1
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
2
|
Hu L, He W, Li J, Miao Y, Liang H, Li Y. The role of adenoid immune phenotype in polysensitized children with allergic rhinitis and adenoid hypertrophy. Pediatr Allergy Immunol 2024; 35:e14166. [PMID: 38822736 DOI: 10.1111/pai.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND There is increasing interest in elucidating the relationship between adenoid hypertrophy (AH) and allergic rhinitis (AR). However, the impact of aeroallergen sensitization patterns on children with AH and AR remains unclear. METHODS Patients aged 2-8 years (recruited from January 2019 to December 2022) with nasal symptoms were assessed for allergies, adenoid size, and respiratory viral infection history. The serum total immunoglobulin E (IgE) and specific IgE levels were measured, and flexible nasal endoscopy was performed. The relationship between AH, aeroallergen sensitization patterns, and lymphocyte subpopulations in adenoid samples was analyzed using flow cytometry. RESULTS In total, 5281 children were enrolled (56.5% with AR; and 48.6% with AH). AH was more prevalent in children with AR. Compared to nonsensitized individuals, those polysensitized to molds had a higher prevalence of AH (adjusted OR 1.61, 95% CI 1.32-1.96) and a greater occurrence of two or more respiratory viral infections, particularly in adenoidectomy patients. The percentages and corrected absolute counts of regulatory T (Treg) cells, activated Tregs, class-switched memory B cells (CSMBs), natural killer (NK) T cells, and NK cell subpopulations were reduced in the adenoid tissues of children with both AH and AR (AH-AR) compared to AH-nAR children. Polysensitization in AH-AR children correlated with lower CSMB percentages. CONCLUSION Polysensitivity to molds is associated with an increased risk of AH in children with AR. Fewer B cells, NK cells, and Treg cells with an effector/memory phenotype were detected in the adenoids of AR children, and these lower percentages of immune cells, particularly CSMBs, were closely linked to aeroallergen sensitization models and respiratory viral infection.
Collapse
Affiliation(s)
- Lanye Hu
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun He
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junyang Li
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Miao
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huanhuan Liang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youjin Li
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Gao GF, Liu D, Zhan X, Li B. Analysis of KIR gene variants in The Cancer Genome Atlas and UK Biobank using KIRCLE. BMC Biol 2022; 20:191. [PMID: 36002830 PMCID: PMC9400285 DOI: 10.1186/s12915-022-01392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells represent a critical component of the innate immune system's response against cancer and viral infections, among other diseases. To distinguish healthy host cells from infected or tumor cells, killer immunoglobulin receptors (KIR) on NK cells bind and recognize Human Leukocyte Antigen (HLA) complexes on their target cells. However, NK cells exhibit great diversity in their mechanism of activation, and the outcomes of their activation are not yet understood fully. Just like the HLAs they bind, KIR receptors exhibit high allelic diversity in the human population. Here we provide a method to identify KIR allele variants from whole exome sequencing data and uncover novel associations between these variants and various molecular and clinical correlates. RESULTS In order to better understand KIRs, we have developed KIRCLE, a novel method for genotyping individual KIR genes from whole exome sequencing data, and used it to analyze approximately sixty-thousand patient samples in The Cancer Genome Atlas (TCGA) and UK Biobank. We were able to assess population frequencies for different KIR alleles and demonstrate that, similar to HLA alleles, individuals' KIR alleles correlate strongly with their ethnicities. In addition, we observed associations between different KIR alleles and HLA alleles, including HLA-B*53 with KIR3DL2*013 (Fisher's exact FDR = 7.64e-51). Finally, we showcased statistically significant associations between KIR alleles and various clinical correlates, including peptic ulcer disease (Fisher's exact FDR = 0.0429) and age of onset of atopy (Mann-Whitney U FDR = 0.0751). CONCLUSIONS We show that KIRCLE is able to infer KIR variants accurately and consistently, and we demonstrate its utility using data from approximately sixty-thousand individuals from TCGA and UK Biobank to discover novel molecular and clinical correlations with KIR germline variants. Peptic ulcer disease and atopy are just two diseases in which NK cells may play a role beyond their "classical" realm of anti-tumor and anti-viral responses. This tool may be used both as a benchmark for future KIR-variant-inference algorithms, and to better understand the immunogenomics of and disease processes involving KIRs.
Collapse
Affiliation(s)
- Galen F Gao
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dajiang Liu
- Institute for Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Kaczynska A, Klosinska M, Janeczek K, Zarobkiewicz M, Emeryk A. Promising Immunomodulatory Effects of Bacterial Lysates in Allergic Diseases. Front Immunol 2022; 13:907149. [PMID: 35812388 PMCID: PMC9257936 DOI: 10.3389/fimmu.2022.907149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
In light of an escalating prevalence of allergic disorders, it is crucial to fully comprehend their pathophysiology and etiology. Such knowledge would play a pivotal role in the search for new therapeutic approaches concerning not only diseases’ symptoms, but also their underlying causes. The hygiene hypothesis indicates a high correlation between limited exposure to pathogens in early childhood and the risk of developing allergic disorders. Bearing in mind the significance of respiratory and digestive systems’ mucous membrane’s first-line exposure to pathogens as well as its implications on the host’s immune response, a therapy targeted at aforesaid membranes could guarantee promising and extensive treatment outcomes. Recent years yielded valuable information about bacterial lysates (BLs) known for having immunomodulatory properties. They consist of antigen mixtures obtained through lysis of bacteria which are the most common etiologic agents of respiratory tract infections. They interact with dendritic cells located in the mucous membranes of the upper respiratory tract and the gastrointestinal tract by toll-like receptors. The dendritic cells present acquired antigens resulting in innate immune response development on the release of chemokines, both stimulating monocytes and NK cells maturation and promoting polymorphonuclear neutrophil migration. Moreover, they influence the adaptive immune system by stimulating an increase of specific antibodies against administered bacterial antigens. The significance of BLs includes not only an anti-inflammatory effect on local infections but also restoration of Th1/Th2 balance, as demonstrated mainly in animal models. They decrease Th2-related cytokine levels (IL-4, IL-13) and increase Th1-related cytokine levels (IFN-γ). The reestablishment of the balance of the immune response leads to lowering atopic reactions incidence which, in addition to reduced risk of inflammation, provides the alleviation and improvement of clinical manifestations of allergic disorders. In this review, we hereby describe mechanisms of BLs action, considering their significant immunomodulatory role in innate immunity. The correlation between local, innate, and adaptive immune responses and their impact on the clinical course of allergic disorders are discussed as well. To conclude our review, we present up-to-date literature regarding the outcomes of BLs implemented in atopic dermatitis, allergic rhinitis, and asthma prevention and treatment, especially in children.
Collapse
Affiliation(s)
- Agnieszka Kaczynska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Martyna Klosinska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Kamil Janeczek
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Kamil Janeczek,
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Emeryk
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Di Gioacchino M, Della Valle L, Allegra A, Pioggia G, Gangemi S. AllergoOncology: Role of immune cells and immune proteins. Clin Transl Allergy 2022; 12:e12133. [PMID: 35344301 PMCID: PMC8967267 DOI: 10.1002/clt2.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Immune cells and immune proteins play a pivotal role in host responses to pathogens, allergens and cancer. Understanding the crosstalk between allergic response and cancer, immune surveillance, immunomodulation, role of immunoglobulin E (IgE)‐mediated functions and help to develop novel therapeutic strategies. Allergy and oncology show two opposite scenarios: whereas immune tolerance is desired in allergy, it is detrimental in cancer. Aim The current review provides an update on the role of immune cells and immune proteins in allergy and cancer fields. Methods Authors investigated the role of relevant immunological markers and the correlation with cancer progression or cancer suppression. Results Activated immune cells such as macrophages ‘M1’, dendritic cells (DCs), innate lymphoid cells (ILC2), NK cells, Th1, follicular T helper cells (TFH), TCD8+, B lymphocytes and eosinophils have inhibitory effects on tumourigenesis, while tolerogenic cells such as macrophages ‘M2,’ tolerogenic DCs, ILC3, T and B regulatory lymphocytes appear to favour carcinogenesis. Mastocytes and alarmins can have both effects. RIgE antibodies and CCCL5 chemokine have an anticancer role, whereas IgG4, free light chains, Il‐10, TGF‐β, lipocalin‐2, CCL1 chemokine promote cancer progression. Fundamental is also the contribution of epigenetic changes regulated by the microRNA in cancer progression. Conclusion This knowledge represents the key to developing new anticancer therapies.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Loredana Della Valle
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, and Operative Unit of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Karisola P, Palosuo K, Hinkkanen V, Wisgrill L, Savinko T, Fyhrquist N, Alenius H, Mäkelä MJ. Integrative Transcriptomics Reveals Activation of Innate Immune Responses and Inhibition of Inflammation During Oral Immunotherapy for Egg Allergy in Children. Front Immunol 2022; 12:704633. [PMID: 34975829 PMCID: PMC8714802 DOI: 10.3389/fimmu.2021.704633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
We previously reported the results of a randomized, open-label trial of egg oral immunotherapy (OIT) in 50 children where 44% were desensitized and 46% were partially desensitized after 8 months of treatment. Here we focus on cell-mediated molecular mechanisms driving desensitization during egg OIT. We sought to determine whether changes in genome-wide gene expression in blood cells during egg OIT correlate with humoral responses and the clinical outcome. The blood cell transcriptome of 50 children receiving egg OIT was profiled using peripheral blood mononuclear cell (PBMC) samples obtained at baseline and after 3 and 8 months of OIT. We identified 467 differentially expressed genes (DEGs) after 3 or 8 months of egg OIT. At 8 months, 86% of the DEGs were downregulated and played a role in the signaling of TREM1, IL-6, and IL-17. In correlation analyses, Gal d 1–4-specific IgG4 antibodies associated positively with DEGs playing a role in pathogen recognition and antigen presentation and negatively with DEGs playing a role in the signaling of IL-10, IL-6, and IL-17. Desensitized and partially desensitized patients had differences in their antibody responses, and although most of the transcriptomic changes were shared, both groups had also specific patterns, which suggest slower changes in partially desensitized and activation of NK cells in the desensitized group. OIT for egg allergy in children inhibits inflammation and activates innate immune responses regardless of the clinical outcome at 8 months. Changes in gene expression patterns first appear as posttranslational protein modifications, followed by more sustained epigenetic gene regulatory functions related to successful desensitization.
Collapse
Affiliation(s)
- Piia Karisola
- Human Microbiome (HUMI) Research Program, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Kati Palosuo
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Victoria Hinkkanen
- Human Microbiome (HUMI) Research Program, Medical Faculty, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Terhi Savinko
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nanna Fyhrquist
- Human Microbiome (HUMI) Research Program, Medical Faculty, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Harri Alenius
- Human Microbiome (HUMI) Research Program, Medical Faculty, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Mika J Mäkelä
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Min KY, Koo J, Noh G, Lee D, Jo MG, Lee JE, Kang M, Hyun SY, Choi WS, Kim HS. CD1d hiPD-L1 hiCD27 + Regulatory Natural Killer Subset Suppresses Atopic Dermatitis. Front Immunol 2022; 12:752888. [PMID: 35069528 PMCID: PMC8766675 DOI: 10.3389/fimmu.2021.752888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-β-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-β-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-β+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-β+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-β-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-β-producing NK subset is closely associated with the severity of AD in humans.
Collapse
Affiliation(s)
- Keun Young Min
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Jimo Koo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center Cheju Halla General Hospital, Jeju, South Korea
| | - Dajeong Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Min Geun Jo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Ji Eon Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea.,Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea
| |
Collapse
|
8
|
Camps-Bossacoma M, Massot-Cladera M, Abril-Gil M, Franch A, Pérez-Cano FJ, Castell M. Cocoa Diet and Antibody Immune Response in Preclinical Studies. Front Nutr 2017; 4:28. [PMID: 28702458 PMCID: PMC5484773 DOI: 10.3389/fnut.2017.00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system's functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig) G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Malen Massot-Cladera
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Angels Franch
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
9
|
Effect of thermal processing on T cell reactivity of shellfish allergens - Discordance with IgE reactivity. PLoS One 2017; 12:e0173549. [PMID: 28273149 PMCID: PMC5342306 DOI: 10.1371/journal.pone.0173549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
Crustacean allergy is a major cause of food-induced anaphylaxis. We showed previously that heating increases IgE reactivity of crustacean allergens. Here we investigate the effects of thermal processing of crustacean extracts on cellular immune reactivity. Raw and cooked black tiger prawn, banana prawn, mud crab and blue swimmer crab extracts were prepared and IgE reactivity assessed by ELISA. Mass spectrometry revealed a mix of several allergens in the raw mud crab extract but predominant heat-stable tropomyosin in the cooked extract. PBMC from crustacean-allergic and non-atopic control subjects were cultured with the crab and prawn extracts and proliferation of lymphocyte subsets was analysed by CFSE labelling and flow cytometry. Effector responses were assessed by intracellular IL-4 and IFN-γ, and regulatory T (CD4+CD25+CD127loFoxp3+) cell proportions in cultures were also compared by flow cytometry. For each crustacean species, the cooked extract had greater IgE reactivity than the raw (mud crab p<0.05, other species p<0.01). In contrast, there was a trend for lower PBMC proliferative responses to cooked compared with raw extracts. In crustacean-stimulated PBMC cultures, dividing CD4+ and CD56+ lymphocytes showed higher IL-4+/IFN-γ+ ratios for crustacean-allergic subjects than for non-atopics (p<0.01), but there was no significant difference between raw and cooked extracts. The percentage IL-4+ of dividing CD4+ cells correlated with total and allergen-specific IgE levels (prawns p<0.01, crabs p<0.05). Regulatory T cell proportions were lower in cultures stimulated with cooked compared with raw extracts (mud crab p<0.001, banana prawn p<0.05). In conclusion, cooking did not substantially alter overall T cell proliferative or cytokine reactivity of crustacean extracts, but decreased induction of Tregs. In contrast, IgE reactivity of cooked extracts was increased markedly. These novel findings have important implications for improved diagnostics, managing crustacean allergy and development of future therapeutics. Assessment of individual allergen T cell reactivity is required.
Collapse
|
10
|
Camps-Bossacoma M, Pérez-Cano FJ, Franch À, Untersmayr E, Castell M. Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats. J Nutr Biochem 2017; 42:182-193. [PMID: 28189917 DOI: 10.1016/j.jnutbio.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/14/2017] [Indexed: 01/10/2023]
Abstract
Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain; Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Francisco J Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
11
|
Ehling S, Roßbach K, Dunston SM, Stark H, Bäumer W. Allergic inflammation is augmented via histamine H4 receptor activation: The role of natural killer cells in vitro and in vivo. J Dermatol Sci 2016; 83:106-15. [PMID: 27155791 DOI: 10.1016/j.jdermsci.2016.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Natural Killer cells (NK cells) are identified as pivotal mediators in allergic skin diseases and accumulate in lesions of atopic dermatitis (AD) patients. Histamine levels are increased in these lesions and histamine is involved in chemotaxis in dendritic cells and NK cells. OBJECTIVE The aim of this study was to determine if the histamine H4 receptor (H4R) mediates NK cell chemotaxis and whether it influences interplay between NK cells and dendritic cells during the early phase of allergic inflammation. METHODS Chemotactic function of the H4R as well as the influence of the H4R on the cytokine profile of an NK cell-dendritic cell co-culture was studied in vitro. The effect of H4R activation on NK cell migration, NK cell-dendritic cell interaction and cytokine levels in the skin was further characterized in the murine TDI model of allergic dermatitis. Additionally, the impact of the H4R on dermal NK cells was determined in the ovalbumin (OVA)- induced allergic dermatitis model, comparing wild type and H4R knockout mice. RESULTS The selective H4R agonist ST-1006 induced NK cell chemotaxis in vitro, which was inhibited with the H4R antagonist JNJ7777120. In vivo, mice treated with TDI plus ST-1006 topically onto the ear, showed significantly enhanced ear swelling and an increased number of NK cells compared to just allergen challenged ears. CCL17 levels in the ear were also significantly increased 8h after allergen challenge. Histology revealed that the main source for increased CCL17 were dendritic cells. These effects could be blocked using the H4R antagonist JNJ7777120. In the chronic model of allergic dermatitis, OVA induced NK cell migration into lesional skin sites. The number of NK cells was lower in OVA-sensitized H4R knockout mice compared to wild type mice. CONCLUSIONS These results identify the H4R as a new target controlling NK cell migration and NK cell-dendritic cell interaction in the skin during early allergic inflammation. These results further suggest that blocking the H4R in the skin might be beneficial in diseases like AD.
Collapse
MESH Headings
- Animals
- Chemokine CCL17/metabolism
- Chemotaxis/drug effects
- Coculture Techniques
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/metabolism
- Disease Models, Animal
- Female
- Histamine/metabolism
- Humans
- Indoles/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Ovalbumin
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine/genetics
- Receptors, Histamine/metabolism
- Receptors, Histamine H4
- Skin/cytology
- Skin/drug effects
- Skin/metabolism
- Toluene 2,4-Diisocyanate/toxicity
Collapse
Affiliation(s)
- Sarah Ehling
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
| | - Kristine Roßbach
- University of Veterinary Medicine Hannover, Foundation, Institute of Pharmacology, Toxicology and Pharmacy, Hannover, Germany.
| | - Stanley M Dunston
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA.
| | - Holger Stark
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine Universität, Düsseldorf, Germany.
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
12
|
Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J 2015; 8:17. [PMID: 26023323 PMCID: PMC4430874 DOI: 10.1186/s40413-015-0063-2] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 02/06/2015] [Indexed: 12/25/2022] Open
Abstract
Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation and chronic infections has led to a variety of targeted therapeutic approaches. Allergen-specific immunotherapy (AIT) has been used for 100 years as a desensitizing therapy for allergic diseases and represents the potentially curative and specific way of treatment. The mechanisms by which allergen-AIT has its mechanisms of action include the very early desensitization effects, modulation of T- and B-cell responses and related antibody isotypes as well as inhibition of migration of eosinophils, basophils and mast cells to tissues and release of their mediators. Regulatory T cells (Treg) have been identified as key regulators of immunological processes in peripheral tolerance to allergens. Skewing of allergen-specific effector T cells to a regulatory phenotype appears as a key event in the development of healthy immune response to allergens and successful outcome in AIT. Naturally occurring FoxP3+ CD4+CD25+ Treg cells and inducible type 1 Treg (Tr1) cells contribute to the control of allergen-specific immune responses in several major ways, which can be summarized as suppression of dendritic cells that support the generation of effector T cells; suppression of effector Th1, Th2 and Th17 cells; suppression of allergen-specific IgE, and induction of IgG4; suppression of mast cells, basophils and eosinophils and suppression of effector T cell migration to tissues. New strategies for immune intervention will likely include targeting of the molecular mechanisms of allergen tolerance and reciprocal regulation of effector and regulatory T cell subsets.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH7270 Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH7270 Davos, Switzerland
| |
Collapse
|
13
|
Neunkirchner A, Schmetterer KG, Pickl WF. Lymphocyte-based model systems for allergy research: a historic overview. Int Arch Allergy Immunol 2014; 163:259-91. [PMID: 24777172 DOI: 10.1159/000360163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the last decades, a multitude of studies applying distinct in vitro and in vivo model systems have contributed greatly to our better understanding of the initiation and regulation of inflammatory processes leading to allergic diseases. Over the years, it has become evident that among lymphocytes, not only IgE-producing B cells and allergy-orchestrating CD4(+) helper cells but also cytotoxic CD8(+) T cells, γδ-T cells and innate lymphoid cells, as well as regulatory lymphocytes, might critically shape the immune response towards usually innocuous allergens. In this review, we provide a historic overview of pioneering work leading to the establishment of important lymphocyte-based model systems for allergy research. Moreover, we contrast the original findings with our currently more refined knowledge to appreciate the actual validity of the respective models and to reassess the conclusions obtained from them. Conflicting studies and interpretations are identified and discussed. The tables are intended to provide an easy overview of the field not only for scientists newly entering the field but also for the broader readership interested in updating their knowledge. Along those lines, herein we discuss in vitro and in vivo approaches to the investigation of lymphocyte effector cell activation, polarization and regulation, and describe depletion and adoptive transfer models along with gene knockout and transgenic (tg) methodologies. In addition, novel attempts to establish humanized T cell antigen receptor tg mouse models for allergy research are described and discussed.
Collapse
Affiliation(s)
- Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
14
|
Cotterchio M, Lowcock E, Hudson TJ, Greenwood C, Gallinger S. Association between allergies and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2014; 23:469-80. [PMID: 24554712 DOI: 10.1158/1055-9965.epi-13-0965] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Less than 10% of pancreatic cancer cases survive 5 years, yet its etiology is not well understood. Studies suggest allergies are associated with reduced pancreatic cancer risk. Our study collected additional information on allergies (including skin prick test results and differentiation of allergic/nonallergic asthma), and is the first to assess possible confounding by allergy medications. METHODS A population-based case-control study was designed to comprehensively assess the association between allergy and pancreatic cancer risk. Pancreas cancer cases were diagnosed during 2011 to 2012, and identified through the Ontario Cancer Registry (345 cases). Population-based controls were identified using random digit dialing and age/sex frequency matched to cases (1,285 controls). Questionnaires collected lifetime allergy history (type of allergy, age at onset, skin prick testing results), allergy medications, and established pancreas cancer risk factors. Logistic regression was used to estimate odd ratios and test potential confounders, including allergy medications. RESULTS Hay fever was associated with a significant reduction in pancreatic cancer risk [AOR = 0.68; 95% confidence intervals (CI), 0.52-0.89], and reduction was greatest for those whose skin prick test was positive for hay fever allergens. No particular patterns were observed as regards age at onset and duration of allergy. Positive dust/mold allergy skin prick test and animal allergies were associated with a statistically significant reduced pancreatic cancer risk; AOR = 0.49; 95% CI, 0.31-0.78 and AOR = 0.68; 95% CI, 0.46-0.99, respectively. Asthma was not associated with pancreatic cancer risk. CONCLUSIONS/IMPACT These findings support the growing body of evidence that suggests certain allergies are associated with reduced pancreatic cancer risk.
Collapse
Affiliation(s)
- Michelle Cotterchio
- Authors' Affiliations: Prevention and Cancer Control, Cancer Care Ontario; Dalla Lana School of Public Health, University of Toronto; Departments of Medical Biophysics and Molecular Genetics, University of Toronto; Ontario Institute for Cancer Research; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; and Division of General Surgery, Toronto General Hospital, Toronto, Ontario; and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | | | | | | | | |
Collapse
|
15
|
Bellora F, Castriconi R, Dondero A, Carrega P, Mantovani A, Ferlazzo G, Moretta A, Bottino C. Human NK cells and NK receptors. Immunol Lett 2013; 161:168-73. [PMID: 24361820 DOI: 10.1016/j.imlet.2013.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022]
Abstract
In early seventies "natural killer (NK) cells", a third lymphocyte subset was discovered that revealed an unexpected ability to kill syngeneic and allogeneic tumor targets, thus emerging as the most potent non-specific cytotoxic cells in both human and mouse. Decades of research revealed the multifaceted nature of these cells. Now we know that NK cells are highly specific cells able to discriminate between self (which is spared) and non-self (which is attacked). Most of the specific and non HLA-specific surface receptors involved in NK cell recognition and function have been identified and, to date, only few of them still remain orphans. We also know that NK cells contribute to both innate and adaptive immune responses, interact with other immune cell types and release type 1 cytokines and chemokines. Moreover, fundamental data are accumulating on NK cell development and migration under both physiological and pathological conditions. The time is arrived to exploit these cells in the cure of cancer patients. While encouraging results emerged in hematological malignances, the road to treat solid tumors using NK cells is still covered by obstacles that hamper their function and that just begin to be unveiled.
Collapse
Affiliation(s)
- Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Paolo Carrega
- Istituto Giannina Gaslini, L.go G. Gaslini 5, 16147 Genova, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS and Dipartimento di Biotecnologie e Medicina Traslazionale, Università degli Studi di Milano, Via Manzoni 56, Rozzano, Milano, Italy
| | - Guido Ferlazzo
- Dipartimento di Patologia Umana, Università degli Studi di Messina and A.O.U. Policlinico "G.Martino", Via Consolare Valeria 1, 98125 Messina, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via L.B. Alberti 2, 16132 Genova, Italy; Istituto Giannina Gaslini, L.go G. Gaslini 5, 16147 Genova, Italy.
| |
Collapse
|
16
|
Deniz G, van de Veen W, Akdis M. Natural killer cells in patients with allergic diseases. J Allergy Clin Immunol 2013; 132:527-535. [PMID: 23993354 DOI: 10.1016/j.jaci.2013.07.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells not only exert cytotoxic activity against tumor cells or infected cells but also act to regulate the function of other immune cells through secretion of cytokines and chemokines or cell contact-dependent mechanisms. NK cells are able to polarize in vitro into 2 functional distinct subsets, NK1 or NK2 cells, which are analogous to the T-cell subsets TH1 or TH2. In addition, a regulatory NK cell subset has been described that secretes IL-10, shows antigen-specific T-cell suppression, and suppresses IgE production. Although it has been demonstrated that NK cells play important roles in autoimmunity, cancer, transplantation, and pregnancy, the role of NK cells in allergy has not been extensively discussed. This review aims to discuss our understanding of NK cells and NK cell subsets in allergic inflammation and IgE regulation.
Collapse
Affiliation(s)
- Günnur Deniz
- Institute of Experimental Medicine (DETAE), Department of Immunology, Istanbul University, Istanbul, Turkey.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
17
|
El-Shazly AE, Doloriert HC, Bisig B, Lefebvre PP, Delvenne P, Jacobs N. Novel cooperation between CX3CL1 and CCL26 inducing NK cell chemotaxis via CX3CR1: a possible mechanism for NK cell infiltration of the allergic nasal tissue. Clin Exp Allergy 2013; 43:322-31. [PMID: 23414540 DOI: 10.1111/cea.12022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent data indicated that natural killer (NK) cells and chemokines could play a pivotal role in nasal inflammation. CX3CR1, the only receptor for fractalkine/CX3CL1, is abundantly expressed by NK cells, and was recently shown to also be a receptor for eotaxin-3/CCL26. However, no reports explored the NK cells-CX3CL1-CCL26 axis via CX3CR1 in allergy. OBJECTIVE Our goals were first to determine specifically NK cell recruitment pattern in nasal tissue of allergic chronic rhinosinusitis (ACRS) and non-allergic chronic rhinosinusitis (NACRS) patients in comparison with healthy controls, and secondly, to investigate the function of CX3CR1 in NK cell migration. METHODS Immunohistochemistry, microchemotaxis chambers, flow cytometry and confocal microscopy were used in this study. RESULTS Herein, we showed that NK cells infiltrated the epithelial layers of nasal tissue only in ACRS patients and not in NACRS patients or controls. NK cells were also more numerous in the stroma of the nasal tissue from ACRS patients compared with NACRS patients or controls. This migration could be mediated by both CX3CL1 and CCL26, as these two chemokines induced NK cell migration. Moreover, both molecules also stimulated cytoskeleton changes and F-actin reorganisation in NK cells. Chemotaxis and cytoskeleton changes were sensitive to genistein, a tyrosine kinase inhibitor. By flow cytometry, we demonstrated that a single antigen nasal provocation challenge increased the expression of CX3CR1 on NK cells in allergic rhinitis (AR) patients. The function of this receptor was associated with a significant augmentation of NK cell chemotaxis against the optimal doses of CX3CL1 and CCL26. CONCLUSIONS AND CLINICAL RELEVANCE Our results highlight a novel role for CX3CR1 in NK cell migration that may contribute to the NK cell trafficking to the allergic upper airway. This could be mediated largely by CX3CL1 and CCL26 stimulation of the tyrosine kinase pathway.
Collapse
Affiliation(s)
- A E El-Shazly
- Department of Otolaryngology and Head and Neck Surgery, Liege University Hospital-CHU, Liege, Belgium.
| | | | | | | | | | | |
Collapse
|