1
|
Costa IG, Glazebrook M, Lu S, McLaren AM, Gratzer PF. A Feasibility and Safety Study of a Novel Human Decellularized Dermal Matrix to Accelerate Healing of Neuropathic Diabetic Foot Ulcers in People With Type 1 and Type 2 Diabetes. Can J Diabetes 2022; 46:S1499-2671(22)00073-9. [PMID: 35945125 DOI: 10.1016/j.jcjd.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/09/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the feasibility and safety of a novel decellularized dermal matrix (DDM) for the treatment of chronic diabetic foot ulcers (DFUs). METHODS An interventional, single-arm, prospective study of DDM for DFU treatment was conducted in 2 Canadian centres from July 1, 2016 to May 30, 2017. Individuals ≥18 years of age, with an active DFU of ≥2 weeks and ulcer area ≥1 cm2 before debridement and who consented to participate, were enrolled in this clinical trial. RESULTS A total of 11 patients were enrolled, with 9 patients (82%) having achieved 100% closure between 2 and 8 weeks. The mean and median times to wound closure for these patients were 3.3 and 2.5 weeks, respectively. The mean and median reductions in wound area at 4 weeks posttreatment were 87% and 100%, respectively. The proportion of patients having achieved complete healing at 12 weeks was 82%. All patients received only 1 DDM application to achieve these results. There were no adverse events related to use of the product. No cases of recurrence during a 1-year follow up after completion of the study were reported for patients who achieved wound closure. CONCLUSIONS These findings provide evidence that this DDM may be safe and effective for the treatment of chronic, hard-to-heal neuropathic DFUs. Specifically, DDM demonstrated the potential to accelerate healing of DFUs when compared with reported times of 8 to 12 weeks required to achieve closure using the current standard of care.
Collapse
Affiliation(s)
- Idevania G Costa
- School of Nursing and Faculty of Health Science, Lakehead University, Thunder Bay, Ontario, Canada
| | - Mark Glazebrook
- Department of Orthopedic Surgery, Dalhousie University, Medicine, Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Suzanne Lu
- Department of Orthopaedic Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ann-Marie McLaren
- Department of Orthopaedic Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paul F Gratzer
- School of Biomedical Engineering, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Oliveira H, Médina C, Labrunie G, Dusserre N, Catros S, Magnan L, Handschin C, Stachowicz ML, Fricain JC, L'Heureux N. Cell-assembled extracellular matrix (CAM): a human biopaper for the biofabrication of pre-vascularized tissues able to connect to the host circulation in vivo. Biofabrication 2021; 14. [PMID: 34695012 DOI: 10.1088/1758-5090/ac2f81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023]
Abstract
When considering regenerative approaches, the efficient creation of a functional vasculature, that can support the metabolic needs of bioengineered tissues, is essential for their survival after implantation. However, it is widely recognized that the post-implantation microenvironment of the engineered tissues is often hypoxic due to insufficient vascularization, resulting in ischemia injury and necrosis. This is one of the main limitations of current tissue engineering applications aiming at replacing significant tissue volumes. Here, we have explored the use of a new biomaterial, the cell-assembled extracellular matrix (CAM), as a biopaper to biofabricate a vascular system. CAM sheets are a unique, fully biological and fully human material that has already shown stable long-term implantation in humans. We demonstrated, for the first time, the use of this unprocessed human ECM as a microperforated biopaper. Using microvalve dispensing bioprinting, concentrated human endothelial cells (30 millions ml-1) were deposited in a controlled geometry in CAM sheets and cocultured with HSFs. Following multilayer assembly, thick ECM-based constructs fused and supported the survival and maturation of capillary-like structures for up to 26 d of culture. Following 3 weeks of subcutaneous implantation in a mice model, constructs showed limited degradative response and the pre-formed vasculature successfully connected with the host circulatory system to establish active perfusion.This mechanically resilient tissue equivalent has great potential for the creation of more complex implantable tissues, where rapid anastomosis is sine qua non for cell survival and efficient tissue integration.
Collapse
Affiliation(s)
- H Oliveira
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - C Médina
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - G Labrunie
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France
| | - N Dusserre
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - S Catros
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France.,CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076 Bordeaux, France
| | - L Magnan
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France
| | - C Handschin
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - M L Stachowicz
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - J-C Fricain
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France.,CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076 Bordeaux, France
| | - N L'Heureux
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France
| |
Collapse
|
3
|
Malhotra D, Pan S, Rüther L, Schlippe G, Voss W, Germann N. Polysaccharide-based skin scaffolds with enhanced mechanical compatibility with native human skin. J Mech Behav Biomed Mater 2021; 122:104607. [PMID: 34198231 DOI: 10.1016/j.jmbbm.2021.104607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
We report a custom-made technique to synthesize process-convenient skin scaffolds by tuning the mechanical properties of hydrogels based on a few naturally occurring polysaccharides to match the rheological properties of previously established benchmarks, i.e., the ex vivo native human skins. We studied the mechanical parameters using oscillatory shear rheology. At small strain amplitudes, the intrinsic elastic modulus showed an almost linear dependence in the middle and a changing rate profile at the two ends with concentration of the principal hydrogel component variant, i.e., kappa (κ)-carrageenan. At large strain amplitudes, the hydrogels demonstrated intercycle strain-softening behavior, the onset of which was directly proportional to the κ-carrageenan concentration. We observed a concentration match for the intrinsic elastic modulus of the benchmark within this sigmoidal curve fit. Contextually, we need to explore other potent polymeric hydrogel systems to achieve mechanical affinity in terms of multiple rheological parameters derived from both strain amplitude and angular frequency sweeps. Additionally, we carried out diffusion experiments to study caffeine permeation attributes. The hydrogels show improved barrier features with increasing κ-carrageenan concentration. In terms of the penetration flux and total cumulative amount of permeated caffeine, this enhanced mechanical adherence demonstrates comparable penetration features with the commercial 3D skin model.
Collapse
Affiliation(s)
- Deepika Malhotra
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Sharadwata Pan
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Lars Rüther
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | | | - Werner Voss
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|
4
|
Vranckx JJ, Hondt MD. Tissue engineering and surgery: from translational studies to human trials. Innov Surg Sci 2017; 2:189-202. [PMID: 31579752 PMCID: PMC6754028 DOI: 10.1515/iss-2017-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.
Collapse
Affiliation(s)
- Jan Jeroen Vranckx
- Department of Plastic and Reconstructive Surgery, KU Leuven University Hospitals, 49 Herestraat, B-3000 Leuven, Belgium
| | - Margot Den Hondt
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU-Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
5
|
Efficacy of supermacroporous poly(ethylene glycol)–gelatin cryogel matrix for soft tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:298-312. [DOI: 10.1016/j.msec.2014.11.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/11/2014] [Accepted: 11/08/2014] [Indexed: 02/07/2023]
|
6
|
Kamel RA, Ong JF, Eriksson E, Junker JPE, Caterson EJ. Tissue engineering of skin. J Am Coll Surg 2013; 217:533-55. [PMID: 23816384 DOI: 10.1016/j.jamcollsurg.2013.03.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022]
Affiliation(s)
- Rami A Kamel
- Division of Plastic Surgery, Brigham and Women's Surgery, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
Bioengineered skin has great potential for use in regenerative medicine for treatment of severe wounds such as burns or chronic ulcers. Genetically modified skin substitutes have also been used as cell-based devices or "live bioreactors" to deliver therapeutics locally or systemically. Finally, these tissue constructs are used as realistic models of human skin for toxicological testing, to speed drug development and replace traditional animal-based tests in a variety of industries. Here we describe a method of generating bioengineered skin based on a natural scaffold, namely, decellularized human dermis and epidermal stem cells.
Collapse
Affiliation(s)
- Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY, USA
| | | | | |
Collapse
|
8
|
Bhat S, Kumar A. Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications. J Biosci Bioeng 2012; 114:663-70. [PMID: 22884715 DOI: 10.1016/j.jbiosc.2012.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Tissue engineering is a potential approach for the repair of damaged tissues or organs like skin, cartilage, bone etc. Approach utilizes the scaffolds constructed from natural or synthetic polymers fabricated by the available fabrication technologies. This study focuses on the fabrication of the scaffolds using a novel technology called cryogelation, which synthesizes the scaffolds at sub-zero temperature. We have synthesized a novel scaffold from natural polymers like chitosan, agarose and gelatin in optimized ratio using the cryogelation technology. The elasticity of the scaffold was confirmed by rheological studies which supports the utility of the scaffolds for skin and cardiac tissue engineering. Proliferation of different cell types like fibroblast and cardiac cells was analysed by scanning electron microscopy (SEM) and fluorescent microscopy. Biocompatibility of the scaffolds was tested by MTT assay with specific cell type, which showed higher proliferation of the cells on the scaffolds when compared to the two dimensional culture system. Cell proliferation of C(2)C(12) and Cos 7 cells on these scaffolds was further analysed biochemically by alamar blue test and Hoechst test. Biochemical and microscopic analysis of the different cell types on these scaffolds gives an initial insight of these scaffolds towards their utility in skin and cardiac tissue engineering.
Collapse
Affiliation(s)
- Sumrita Bhat
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
9
|
Schurr MJ, Foster KN, Lokuta MA, Rasmussen CA, Thomas-Virnig CL, Faucher LD, Caruso DM, Allen-Hoffmann BL. Clinical Evaluation of NIKS-Based Bioengineered Skin Substitute Tissue in Complex Skin Defects: Phase I/IIa Clinical Trial Results. Adv Wound Care (New Rochelle) 2012; 1:95-103. [PMID: 24527287 DOI: 10.1089/wound.2011.0343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Complex skin defects, such as burns and acute cutaneous trauma, are life-threatening injuries, often requiring temporary allograft placement to maintain fluid homeostasis and prevent infection until permanent wound closure is possible. THE PROBLEM The current standard of care for the management of full-thickness wounds that are unable to be closed in a single surgical stage is temporary coverage with cadaver allograft until an acceptable wound bed has been established. This approach has limitations including limited availability of human cadaver skin, the risk of disease transmission from cadaveric grafts, and inconsistent cadaver allograft quality. BASIC/CLINICAL SCIENCE Near-diploid neonatal human keratinocyte cell line (NIKS)-based human skin tissue is a full-thickness, living human skin substitute composed of a dermal analog containing normal human dermal fibroblasts and a fully-stratified, biologically and metabolically active epidermis generated from NIKS keratinocytes, a consistent and unlimited source of pathogen-free human epidermal progenitor cells. CLINICAL CARE RELEVANCE NIKS-based human skin tissue is a living bioengineered skin substitute (BSS) intended to provide immediate wound coverage and promote wound healing through sustained expression by living cells of wound healing factors. CONCLUSION A phase I/IIa clinical trial found that NIKS-based BSS was well tolerated and comparable to cadaver allograft in the ability to prepare full-thickness complex skin defects prior to autografting. There were no deaths and no adverse events (AE) associated with this BSS. Exposure of the study subjects to the skin substitute tissue did not elicit detectable immune responses. Notably, this tissue remained viable and adherent in the wound bed for at least 7 days.
Collapse
Affiliation(s)
| | - Kevin N. Foster
- Arizona Burn Center at Maricopa Medical Center, Phoenix, Arizona
| | | | - Cathy A. Rasmussen
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin
- Stratatech Corporation, Madison, Wisconsin
| | - Christina L. Thomas-Virnig
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin
- Stratatech Corporation, Madison, Wisconsin
| | - Lee D. Faucher
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel M. Caruso
- Arizona Burn Center at Maricopa Medical Center, Phoenix, Arizona
| | - B. Lynn Allen-Hoffmann
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin
- Stratatech Corporation, Madison, Wisconsin
| |
Collapse
|
10
|
Ratcliffe A. The Translation of Product Concept to Bone Products: A Partnership of Therapeutic Effectiveness and Commercialization. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:443-7. [DOI: 10.1089/ten.teb.2011.0236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Lugo LM, Lei P, Andreadis ST. Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes. Tissue Eng Part A 2010; 17:665-75. [PMID: 20929281 DOI: 10.1089/ten.tea.2010.0125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite significant advances in management of severe wounds such as burns and chronic ulcers, autologous split-thickness skin grafts are still the gold standard of care. The main problems with this approach include pain and discomfort associated with harvesting autologous tissue, limited availability of donor sites, and the need for multiple surgeries. Although tissue engineering has great potential to provide alternative approaches for tissue regeneration, several problems have hampered progress in translating technological advances to clinical reality. Specifically, engineering of skin substitutes requires long culture times and delayed vascularization after implantation compromises graft survival. To address these issues we developed a novel two-prong strategy for tissue regeneration in vivo: (1) vascularization of acellular dermal scaffolds by infiltration of angiogenic factors; and (2) generation of stratified epidermis by in situ delivery of epidermal keratinocytes onto the prevascularized dermal support. Using athymic mouse as a model system, we found that incorporation of angiogenic factors within acellular human dermis enhanced the density and diameter of infiltrating host blood vessels. Increased vascularization correlated with enhanced proliferation and stratification of the neoepidermis originating from the fibrin-keratinocyte cell suspension. This strategy promoted tissue regeneration in vivo with no need for engineering skin substitutes; therefore, it may be useful for treatment of major wounds when skin donor sites are scarce and rapid wound coverage is required.
Collapse
Affiliation(s)
- Liana M Lugo
- Department of Surgery, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | | | | |
Collapse
|
12
|
Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:510-25. [DOI: 10.1002/wnan.100] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S. P. Zhong
- Division of Bioengineering, National University of Singapore, Singapore
| | - Y. Z. Zhang
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - C. T. Lim
- Division of Bioengineering, National University of Singapore, Singapore
- Research Centre of Excellence in Mechanobiology, National University of Singapore, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
13
|
Urkmez AS, Clark SG, Wheeler MB, Goldwasser MS, Jamison RD. Evaluation of Chitosan/Biphasic Calcium Phosphate Scaffolds for Maxillofacial Bone Tissue Engineering. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/masy.200850912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 2008; 26:2713-23. [PMID: 18617689 DOI: 10.1634/stemcells.2008-0031] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ability to harvest and culture stem cell populations from various human postnatal tissues is central to regenerative medicine applications, including tissue engineering. The discovery of multipotent mesenchymal stem cells within the stromal fraction of adipose tissue prompted their use for the healing and reconstruction of many tissues. Here, we examined the influence of adipose-derived stem/stromal cells (ASCs) on skin's regenerative processes, from a tissue engineering perspective. Using a self-assembly approach, human skin substitutes were produced. They featured a stromal compartment containing human extracellular matrix endogenously produced from either dermal fibroblasts or adipose-derived stem/stromal cells differentiated or not toward the adipogenic lineage. Human keratinocytes were seeded on each stroma and cultured at the air-liquid interface to reconstruct a bilayered skin substitute. These new skin substitutes, containing an epidermis and a distinctive stroma devoid of synthetic biomaterial, displayed characteristics similar to human skin. The influence of the type of stromal compartment on epidermal morphogenesis was assessed by the evaluation of tissue histology, the expression of key protein markers of the epidermal differentiation program (keratin [K] 14, K10, transglutaminase), the expression of dermo-epidermal junction components (laminins, collagen VII), and the presence of basement membrane and hemidesmosomes. Our findings suggest that adipose-derived stem/stromal cells could usefully substitute dermal fibroblasts for skin reconstruction using the self-assembly method. Finally, by exploiting the adipogenic potential of ASCs, we also produced a more complete trilayered skin substitute consisting of the epidermis, the dermis, and the adipocyte-containing hypodermis, the skin's deepest layer. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Valérie Trottier
- Laboratoire d'Organogénèse Expérimentale, Centre Hospitalier Affilié Universitaire de Québec, Hôpital du Saint-Sacrement, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
15
|
Wu X, Kathuria N, Patrick CW, Reece GP. Quantitative analysis of the microvasculature growing in the fibrin interface between a skin graft and the recipient site. Microvasc Res 2007; 75:119-29. [PMID: 17631360 DOI: 10.1016/j.mvr.2007.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 02/06/2023]
Abstract
Current tissue engineering techniques have failed to provide an established microvasculature in skin substitutes, a requisite for the maintenance of graft viability and rapid revascularization subsequent to graft transplantation in vivo. To improve outcomes for both conventional skin grafts and skin substitutes, the existing knowledge gap concerning the spatio-temporal mechanisms of skin graft revascularization must be abrogated. The current knowledge gap is due, at least in part, to a lack of appropriate diagnostic methods to quantify skin graft revascularization. To enhance the understanding of skin graft revascularization, we quantitatively evaluated revascularization of autologous skin grafts in a rat model by quantifying 2- and 3-dimensional vascular metrics in the fibrin interface 3, 7, and 10 days after transplantation. In this study, the fibrin interface appeared to be completely replaced with fibrovascular tissue by postoperative day 10. Although the mean vessel diameter was about 10 mum for the time points sampled, the mean vessel number, area, and volume fraction increased about 2.5-fold from postoperative day 3 to 7 and then decreased about 1.27-fold at postoperative day 10. There was no significant difference between 2- and 3-dimensional vascular metrics based on Bland-Altman analysis. In conclusion, these data establish a standard for metrics of vessels growing in the fibrin interface of a rat autologous skin graft and its donor site and suggests that once the blood supply has been restored to a viable transplant, the number, area, and volume fractions of vessels decrease to levels found at postoperative day 3.
Collapse
Affiliation(s)
- Xuemei Wu
- Reparative Biology and Bioengineering, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
16
|
Abstract
During wound healing, cells recreate functional structures to regenerate the injured tissue. Understanding the healing process is essential for the development of new concepts and the design of novel biomimetic approaches for delivery of cells, genes and growth factors to accelerate tissue regeneration. To this end, realistic experimental models and high-throughput diagnostics are necessary to understand the molecular mechanisms of healing and reveal the genetic networks that determine tissue repair versus regeneration. Following a brief overview of the biology of wound healing, this review covers the in vitro and in vivo models that are employed at present to study the healing process. Discussion then covers the application of high-throughput genomic and proteomic technologies in epithelial development, living skin substitutes and wound healing. Finally, this review provides a perspective on novel technologies that should be developed to facilitate the understanding of wound healing complications and the design of therapeutics that target the underlying deficiencies.
Collapse
Affiliation(s)
- Stelios T Andreadis
- University at Buffalo, The State University of New York (SUNY), Bioengineering Laboratory, Department of Chemical & Biological Engineering, 908 Furnas Hall, Amherst, NY 14260-4200, USA.
| |
Collapse
|
17
|
Andreadis ST. Gene-modified tissue-engineered skin: the next generation of skin substitutes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:241-74. [PMID: 17195466 DOI: 10.1007/10_023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tissue engineering combines the principles of cell biology, engineering and materials science to develop three-dimensional tissues to replace or restore tissue function. Tissue engineered skin is one of most advanced tissue constructs, yet it lacks several important functions including those provided by hair follicles, sebaceous glands, sweat glands and dendritic cells. Although the complexity of skin may be difficult to recapitulate entirely, new or improved functions can be provided by genetic modification of the cells that make up the tissues. Gene therapy can also be used in wound healing to promote tissue regeneration or prevent healing abnormalities such as formation of scars and keloids. Finally, gene-enhanced skin substitutes have great potential as cell-based devices to deliver therapeutics locally or systemically. Although significant progress has been made in the development of gene transfer technologies, several challenges have to be met before clinical application of genetically modified skin tissue. Engineering challenges include methods for improved efficiency and targeted gene delivery; efficient gene transfer to the stem cells that constantly regenerate the dynamic epidermal tissue; and development of novel biomaterials for controlled gene delivery. In addition, advances in regulatable vectors to achieve spatially and temporally controlled gene expression by physiological or exogenous signals may facilitate pharmacological administration of therapeutics through genetically engineered skin. Gene modified skin substitutes are also employed as biological models to understand tissue development or disease progression in a realistic three-dimensional context. In summary, gene therapy has the potential to generate the next generation of skin substitutes with enhanced capacity for treatment of burns, chronic wounds and even systemic diseases.
Collapse
Affiliation(s)
- Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical & Biological Engineering, University at Buffalo, The State University of New York (SUNY), Amherst, NY 14260, USA.
| |
Collapse
|
18
|
Bronneberg D, Bouten CVC, Oomens CWJ, van Kemenade PM, Baaijens FPT. An in vitro Model System to Study the Damaging Effects of Prolonged Mechanical Loading of the Epidermis. Ann Biomed Eng 2006; 34:506-14. [PMID: 16482412 DOI: 10.1007/s10439-005-9062-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
Pressure ulcers are areas of soft tissue breakdown that result from sustained mechanical loading of the skin and underlying tissues. Today, little is known with respect to the aetiology of these ulcers. This study introduces an in vitro model system to study the effects of clinically relevant loading regimes on damage progression in the epidermis, the uppermost skin layer. Engineered epidermal equivalents (EpiDerm) were subjected to 6.7 and 13.3 kPa for either 2 or 20 h using a custom-built loading device. Tissue damage was assessed by (1) histological examination, (2) tissue viability evaluation, and (3) by the release of a pro-inflammatory mediator, interleukin-1alpha (IL-1alpha). Loading the EpiDerm samples for 2 h increased the IL-1alpha release, although no visible tissue damage was observed. However, in the 20 h loading experiments visible tissue damage and a small decrease in tissue viability were observed. Furthermore, in these experiments the IL-1alpha release increased with magnitude of loading. It is concluded that this in vitro model system can be applied to improve insight in the epidermal damage process due to prolonged mechanical loading and can serve as a sound basis for effective clinical identification and prevention of pressure ulcers.
Collapse
Affiliation(s)
- Debbie Bronneberg
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Abstract
The skin is an attractive target for gene therapy because it is easily accessible and shows great potential as an ectopic site for protein delivery in vivo. Genetically modified epidermal cells can be used to engineer three-dimensional skin substitutes, which when transplanted can act as in vivo 'bioreactors' for delivery of therapeutic proteins locally or systemically. Although some gene transfer technologies have the potential to afford permanent genetic modification, differentiation and eventual loss of genetically modified cells from the epidermis results in temporary transgene expression. Therefore, to achieve stable long-term gene expression, it is critical to deliver genes to epidermal stem cells, which possess unlimited growth potential and self-renewal capacity. This review discusses the recent advances in epidermal stem cell isolation, gene transfer and engineering of skin substitutes. Recent efforts that employ gene therapy and tissue engineering for the treatment of genetic diseases, chronic wounds and systemic disorders, such as leptin deficiency or diabetes, are reviewed. Finally, the use of gene-modified tissue-engineered skin as a biological model for understanding tissue development, wound healing and epithelial carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Stelios T Andreadis
- University at Buffalo, Bioengineering Laboratory, Department of Chemical and Biological Engineering, State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
20
|
El-Ghalbzouri A, Lamme EN, van Blitterswijk C, Koopman J, Ponec M. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials 2004; 25:2987-96. [PMID: 14967531 DOI: 10.1016/j.biomaterials.2003.09.098] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Accepted: 09/18/2003] [Indexed: 11/22/2022]
Abstract
Human skin equivalents (HSEs) were engineered using biodegradable-segmented copolymer PEGT/PBT as a dermal scaffold. As control groups, fibroblast-populated de-epidermized dermis, collagen, fibrin and hybrid PEGT/PBT-collagen matrices were used. Two different approaches were used to generate full-thickness HSE. In the 1-step approach, keratinocytes were seeded onto the fibroblast-populated scaffolds and cultured at the air-liquid (A/L) interface. In the 2-step approach, fully differentiated epidermal sheets were transferred onto fibroblast-populated scaffolds and cultured at the A/L. In a 1-step procedure, keratinocytes migrated into the porous PEGT/PBT scaffold. This was prevented by incorporating fibroblast-populated collagen into the pores of the PEGT/PBT matrix or using the 2-step procedure. Under all experimental conditions, fully differentiated stratified epidermis and basement membrane was formed. Differences in K6, K16, K17, collagen type VII, laminin 5 and nidogen staining were observed. In HSE generated with PEGT/PBT, the expression of these keratins was higher, and the deposition of collagen type VII, laminin 5 and nidogen at the epidermal/matrix junction was retarded compared to control HSEs. Our results illustrate that the copolymer PEGT/PBT is a suitable scaffold for the 2-step procedure, whereas the incorporation of fibroblast-populated collagen or fibrin into the pores of the scaffold is required for the 1-step procedure.
Collapse
|
21
|
Valenta C, Auner BG. The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm 2004; 58:279-89. [PMID: 15296955 DOI: 10.1016/j.ejpb.2004.02.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 02/23/2004] [Indexed: 11/21/2022]
Abstract
The use of polymers for skin preparations is manifold. Requirements of such polymers are dependent on the formulation types. The most applied polymers on skin belong to various classes, for example to cellulose derivatives, chitosan, carageenan, polyacrylates, polyvinylalcohol, polyvinylpyrrolidone and silicones. They are gelating agents, matrices in patches and wound dressings, anti-nucleants and penetration enhancers. Correlations between commercially available products and results of new scientific investigations are often difficult or not possible, because of the lack of comparative data especially for transdermal patches. Finally, two promising future trends of polymeric systems, gene delivery and tissue engineering, are discussed.
Collapse
Affiliation(s)
- Claudia Valenta
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
22
|
Barker JH, Vossen M, Banis JC. The Technical, Immunological and Ethical Feasibility of Face Transplantation. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1743-9191(06)60016-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Abstract
Craniofacial reconstruction may be limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have given the reconstructive surgeon new options for restoring form and function. There are now biomaterials (second generation) that can elicit a controlled action and reaction to the surrounding tissue environment (bioactive), and those that can exhibit a controlled chemical breakdown and resorption, with ultimate replacement by regenerating tissue (resorbable). Third-generation biomaterials are being designed to stimulate regeneration of living tissues using tissue engineering and in situ tissue regeneration methods. These techniques will lead to limitless possibilities for tissue regeneration and repair. At present, biomaterials that may find future use in craniofacial reconstruction include newly developed bone and skin substitutes and soft-tissue fillers.
Collapse
Affiliation(s)
- Anna M Pou
- Department of Otolaryngology, University of Texas Medical Branch, Room 7.104, John Sealy Annex, Galveston, TX 77555-0521, USA.
| |
Collapse
|