therapeutic alternative for complicated SSSI and CAP (Pneumonia Outcome Research Team Class III-IV). The current dosing regimen of ceftaroline 600 mg intravenously every 12 h appears sufficient to establish pharmacokinetic-pharmacodynamic relationships and achieve optimal clinical efficacy. More clinical studies are needed to define the place of ceftaroline in therapy for SSSI, CAP, and other indications such as osteomyelitis, endocarditis, and other types of pneumonia. Moreover, continued development in population modelling incorporating more patient-specific data would allow further analysis to identify intrinsic and extrinsic factors that influence the pharmacokinetics of ceftaroline in humans.
Collapse
Affiliation(s)
- Tony K L Kiang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
8
|
Zhao Y, Liu S, Qu F, Wang J, Hu Y, Zhang P, Wang R, Zhang Y, Liu H, wang L, Luo S, Xiao X. Microcalorimetry coupled with principal component analysis for investigating the anti-Staphylococcus aureus effects of different extracted fractions from Dracontomelon dao. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2015; 120:913-920. [DOI: 10.1007/s10973-014-4268-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
9
|
Scott LJ, Frampton JE. Ceftaroline fosamil: a guide to its use in complicated skin and soft tissue infections and community-acquired pneumonia in the EU. DRUGS & THERAPY PERSPECTIVES 2015. [DOI: 10.1007/s40267-014-0174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Pakhale S, Mulpuru S, Verheij TJM, Kochen MM, Rohde GGU, Bjerre LM. Antibiotics for community-acquired pneumonia in adult outpatients. Cochrane Database Syst Rev 2014; 2014:CD002109. [PMID: 25300166 PMCID: PMC7078574 DOI: 10.1002/14651858.cd002109.pub4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Lower respiratory tract infection (LRTI) is the third leading cause of death worldwide and the first leading cause of death in low-income countries. Community-acquired pneumonia (CAP) is a common condition that causes a significant disease burden for the community, particularly in children younger than five years, the elderly and immunocompromised people. Antibiotics are the standard treatment for CAP. However, increasing antibiotic use is associated with the development of bacterial resistance and side effects for the patient. Several studies have been published regarding optimal antibiotic treatment for CAP but many of these data address treatments in hospitalised patients. This is an update of our 2009 Cochrane Review and addresses antibiotic therapies for CAP in outpatient settings. OBJECTIVES To compare the efficacy and safety of different antibiotic treatments for CAP in participants older than 12 years treated in outpatient settings with respect to clinical, radiological and bacteriological outcomes. SEARCH METHODS We searched CENTRAL (2014, Issue 1), MEDLINE (January 1966 to March week 3, 2014), EMBASE (January 1974 to March 2014), CINAHL (2009 to March 2014), Web of Science (2009 to March 2014) and LILACS (2009 to March 2014). SELECTION CRITERIA We looked for randomised controlled trials (RCTs), fully published in peer-reviewed journals, of antibiotics versus placebo as well as antibiotics versus another antibiotic for the treatment of CAP in outpatient settings in participants older than 12 years of age. However, we did not find any studies of antibiotics versus placebo. Therefore, this review includes RCTs of one or more antibiotics, which report the diagnostic criteria and describe the clinical outcomes considered for inclusion in this review. DATA COLLECTION AND ANALYSIS Two review authors (LMB, TJMV) independently assessed study reports in the first publication. In the 2009 update, LMB performed study selection, which was checked by TJMV and MMK. In this 2014 update, two review authors (SP, SM) independently performed and checked study selection. We contacted trial authors to resolve any ambiguities in the study reports. We compiled and analysed the data. We resolved differences between review authors by discussion and consensus. MAIN RESULTS We included 11 RCTs in this review update (3352 participants older than 12 years with a diagnosis of CAP); 10 RCTs assessed nine antibiotic pairs (3321 participants) and one RCT assessed four antibiotics (31 participants) in people with CAP. The study quality was generally good, with some differences in the extent of the reporting. A variety of clinical, bacteriological and adverse events were reported. Overall, there was no significant difference in the efficacy of the various antibiotics. Studies evaluating clarithromycin and amoxicillin provided only descriptive data regarding the primary outcome. Though the majority of adverse events were similar between all antibiotics, nemonoxacin demonstrated higher gastrointestinal and nervous system adverse events when compared to levofloxacin, while cethromycin demonstrated significantly more nervous system side effects, especially dysgeusia, when compared to clarithromycin. Similarly, high-dose amoxicillin (1 g three times a day) was associated with higher incidence of gastritis and diarrhoea compared to clarithromycin, azithromycin and levofloxacin. AUTHORS' CONCLUSIONS Available evidence from recent RCTs is insufficient to make new evidence-based recommendations for the choice of antibiotic to be used for the treatment of CAP in outpatient settings. Pooling of study data was limited by the very low number of studies assessing the same antibiotic pairs. Individual study results do not reveal significant differences in efficacy between various antibiotics and antibiotic groups. However, two studies did find significantly more adverse events with use of cethromycin as compared to clarithromycin and nemonoxacin when compared to levofloxacin. Multi-drug comparisons using similar administration schedules are needed to provide the evidence necessary for practice recommendations. Further studies focusing on diagnosis, management, cost-effectiveness and misuse of antibiotics in CAP and LRTI are warranted in high-, middle- and low-income countries.
Collapse
Affiliation(s)
- Smita Pakhale
- The Ottawa Hospital, Ottawa Hospital Research Institute and the University of OttawaDepartment of Medicine501 Smyth RoadOttawaONCanadaK1H 8L6
| | - Sunita Mulpuru
- The Ottawa Hospital, General CampusDivision of Respirology501 Smyth RoadBox 211OttawaONCanadaK1H 8L6
| | - Theo JM Verheij
- University Medical Center UtrechtJulius Center for Health Sciences and Primary CarePO Box 85500UtrechtNetherlands3508 GA
| | - Michael M Kochen
- University of Göttingen Medical SchoolDepartment of General Practice/Family MedicineLudwigstrasse 37FreiburgGermanyD‐79104
| | - Gernot GU Rohde
- Maastricht University Medical CenterDepartment of Respiratory MedicinePO box 5800MaastrichtNetherlands6202 AZ
- CAPNETZ STIFTUNGHannoverGermany
| | - Lise M Bjerre
- University of OttawaDepartment of Family Medicine, Bruyere Research Institute43 Bruyere StRoom 369YOttawaONCanadaK1N 5C8
| | | |
Collapse
|
11
|
Kollipara R, Downing C, Lee M, Guidry J, Curtis S, Tyring S. Current and emerging drugs for acute bacterial skin and skin structure infections: an update. Expert Opin Emerg Drugs 2014; 19:431-40. [DOI: 10.1517/14728214.2014.955015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Frampton JE. Ceftaroline fosamil: a review of its use in the treatment of complicated skin and soft tissue infections and community-acquired pneumonia. Drugs 2013; 73:1067-94. [PMID: 23801418 DOI: 10.1007/s40265-013-0075-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ceftaroline, the active metabolite of the prodrug ceftaroline fosamil (Zinforo, Teflaro), is an advanced-generation, parenteral cephalosporin with broad-spectrum antibacterial activity in vitro against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug resistant Streptococcus pneumoniae and Gram-negative bacteria, including Haemophilus influenzae and Moraxella catarrhalis, but not Pseudomonas aeruginosa. Ceftaroline has demonstrated a low potential for the selection of resistance in vitro for drug-resistant Gram-positive organisms, including MRSA, as well as for Gram-negative respiratory pathogens. In pivotal phase III studies, intravenous ceftaroline fosamil demonstrated noninferiority to intravenous vancomycin plus aztreonam in patients hospitalized with complicated skin and soft tissue infections (cSSTIs) and intravenous ceftriaxone in patients hospitalized with community-acquired pneumonia (CAP) [Pneumonia Outcomes Research Team (PORT) risk class III or IV]; however, patients with CAP admitted to the intensive care unit were not evaluated. Ceftaroline fosamil was generally well tolerated in these trials, with an adverse event profile similar to that of other cephalosporins. Diarrhoea was the most commonly reported adverse event; however, the risk of Clostridium difficile-associated diarrhoea with ceftaroline fosamil appeared to be low. Potential limitations of the drug include the lack of an oral formulation and the requirement for twice-daily administration. Nonetheless, ceftaroline fosamil represents an attractive option (either alone or in combination with other agents) for the initial empirical treatment of patients hospitalized with cSSTIs (including those with suspected MRSA infection) or CAP (PORT risk class III or IV) who require intravenous antimicrobial therapy. As with all antibacterial agents, ceftaroline fosamil should be used in accordance with good antimicrobial stewardship.
Collapse
Affiliation(s)
- James E Frampton
- Adis, 41 Centorian Drive, Private Bag 65901, Mairangi Bay, North Shore, 0754 Auckland, New Zealand.
| |
Collapse
|
13
|
Ortwine JK, Werth BJ, Sakoulas G, Rybak MJ. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the “seesaw effect”: Taking advantage of the back door left open? Drug Resist Updat 2013; 16:73-9. [DOI: 10.1016/j.drup.2013.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|