1
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Prapas P, Anagnostouli M. Macrophages and HLA-Class II Alleles in Multiple Sclerosis: Insights in Therapeutic Dynamics. Int J Mol Sci 2024; 25:7354. [PMID: 39000461 PMCID: PMC11242320 DOI: 10.3390/ijms25137354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population's homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs.
Collapse
Affiliation(s)
- Petros Prapas
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | - Maria Anagnostouli
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens NKUA, Aeginition University Hospital, Vas. Sofias 72-74, 11528 Athens, Greece
| |
Collapse
|
3
|
Farrel A, Li P, Veenbergen S, Patel K, Maris JM, Leonard WJ. ROGUE: an R Shiny app for RNA sequencing analysis and biomarker discovery. BMC Bioinformatics 2023; 24:303. [PMID: 37516886 PMCID: PMC10386769 DOI: 10.1186/s12859-023-05420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The growing power and ever decreasing cost of RNA sequencing (RNA-Seq) technologies have resulted in an explosion of RNA-Seq data production. Comparing gene expression values within RNA-Seq datasets is relatively easy for many interdisciplinary biomedical researchers; however, user-friendly software applications increase the ability of biologists to efficiently explore available datasets. RESULTS Here, we describe ROGUE (RNA-Seq Ontology Graphic User Environment, https://marisshiny. RESEARCH chop.edu/ROGUE/ ), a user-friendly R Shiny application that allows a biologist to perform differentially expressed gene analysis, gene ontology and pathway enrichment analysis, potential biomarker identification, and advanced statistical analyses. We use ROGUE to identify potential biomarkers and show unique enriched pathways between various immune cells. CONCLUSIONS User-friendly tools for the analysis of next generation sequencing data, such as ROGUE, will allow biologists to efficiently explore their datasets, discover expression patterns, and advance their research by allowing them to develop and test hypotheses.
Collapse
Affiliation(s)
- Alvin Farrel
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon Veenbergen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Pediatric Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Cunha A, Gaubert A, Latxague L, Dehay B. PLGA-Based Nanoparticles for Neuroprotective Drug Delivery in Neurodegenerative Diseases. Pharmaceutics 2021; 13:1042. [PMID: 34371733 PMCID: PMC8309027 DOI: 10.3390/pharmaceutics13071042] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment of neurodegenerative diseases has become one of the most challenging topics of the last decades due to their prevalence and increasing societal cost. The crucial point of the non-invasive therapeutic strategy for neurological disorder treatment relies on the drugs' passage through the blood-brain barrier (BBB). Indeed, this biological barrier is involved in cerebral vascular homeostasis by its tight junctions, for example. One way to overcome this limit and deliver neuroprotective substances in the brain relies on nanotechnology-based approaches. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are biocompatible, non-toxic, and provide many benefits, including improved drug solubility, protection against enzymatic digestion, increased targeting efficiency, and enhanced cellular internalization. This review will present an overview of the latest findings and advances in the PLGA NP-based approach for neuroprotective drug delivery in the case of neurodegenerative disease treatment (i.e., Alzheimer's, Parkinson's, Huntington's diseases, Amyotrophic Lateral, and Multiple Sclerosis).
Collapse
Affiliation(s)
- Anthony Cunha
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France;
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Alexandra Gaubert
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France;
| | - Laurent Latxague
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France;
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
5
|
The Effect of Cannabis on the Clinical and Cytokine Profiles in Patients with Multiple Sclerosis. Mult Scler Int 2021; 2021:6611897. [PMID: 33628507 PMCID: PMC7884151 DOI: 10.1155/2021/6611897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Multiple studies have reported that cannabis administration in multiple sclerosis patients is associated with decreased symptom severity. This study was conducted to evaluate the prevalence of cannabis abuse in multiple sclerosis cases and to evaluate the effect of cannabis on serum cytokines in such cases. Patients and Methods. A total of 150 multiple sclerosis cases along with 150 healthy controls were included during the study period. All cases were subjected to history taking, neurological examination, and routine investigations. Cases were asked about cannabis intake which was confirmed by a urine test. Serum cytokines including IL-1, IL-2, IL-4, IL-10, IL-12, IL-17, IL-22, IFN-γ, IFN-β1, and TNF-α were ordered for all cases and controls. Results Twenty-eight cases were cannabis abusers (MS/cannabis group, 18.67%). The remaining 122 cases represented the MS group. There was no significant difference between the three groups regarding age, disease duration, or MS type. Male gender was more predominant in the MS/cannabis group, and the number of relapses was significantly lower in the same group. Fifteen cases (53.6%) reported that their symptoms were improved by cannabis. Proinflammatory cytokines were significantly elevated in the MS group compared to the MS/cannabis and control groups. Additionally, anti-inflammatory cytokines had significantly lower values in the MS group compared to the MS/cannabis and control groups. Most clinical symptoms were significantly improved in the MS/cannabis group compared to the MS group apart from sexual dysfunction, bladder symptoms, and visual disturbances. Mild side effects of cannabis were also reported. Conclusion Cannabis may have a positive impact on the cytokine and clinical profiles in cases with multiple sclerosis.
Collapse
|
6
|
Sarkar C, Mondal M, Torequl Islam M, Martorell M, Docea AO, Maroyi A, Sharifi-Rad J, Calina D. Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front Pharmacol 2020; 11:572870. [PMID: 33041814 PMCID: PMC7522523 DOI: 10.3389/fphar.2020.572870] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic represents an unprecedented challenge for the researchers to offer safe, tolerable, and effective treatment strategies for its causative agent known as SARS-CoV-2. With the rapid evolution of the pandemic, even the off-label use of existing drugs has been restricted by limited availability. Several old antivirals, antimalarial, and biological drugs are being reconsidered as possible therapies. The effectiveness of the controversial treatment options for COVID-19 such as nonsteroidal antiinflammatory drugs, angiotensin 2 conversion enzyme inhibitors and selective angiotensin receptor blockers was also discussed. A systemic search in the PubMed, Science Direct, LitCovid, Chinese Clinical Trial Registry, and ClinicalTrials.gov data bases was conducted using the keywords "coronavirus drug therapy," passive immunotherapy for COVID-19', "convalescent plasma therapy," (CPT) "drugs for COVID-19 treatment," "SARS-CoV-2," "COVID-19," "2019-nCoV," "coronavirus immunology," "microbiology," "virology," and individual drug names. Systematic reviews, case presentations and very recent clinical guidelines were included. This narrative review summarizes the available information on possible therapies for COVID-19, providing recent data to health professionals.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Life Science School, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), Bangladesh
| | - Milon Mondal
- Department of Pharmacy, Life Science School, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), Bangladesh
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
7
|
Kwiatkowski AJ, Stewart JM, Cho JJ, Avram D, Keselowsky BG. Nano and Microparticle Emerging Strategies for Treatment of Autoimmune Diseases: Multiple Sclerosis and Type 1 Diabetes. Adv Healthc Mater 2020; 9:e2000164. [PMID: 32519501 DOI: 10.1002/adhm.202000164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases affect 10% of the world's population, and 1 in 200 people worldwide suffer from either multiple sclerosis (MS) or type 1 diabetes (T1D). While the targeted organ systems are different, MS and T1D share similarities in terms of autoreactive immune cells playing a critical role in pathogenesis. Both diseases can be managed only symptomatically without curative remission, and treatment options are limited and non-specific. Most current therapies cause some degree of systemic immune suppression, leaving the patients susceptible to opportunistic infections and other complications. Thus, there is considerable interest in the development of immunotherapies not associated with generalized immune suppression for these diseases. This review presents current and preclinical strategies for MS and T1D treatment, emphasizing those aimed to modulate the immune response, including the most recent strategies for tolerance induction. A central focus is on the emerging approaches using nano- and microparticle platforms, their evolution as immunotherapeutic carriers, including those incorporating specific antigens to induce tolerance and reduce unwanted generalized immune suppression.
Collapse
Affiliation(s)
- Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joshua M Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan J Cho
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Albert C, Mikolajczak J, Liekfeld A, Piper SK, Scheel M, Zimmermann HG, Nowak C, Dörr J, Bellmann-Strobl J, Chien C, Brandt AU, Paul F, Hoffmann O. Fingolimod after a first unilateral episode of acute optic neuritis (MOVING) - preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial. BMC Neurol 2020; 20:75. [PMID: 32126977 PMCID: PMC7052969 DOI: 10.1186/s12883-020-01645-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Neuroprotection and promotion of remyelination represent important therapeutic gaps in multiple sclerosis (MS). Acute optic neuritis (ON) is a frequent MS manifestation. Based on the presence and properties of sphingosine-1-phosphate receptors (S1PR) on astrocytes and oligodendrocytes, we hypothesized that remyelination can be enhanced by treatment with fingolimod, a S1PR modulator currently licensed for relapsing-remitting MS. Methods MOVING was an investigator-driven, rater-blind, randomized clinical trial. Patients with acute unilateral ON, occurring as a clinically isolated syndrome or MS relapse, were randomized to 6 months of treatment with 0.5 mg oral fingolimod or subcutaneous IFN-β 1b 250 μg every other day. The change in multifocal visual evoked potential (mfVEP) latency of the qualifying eye was examined as the primary (month 6 vs. baseline) and secondary (months 3, 6 and 12 vs. baseline) outcome. In addition, full field visual evoked potentials, visual acuity, optical coherence tomography as well as clinical relapses and measures of disability, cerebral MRI, and self-reported visual quality of life were obtained for follow-up. The study was halted due to insufficient recruitment (n = 15), and available results are reported. Results Per protocol analysis of the primary endpoint revealed a significantly larger reduction of mfVEP latency at 6 months compared to baseline with fingolimod treatment (n = 5; median decrease, 15.7 ms) than with IFN-β 1b treatment (n = 4; median increase, 8.15 ms) (p < 0.001 for interaction). Statistical significance was maintained in the secondary endpoint analysis. Descriptive results are reported for other endpoints. Conclusion Preliminary results of the MOVING trial argue in support of a beneficial effect of fingolimod on optic nerve remyelination when compared to IFN-β treatment. Interpretation is limited by the small number of complete observations, an unexpected deterioration of the control group and a difference in baseline mfVEP latencies. The findings need to be confirmed in larger studies. Trial registration The trial was registered as EUDRA-CT 2011–004787-30 on October 26, 2012 and as NCT01647880 on July 24, 2012.
Collapse
Affiliation(s)
- Christian Albert
- Department of Neurology, Alexianer St. Josefs-Krankenhaus Potsdam, Allee nach Sanssouci 7, 14471, Potsdam, Germany
| | - Janine Mikolajczak
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Liekfeld
- Department of Ophthalmology, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Sophie K Piper
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanna G Zimmermann
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jan Dörr
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Oberhavel-Kliniken Hennigsdorf, Hennigsdorf, Germany
| | | | - Claudia Chien
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U Brandt
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Hoffmann
- Department of Neurology, Alexianer St. Josefs-Krankenhaus Potsdam, Allee nach Sanssouci 7, 14471, Potsdam, Germany. .,Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Wang K, Song F, Fernandez-Escobar A, Luo G, Wang JH, Sun Y. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am J Med Sci 2018; 356:552-560. [PMID: 30447707 DOI: 10.1016/j.amjms.2018.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 08/12/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system and is characterized by demyelination, axonal loss, gliosis and inflammation. The last plays a major role in the onset and propagation of the disease. MS presents with heterogeneous lesions containing a broad range of cells and soluble mediators of the immune system such as T cells, B cells, macrophages, microglia, cytokines, chemokines, antibodies, complement and other toxic substances. This review outlines, analyzes and discusses the different immune mechanisms of MS that are responsible for the initiation and propagation of active lesions, demyelination, axonal injury, remyelination and cell loss as well as the role of cytokines in the disease process. Proinflammatory cytokines such as interleukin-17 (IL-17), IL-22, tumor necrosis factor-α, IL-1, IL-12 and interferon-γ may cause MS through several signaling pathways. Conversely, anti-inflammatory circulating cytokines such as IL-4 and IL-10 are reduced and theoretically can exert a direct protective effect in this condition. Future studies are necessary to develop effective, safe and long-lasting strategies to reduce the abnormal cytokine cascades and to treat MS.
Collapse
Affiliation(s)
- Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Feng Song
- Qingdao University Affiliated Qingdao Municipal Hospital, Qingdao, Shandong, China
| | | | - Gang Luo
- Department of Interventional Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Jun-Hui Wang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Roshan R, Choudhary A, Bhambri A, Bakshi B, Ghosh T, Pillai B. microRNA dysregulation in polyglutamine toxicity of TATA-box binding protein is mediated through STAT1 in mouse neuronal cells. J Neuroinflammation 2017; 14:155. [PMID: 28774347 PMCID: PMC5543588 DOI: 10.1186/s12974-017-0925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 07/21/2017] [Indexed: 01/10/2023] Open
Abstract
Background Polyglutamine diseases constitute a class of neurodegenerative disorders associated with expansion of the cytosine-adenine-guanine (CAG) triplet, in protein coding genes. Expansion of a polyglutamine tract in the N-terminal of TBP is the causal mutation in SCA17. Brain sections of patients with spinocerebellar ataxia 17 (SCA17), a type of neurodegenerative disease, have been reported to contain protein aggregates of TATA-binding protein (TBP). It is also implicated in other neurodegenerative diseases like Huntington’s disease, since the protein aggregates formed in such diseases also contain TBP. Dysregulation of miR-29a/b is another common feature of neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease, and SCA17. Using a cellular model of SCA17, we identified key connections in the molecular pathway from protein aggregation to miRNA dysregulation. Methods Gene expression profiling was performed subsequent to the expression of TBP containing polyglutamine in a cellular model of SCA17. We studied the expression of STAT1 and other interferon-gamma dependent genes in neuronal apoptosis. The molecular pathway leading to the dysregulation of miRNA in response of protein aggregation and interferon release was investigated using RNAi-mediated knockdown of STAT1. Results We show that the accumulation of polyglutamine-TBP in the cells results in interferon-gamma release which in turn signals through STAT1 leading to downregulation of miR-29a/b. We propose that the release of interferons by cells harboring toxic protein aggregates may trigger a bystander effect resulting in loss of neurons. Interferon-gamma also led to upregulation of miR-322 although this effect is not mediated through STAT1. Conclusions Our investigation shows that neuroinflammation could be an important player in mediating the transcriptional dysregulation of miRNA and the subsequent apoptotic effect of toxic polyglutamine-TBP. The involvement of immunomodulators in polyglutamine diseases holds special therapeutic relevance in the light of recent findings that interferon-gamma can modulate behavior.
Collapse
Affiliation(s)
- Reema Roshan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Ashwani Choudhary
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Indian Institute of Science, Centre for Neuroscience, Bangalore, 560012, Karnataka, India
| | - Aksheev Bhambri
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Mathura Road, Delhi, 110025, India.,Present address: Indian Council of Medical Research, New Delhi, India
| | - Bhawani Bakshi
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Tanay Ghosh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Clinical Neurosciences,, University of Cambridge, Cambridge, UK
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Mathura Road, Delhi, 110025, India.
| |
Collapse
|
11
|
Retraction notice. Muscle Nerve 2017; 55:766. [DOI: 10.1002/mus.21394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Boivin N, Baillargeon J, Doss PMIA, Roy AP, Rangachari M. Interferon-β suppresses murine Th1 cell function in the absence of antigen-presenting cells. PLoS One 2015; 10:e0124802. [PMID: 25885435 PMCID: PMC4401451 DOI: 10.1371/journal.pone.0124802] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.
Collapse
Affiliation(s)
- Nicolas Boivin
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Joanie Baillargeon
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Prenitha Mercy Ignatius Arokia Doss
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Andrée-Pascale Roy
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Manu Rangachari
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
- * E-mail:
| |
Collapse
|
13
|
Booy S, Hofland L, van Eijck C. Potentials of interferon therapy in the treatment of pancreatic cancer. J Interferon Cytokine Res 2014; 35:327-39. [PMID: 25551196 DOI: 10.1089/jir.2014.0157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy with limited treatment options. To improve survival for patients with pancreatic cancer, research has focused on other treatment modalities like adding biological modulators such as type-I interferons (IFNs). Type I IFNs (ie, IFN-α/IFN-β) have antiproliferative, antiviral, and immunoregulatory activities. Furthermore, they are able to induce apoptosis, exert cell cycle blocking, and sensitize tumor cells for chemo- and radiotherapy. A few years ago in vitro, in vivo, and several clinical trials have been described regarding adjuvant IFN-α therapy in the treatment of pancreatic cancer. Some studies reported a remarkable increase in the 2- and 5-year survival. Unfortunately, the only randomized clinical trial did not show a significant increase in overall survival, although the increased median survival implicated that some patients in the experimental group benefited from the adjuvant IFN-α therapy. Furthermore, encouraging in vitro and in vivo data points to a possible role for adjuvant IFN therapy. However, up till now, the use of IFNs in the treatment of pancreatic cancer remains controversial. This review, therefore, aims to describe, based on the available data, whether there is a distinct role for IFN therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Stephanie Booy
- 1 Department of Surgery, Erasmus Medical Centre , Rotterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Nischwitz S, Faber H, Sämann PG, Domingues HS, Krishnamoorthy G, Knop M, Müller-Sarnowski F, Yassouridis A, Weber F. Interferon β-1a reduces increased interleukin-16 levels in multiple sclerosis patients. Acta Neurol Scand 2014; 130:46-52. [PMID: 24571587 DOI: 10.1111/ane.12215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVES There is convergent evidence for an important role of interleukin-16 (IL-16) in the pathogenesis of multiple sclerosis (MS). IL-16 serves as a chemoattractant for different immune cells that are involved in developing lesions. Here, we compared IL-16 levels of MS patients and controls and addressed the long-term effect of IFN-β, the most common immunomodulatory MS therapy, on IL-16 serum levels in MS patients over 2 years. Beyond this, we analysed the expression of IL-16 in two CD4(+) T-cell subsets, Th1 and Th17 cells, which are important autoimmune mediators and affected by IFN-β treatment, derived from myelin-specific T-cell transgenic mice. MATERIALS AND METHODS IL-16 serum levels of 17 controls and of 16 MS patients before therapy and at months 1, 2, 3, 6, 9, 12 and 24 during IFN-β1a therapy were determined by ELISA. MRI was performed before therapy, at months 12 and 24. IL-16 expression of in vitro differentiated murine myelin oligodendrocyte glycoprotein (MOG)-specific Th1 and Th17 cells was quantified by real-time PCR. RESULTS Before therapy, MS patients showed significantly elevated IL-16 levels compared with controls irrespective of disease activity determined by MRI. Therapy with IFN-β1a led to a significant linear decrease in IL-16 serum levels beginning after 2 months. MOG-specific Th17 cells expressed more IL-16 than Th1 cells. CONCLUSIONS Reduction in increased IL-16 levels may be of relevance for the therapeutic effect of IFN-β1a in MS. Easily accessible IL-16 serum levels hold a potential as biomarker of treatment efficacy in MS.
Collapse
Affiliation(s)
- S. Nischwitz
- RG Inflammatory Disorders of the CNS, Neurology; Max Planck Institute of Psychiatry; Munich Germany
| | - H. Faber
- RG Inflammatory Disorders of the CNS, Neurology; Max Planck Institute of Psychiatry; Munich Germany
| | - P. G. Sämann
- RG Neuroimaging; Max Planck Institute of Psychiatry; Munich Germany
| | - H. S. Domingues
- Max Planck Institute of Neurobiology; Martinsried Germany
- Instituto de Biologia Molecular e Celular R. Campo Alegre; Porto Portugal
| | | | - M. Knop
- RG Inflammatory Disorders of the CNS, Neurology; Max Planck Institute of Psychiatry; Munich Germany
| | - F. Müller-Sarnowski
- RG Inflammatory Disorders of the CNS, Neurology; Max Planck Institute of Psychiatry; Munich Germany
| | - A. Yassouridis
- RG Biostatistics; Max Planck Institute of Psychiatry; Munich Germany
| | - F. Weber
- RG Inflammatory Disorders of the CNS, Neurology; Max Planck Institute of Psychiatry; Munich Germany
| |
Collapse
|
15
|
Meager A, Wadhwa M. Detection of anti-cytokine antibodies and their clinical relevance. Expert Rev Clin Immunol 2014; 10:1029-47. [PMID: 24898469 DOI: 10.1586/1744666x.2014.918848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytokines regulate many aspects of cell growth and differentiation and play pivotal roles in the orchestration of immune defence against invading pathogens. Though 'self' proteins, they are potentially immunogenic and can give rise to anti-cytokine autoantibodies (aCA). The main foci of the article are a critical summary of the various methodologies applied for detecting and measuring aCA and a broad review of studies of the occurrence, characterization and clinical relevance of aCA in normal healthy individuals, patients with autoimmune diseases or microbial infections and aCA in patients whose disease is treated with recombinant cytokine products. The need for technical and methodological improvement of assays, including validation and standardization, together with approaches to harmonize calculation and reporting of results is also discussed.
Collapse
Affiliation(s)
- Anthony Meager
- Regaem Consultants, 62 Whitchurch Gardens, Edgware, Middlesex, HA8 6PD, UK
| | | |
Collapse
|
16
|
Aharoni R. New findings and old controversies in the research of multiple sclerosis and its model experimental autoimmune encephalomyelitis. Expert Rev Clin Immunol 2014; 9:423-40. [DOI: 10.1586/eci.13.21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Seferian A, Chaumais MC, Savale L, Günther S, Tubert-Bitter P, Humbert M, Montani D. Drugs induced pulmonary arterial hypertension. Presse Med 2013; 42:e303-10. [PMID: 23972547 DOI: 10.1016/j.lpm.2013.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disorder characterized by progressive obliteration of the pulmonary microvasculature, resulting in elevated pulmonary vascular resistance and premature death. According to the current classification, PAH can be associated with exposure to certain drugs or toxins, particularly appetite suppressant drugs, such as aminorex, fenfluramine derivatives and benfluorex. These drugs have been confirmed to be risk factors for PAH and were withdrawn from the market. The supposed mechanism is an increase in serotonin levels, which was demonstrated to act as a growth factor for the pulmonary arterial smooth muscle cells. Amphetamines, phentermine and mazindol were less frequently used but are also considered as possible risk factors for PAH. Dasatinib, a dual Src/Abl kinase inhibitor, used in the treatment of chronic myelogenous leukaemia was associated with cases of severe PAH, in part reversible after its withdrawal. Recently several studies raised the potential endothelial dysfunction that could be induced by interferon, and few cases of PAH have been reported with interferon therapy. Other possible risk factors for PAH include: nasal decongestants, like phenylpropanolamine, dietary supplement - L-Tryptophan, selective serotonin reuptake inhibitors, pergolide and other drugs that could act on 5HT2B receptors. Interestingly, PAH remains a rare complication of these drugs, suggesting possible individual susceptibility and further studies are needed to identify patients at risk of drugs induced PAH.
Collapse
Affiliation(s)
- Andrei Seferian
- Université Paris-Sud, Le Kremlin-Bicêtre, France; Hôpital Bicêtre, AP-HP, service de pneumologie, DHU Thorax Innovation, Le Kremlin-Bicêtre, France; Inserm U999, LabEx Lermit, centre chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Wadhwa M, Subramanyam M, Goelz S, Goyal J, Jethwa V, Jones W, Files JG, Kramer D, Bird C, Dilger P, Tovey M, Lallemand C, Thorpe R. Use of a standardized MxA protein measurement-based assay for validation of assays for the assessment of neutralizing antibodies against interferon-β. J Interferon Cytokine Res 2013; 33:660-71. [PMID: 23848523 DOI: 10.1089/jir.2012.0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Effective monitoring of the development of neutralizing antibodies (NAbs) against IFN-β in multiple sclerosis (MS) patients on IFN-β therapy is important for clinical decision making and disease management. To date, antiviral assays have been the favored approach for NAb determination, but variations in assay conditions between laboratories and the increasing use of novel assays have contributed to the reporting of inconsistent antibody data between laboratories and between products. This study, undertaken at the request of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA), is a joint effort by manufacturers of IFN-β products (approved in Europe) towards harmonization of a NAb assay that facilitates generation of comparable NAb data, which, in conjunction with clinical outcomes, should prove useful for clinicians treating MS patients with IFN-β products. This article describes the standardized cellular myxovirus resistance protein A (MxA) protein measurement-based assay for detection of IFN-β NAbs and its use for the validation of assays used for the quantitative determination of such antibodies. Although titers varied between laboratories and the products used, utilization of IFN-β1a rather than IFN-β1b as the challenge antigen produced more consistent results in the NAb assay. Adoption of the standardized assay improves comparability between laboratories circumventing problems that arise when different, nonstandardized assays are employed for immunogenicity assessment. Based on the data, the EMA recommended for standardization purposes, the use of IFN-β1a in NAb assays, independent of the therapeutic product used for therapy and validation of new NAb procedures against the standardized assay described.
Collapse
Affiliation(s)
- Meenu Wadhwa
- 1 Biotherapeutics Group, National Institute for Biological Standards and Control , Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Johnston J, So TY. First-line disease-modifying therapies in paediatric multiple sclerosis: a comprehensive overview. Drugs 2012; 72:1195-211. [PMID: 22642799 DOI: 10.2165/11634010-000000000-00000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Paediatric multiple sclerosis (MS) is defined as the onset of MS before the age of 18 years. Immunomodulatory disease-modifying therapies (i.e. the interferons [IFNs] and glatiramer acetate) are considered first-line treatments in adult patients with MS, but they are largely understudied in the paediatric population. IFNβ is a type 1 IFN produced by fibroblasts. The therapeutic effect achieved by IFNβ in MS is believed to be the result of a variety of mechanisms, including the inhibition of T-cell proliferation and a shift in cytokine production. There are currently two forms of recombinant IFNβ used therapeutically for MS: IFNβ-1a and IFNβ-1b. Two formulations of IFNβ-1a exist, one administered as an intramuscular injection once weekly and the other by subcutaneous injection three times per week. Only one type of IFNβ-1b product is on the market, a subcutaneous injection administered every other day. Pharmacokinetic studies of these agents in children do not exist and available data are primarily from studies in healthy adults. It does not appear that the various formulations differ significantly in terms of bioavailability or efficacy in adults. The toxicity profiles of the interferon formulations are similar, with the most common adverse effects in children including flu-like symptoms, injection site reactions and transient elevations in liver enzymes. Glatiramer acetate is a mixture of synthetic polypeptide chains consisting of four different amino acids. Glatiramer acetate appears to mimic the antigenic properties of myelin basic protein (MBP), and by doing so, alters T-cell activation in the periphery. Glatiramer acetate is administered as a once-daily subcutaneous injection. Similar to the IFNβ formulations, there are no pharmacokinetic studies of this agent in children. The most common adverse effects include injection site reactions and transient chest tightness. Fingolimod, a sphingosine 1-phosphate receptor modulator, is a new disease-modifying therapy that was approved by the US FDA in 2010 for the first-line treatment of relapsing forms of MS in adults. However, due to a lack of information and clinical data on this agent in the paediatric population, it is not included in this discussion. Dose-finding studies of the IFNs and glatiramer acetate in the paediatric population are limited. Dosing recommendations are largely based on tolerability studies, with most children and adolescents tolerating the full adult doses. Clinical studies of IFNs in children have not been objectively designed to establish the efficacy of these therapies, and evidence is limited to that of observational trials and retrospective case reports. However, the largest cohort (130 cases) of paediatric MS patients studied to date reported a reduction in annual relapse rate with all three of the different IFNβ formulations and glatiramer acetate after a follow-up period of more than 4 years. Treatment with one of the first-line agents should be offered to any patient after the occurrence of a second demyelinating episode. The efficacy of the four first-line disease-modifying agents is considered to be relatively equivalent, and the choice of agent should be determined on an individual patient basis, taking into account potential adverse effects and patient preferences. Current data suggest that the IFNs and glatiramer acetate are safe and effective therapies in paediatric patients with MS. However, further studies evaluating the pharmacokinetics, appropriate dosing and comparisons of efficacy among these agents are needed to determine the most appropriate and evidence-based treatment decisions in this population.
Collapse
Affiliation(s)
- Jessica Johnston
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | | |
Collapse
|
20
|
Kanwar JR, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine 2012; 7:3259-78. [PMID: 22848160 PMCID: PMC3405884 DOI: 10.2147/ijn.s30919] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We are now in an aging population, so neurological disorders, particularly the neurodegenerative diseases, are becoming more prevalent in society. As per the epidemiological studies, Europe alone suffers 35% of the burden, indicating an alarming rate of disease progression. Further, treatment for these disorders is a challenging area due to the presence of the tightly regulated blood-brain barrier and its unique ability to protect the brain from xenobiotics. Conventional therapeutics, although effective, remain critically below levels of optimum therapeutic efficacy. Hence, methods to overcome the blood-brain barrier are currently a focus of research. Nanotechnological applications are gaining paramount importance in addressing this question, and yielding some promising results. This review addresses the pathophysiology of the more common neurological disorders and novel drug candidates, along with targeted nanoparticle applications for brain delivery.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Frontier Materials-IFM, Deakin University, Waurn Ponds, Victoria, Australia.
| | | | | |
Collapse
|
21
|
Rosa DJDF, Matias FDAT, Cedrim SD, Machado RF, Sá AAMD, Silva VCP. Acute acneiform eruption induced by interferon beta-1b during treatment for multiple sclerosis. An Bras Dermatol 2012; 86:336-8. [PMID: 21603818 DOI: 10.1590/s0365-05962011000200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/21/2010] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of presumed autoimmune origin that affects the central nervous system. The main form of therapy is based on the use of immunomodulators such as interferon beta, which are usually well tolerated. Skin manifestations resulting from treatment with interferon beta-1b consist principally of reactions at the site of subcutaneous application of the drug. The present case report describes a female patient who developed an acneiform eruption resulting from treatment with interferon beta-1b.
Collapse
Affiliation(s)
- Dário Júnior de Freitas Rosa
- Dermatology Research Unit, Teaching Hospital of the Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
Jennum P, Wanscher B, Frederiksen J, Kjellberg J. The socioeconomic consequences of multiple sclerosis: a controlled national study. Eur Neuropsychopharmacol 2012; 22:36-43. [PMID: 21669514 DOI: 10.1016/j.euroneuro.2011.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/21/2011] [Accepted: 05/01/2011] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) has serious negative effects on health-, social-, and work-related issues for the patients and their families, thus causing significant socioeconomic burden. The objective of the study was to determine healthcare costs and indirect illness costs in MS patient in a national sample. We used all national records from the Danish National Patient Registry (1998-2006), and identified 10,849 MS patients which were compared with 43,396 randomly age-, sex- and social matched citizens. Healthcare sector costs included frequencies and costs of hospitalizations and weighted outpatient use, frequencies of visits and hospitalizations and costs from primary sectors, and the use and costs of drugs. Productivity costs (the value of lost productivity from time off from work due to illness) and all social transfer payments were also calculated. Patients with MS had significantly higher rates of health-related contact and medication use and very low employment rate which incurred a higher socioeconomic cost. The income level of employed MS patients was significantly lower than that of control subjects. The annual total health sector costs and productivity costs were €14,575 for MS patients vs. €1163 for control subjects (p<0.001), corresponding to an annual mean excess health-related cost of €13,413 for each patient with MS. In addition, the MS patients received an annual mean excess social transfer income of €6843. MS present social and economical consequences more than eight years before diagnosis. We conclude that MS causes major socioeconomic consequences for the individual patient and for society. Productivity costs are a far more important economic factor, especially due to reduced employment, which are enhanced by the early age of diagnose onset.
Collapse
Affiliation(s)
- Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Glostrup Hospital, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
23
|
Garcia-Montojo M, De Las Heras V, Dominguez-Mozo M, Bartolome M, Garcia-Martinez MA, Arroyo R, Alvarez-Lafuente R. Human herpesvirus 6 and effectiveness of interferon beta 1b in multiple sclerosis patients. Eur J Neurol 2011; 18:1027-35. [DOI: 10.1111/j.1468-1331.2011.03410.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Fragoso YD, Frota ERC, Lopes JS, Noal JS, Giacomo MC, Gomes S, Gonçalves MVM, da Gama PD, Finkelsztejn A. Severe depression, suicide attempts, and ideation during the use of interferon beta by patients with multiple sclerosis. Clin Neuropharmacol 2011; 33:312-6. [PMID: 21079457 DOI: 10.1097/wnf.0b013e3181f8d513] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Interferon (IFN) beta is a safe and efficient drug for treating multiple sclerosis (MS). It is widely accepted that previously depressed patients may get worse when using IFN-beta. There are few reports on the association of IFN-beta and severe depression among patients without previous psychiatric history. METHODS Discussion of a case of a patient with MS who developed severe depression and attempted suicide while using IFN-beta encouraged us to review the subject. A group of neurologists in Brazil retrospectively gathered together their similar cases for the present paper. RESULTS The present paper reports on 11 cases of severe depression with suicide attempts or ideation among patients with MS who were using IFN-beta. These patients had no previous history of any psychiatric disease. Nine patients developed the symptoms over a relatively short period (4 months, on average). Two patients developed severe depression after more than 1 year of treatment with IFN-beta. Phobic, aggressive, behavioral, psychotic, and manic symptoms also were observed in these patients, thus suggesting the existence of a complex mood-behavior disorder associated with this drug. Interferon beta withdrawal led to complete remission of symptoms. The Naranjo algorithm established a highly probable association between IFN-beta and this adverse reaction in these patients. CONCLUSIONS Although uncommon, severe depression with suicide ideation or attempts may be observed during treatment of MS with IFN-beta. This association should not discourage the use of this drug, but physicians need to be aware of this possible adverse event from IFN-beta.
Collapse
|
25
|
Fontoura P. Monoclonal antibody therapy in multiple sclerosis: Paradigm shifts and emerging challenges. MAbs 2011; 2:670-81. [PMID: 21124072 DOI: 10.4161/mabs.2.6.13270] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Therapeutic approaches to multiple sclerosis (MS) are based on altering the functions of the immune system, either by using broad immunosuppressive drugs used for transplantation rejection and rheumatology, or by modulating them more discreetly with beta interferon and synthetic amino-acid copolymers. These strategies are only partially successful, have important safety and tolerability limitations, and have shown to be mostly effective in earlier stages of the disease, in which acute relapses dominate the clinical picture. For progressive phenotypes of MS there are currently no effective therapeutic options. As very specific and potent immunosuppressive agents, monoclonal antibodies (mAbs) may offer considerable advantages over other therapies for MS. During the last decade, anti-a4 integrin natalizumab became the first approved mAb for treatment of relapsing MS, after convincingly demonstrating clinically significant effects on two large Phase 3 trials. Moreover, the concept of disease remission was introduced for the first time, to describe patients that show no signs of clinical or imaging markers of disease activity during therapy with natalizumab. Of the mAbs under development for MS, alemtuzumab and rituximab have also shown promising evidence of effectiveness, and potentially expanded the therapeutic horizon to reversal of disease progression in early relapsing patients, and progressive patients who previously had not been studied. However, the appearance of progressive multifocal leukoencephalopathy (PML) in natalizumab-treated MS patients, as well as in patients with lymphoma, lupus and rheumatoid arthritis treated with rituximab, and autoimmune-type complications in alemtuzumab-treated MS patients underlines the fact that extended efficacy comes with significant clinical risks. The challenge is then how best to utilize therapies that have evidently superior efficacy in a chronic disease of young adults, to obtain the best benefit-risk ratio, and how to monitor and prevent emergent safety concerns.
Collapse
Affiliation(s)
- Paulo Fontoura
- Roche Pharmaceuticals, Pharma Research and Exploratory Development, Translational Medicine CNS, Basel, Switzerland.
| |
Collapse
|
26
|
Tozaki-Saitoh H, Tsuda M, Inoue K. Role of purinergic receptors in CNS function and neuroprotection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:495-528. [PMID: 21586368 DOI: 10.1016/b978-0-12-385526-8.00015-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purinergic receptor family contains some of the most abundant receptors in living organisms. A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through purinergic receptors. Nucleotides are released from or leaked through nonexcitable cells and neurons during normal physiological and pathophysiological conditions. Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system (CNS), participate in the synaptic processes, and mediate intercellular communications between neuron and gila and between glia and other glia. Glial cells in the CNS are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of purinergic receptors, which are integral to their activation. Astrocytes release adenosine triphosphate (ATP) as a "gliotransmitter" that allows communication with neurons, the vascular walls of capillaries, oligodendrocytes, and microglia. Oligodendrocytes are myelin-forming cells that construct insulating layers of myelin sheets around axons, and using purinergic receptor signaling for their development and for myelination. Microglia also express many types of purinergic receptors and are known to function as immunocompetent cells in the CNS. ATP and other nucleotides work as "warning molecules" especially by activating microglia in pathophysiological conditions. Studies on purinergic signaling could facilitate the development of novel therapeutic strategies for disorder of the CNS.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | |
Collapse
|
27
|
Abstract
The fundamental role of inflammatory immune processes in the pathology of multiple sclerosis (MS) provides the rationale for immunomodulatory therapies that attempt to shift the immune system from pro-inflammatory to anti-inflammatory pathways and induce regulatory mechanisms. Growing understanding of immune cellular and molecular mechanisms together with modern biotechnology engendered promising immunomodulatory treatment strategies, with novel mechanisms of actions and different levels of specificity. These include inhibitory molecules, monoclonal antibodies, cell therapies and agents that are administered orally or by infrequent infusions. Several of these treatments have demonstrated impressive efficacy in Phase II and III clinical trials by reducing disease activity and accumulation of disability. However, with the advent of potent therapies, rare but severe adverse effects, such as CNS infections and malignancies, have occurred. This article describes current and upcoming immunomodulatory strategies for MS therapy. The potential of immunomodulatory treatments to counteract the inflammatory characteristics of MS and support neuroprotective processes is discussed.
Collapse
Affiliation(s)
- Rina Aharoni
- The Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Meager A, Dolman C, Dilger P, Bird C, Giovannoni G, Schellekens H, Thorpe R, Wadhwa M. An assessment of biological potency and molecular characteristics of different innovator and noninnovator interferon-beta products. J Interferon Cytokine Res 2010; 31:383-92. [PMID: 21138379 DOI: 10.1089/jir.2010.0113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approved innovator products and their noninnovator "copy" versions are likely to vary in their quality, eg, physicochemical characteristics and biological activity, with important implications for clinical efficacy and safety. Therefore, it is important to study and thoroughly evaluate the noninnovator products in comparison with approved products at the preclinical and clinical stages. We have obtained 4 noninnovator interferon (IFN)-β-1a products currently marketed in Latin America and Iran and compared these with approved IFN-β-1a products (Avonex and Rebif) obtained from the same geographical regions with respect to biological potency, estimated by in vitro bioassays, and molecular characteristics, assessed by immunoblotting and high-performance liquid chromatography. In this article, we present our data showing that the noninnovator IFN-β-1a products can vary considerably in their biological potency. In addition, we showed that all IFN-β-1a products formulated with human serum albumin contained variable amounts of higher-molecular-weight aggregates of IFN-β-1a and adducts with human serum albumin, these being more prevalent in 2 noninnovator IFN-β-1a products where biological potency was reduced compared with approved IFN-β-1a products. Additionally, significant lot-to-lot variability was observed for one of the noninnovator products. Taken together, the results of this study highlight the need for not only thorough in vitro characterization, but also preclinical and clinical assessment to ensure patient safety and efficacy.
Collapse
Affiliation(s)
- Anthony Meager
- Cytokine and Growth Factor Section, Biotherapeutics Group, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Slavin A, Kelly-Modis L, Labadia M, Ryan K, Brown ML. Pathogenic mechanisms and experimental models of multiple sclerosis. Autoimmunity 2010; 43:504-13. [DOI: 10.3109/08916931003674733] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 2010; 12:99-132. [PMID: 20411441 DOI: 10.1007/s12017-010-8112-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
As the resident innate immune cells of the central nervous system (CNS), microglia fulfil a critical role in maintaining tissue homeostasis and in directing and eliciting molecular responses to CNS damage. The human disease Multiple Sclerosis and animal models of inflammatory demyelination are characterized by a complex interplay between degenerative and regenerative processes, many of which are regulated and mediated by microglia. Cellular communication between microglia and other neural and immune cells is controlled to a large extent by the activity of cytokines. Here we review the role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination, highlighting their importance in potentiating cell damage, promoting neuroprotection and enhancing cellular repair in a context-dependent manner.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Neuroscience Institutes, Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | |
Collapse
|
31
|
Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7:10. [PMID: 20128908 PMCID: PMC2829540 DOI: 10.1186/1742-2094-7-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/03/2010] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS) is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. ORGANIZATION After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. CONCLUSION The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wenche Jy
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yeon S Ahn
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo NY, USA
| | - Amir H Maghzi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
32
|
Recombinant interferon-beta therapy and neuromuscular disorders. J Neuroimmunol 2009; 212:132-41. [DOI: 10.1016/j.jneuroim.2009.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/20/2022]
|
33
|
Olson JK, Miller SD. The innate immune response affects the development of the autoimmune response in Theiler's virus-induced demyelinating disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:5712-22. [PMID: 19380818 DOI: 10.4049/jimmunol.0801940] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is a human CNS autoimmune demyelinating disease. Epidemiological evidence has suggested a role for virus infection in the initiation and/or exacerbation of MS. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease serves as a relevant mouse model for MS. TMEV-infected mice develop a demyelinating disease with clinical symptoms beginning around 35 days after infection, which is associated with development of myelin-specific, PLP(139-151), CD4(+) T cell responses. Viruses have been suggested to initiate autoimmune disease through bystander activation of immune cells or through bystander damage to tissue during infection. We examined the effect of the innate immune response on development of autoimmune demyelinating disease by altering the innate immune response through administration of innate immune cytokines, IFN-alpha or IFN-beta, or antiserum against the type I IFNs during the innate immune response to TMEV. Administration of IFN-beta, but not IFN-alpha, to TMEV- infected mice led to reduced myelin-specific CD4(+) T cell responses and reduced demyelinating disease, which was associated with decreased immune cell infiltration into the CNS and increased expression of IL-10 in the CNS. Conversely, administration of antiserum to IFN-beta led to a more severe demyelinating disease. In addition, administration of poly(I:C), which is an innate immune agonist, to TMEV-infected mice during the innate immune response resulted in decreased myelin-specific CD4(+) T cell responses and reduced demyelinating disease. These results demonstrate that activating or enhancing the innate immune response can reduce the subsequent initiation and progression of the autoimmune response and demyelinating disease.
Collapse
Affiliation(s)
- Julie K Olson
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
34
|
Zídek Z, Anzenbacher P, Kmonícková E. Current status and challenges of cytokine pharmacology. Br J Pharmacol 2009; 157:342-61. [PMID: 19371342 PMCID: PMC2707982 DOI: 10.1111/j.1476-5381.2009.00206.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 12/12/2022] Open
Abstract
The major concern of pharmacology about cytokines has originated from plentiful data showing association between gross changes in their production and pathophysiological processes. Despite the enigmatic role of cytokines in diseases, a number of them have become a subject of cytokine and anti-cytokine immunotherapies. Production of cytokines can be influenced by many endogenous and exogenous stimuli including drugs. Cells of the immune system, such as macrophages and lymphocytes, are richly endowed with receptors for the mediators of physiological functions, such as biogenic amines, adenosine, prostanoids, steroids, etc. Drugs, agonists or antagonists of these receptors can directly or indirectly up- and down-regulate secretion of cytokines and expression of cytokine receptors. Vice versa, cytokines interfere with drug pharmacokinetics and pharmacodynamics through the interactions with cytochrome P450 and multiple drug resistance proteins. The aim of the review is to encourage more intensive studies in these fields of cytokine pharmacology. It also outlines major areas of searching promising candidates for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Z Zídek
- Department of Pharmacology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
35
|
Fitzgerald DC, Rostami A. Therapeutic potential of IL-27 in multiple sclerosis? Expert Opin Biol Ther 2009; 9:149-60. [PMID: 19236245 DOI: 10.1517/14712590802646936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating neurological disease, characterized by inflammatory demyelination and axonal degeneration in the CNS. Currently approved therapies are partially effective, however safer and more effective treatments are needed. OBJECTIVE/METHODS To assess the therapeutic potential of the heterodimeric cytokine, IL-27 in MS, based on the current literature. RESULTS/CONCLUSIONS IL-27 exerts profound anti-inflammatory effects in several infectious and experimental autoimmune models. In particular, suppressive effects on helper T cells, which are implicated in the pathogenesis of MS, suggest that IL-27 may be therapeutically relevant in MS. However, while exciting discoveries have been made, further work is required particularly in human health and disease, to understand the diverse roles of IL-27 and its therapeutic potential.
Collapse
Affiliation(s)
- Denise C Fitzgerald
- Thomas Jefferson University, Suite 200 Jefferson Hospital for Neuroscience, 900 Walnut Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
36
|
Menge T, Weber MS, Hemmer B, Kieseier BC, von Büdingen HC, Warnke C, Zamvil SS, Boster A, Khan O, Hartung HP, Stüve O. Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs 2009; 68:2445-68. [PMID: 19016573 DOI: 10.2165/0003495-200868170-00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the CNS. Currently, six medications are approved for immunmodulatory and immunosuppressive treatment of the relapsing disease course and secondary-progressive MS. In the first part of this review, the pathogenesis of MS and its current treatment options are discussed. During the last decade, our understanding of autoimmunity and the pathogenesis of MS has advanced substantially. This has led to the development of a number of compounds, several of which are currently undergoing clinical testing in phase II and III studies. While current treatment options are only available for parenteral administration, several oral compounds are now in clinical trials, including the immunosuppressive agents cladribine and laquinimod. A novel mode of action has been described for fingolimod, another orally available agent, which inhibits egress of activated lymphocytes from draining lymph nodes. Dimethylfumarate exhibits immunomodulatory as well as immunosuppressive activity when given orally. All of these compounds have successfully shown efficacy, at least in regards to the surrogate marker contrast-enhancing lesions on magnetic resonance imaging. Another class of agents that is highlighted in this review are biological agents, namely monoclonal antibodies (mAb) and recombinant fusion proteins. The humanized mAb daclizumab inhibits T-lymphocyte activation via blockade of the interleukin-2 receptor. Alemtuzumab and rituximab deplete leukocytes and B cells, respectively; the fusion protein atacicept inhibits specific B-cell growth factors resulting in reductions in B-cells and plasma cells. These compounds are currently being tested in phase II and III studies in patients with relapsing MS. The concept of neuro-protection and -regeneration has not advanced to a level where specific compounds have entered clinical testing. However, several agents approved for conditions other than MS are highlighted. Finally, with the advent of these highly potent novel therapies, rare, but potentially serious adverse effects have been noted, namely infections and malignancies. These are critically reviewed and put into perspective.
Collapse
Affiliation(s)
- Til Menge
- Department of Neurology, Heinrich Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schwartzman RJ, Simpkins N, Alexander GM, Reichenberger E, Ward K, Lindenberg N, Topolsky D, Crilley P. High-dose cyclophosphamide in the treatment of multiple sclerosis. CNS Neurosci Ther 2009; 15:118-27. [PMID: 19243391 DOI: 10.1111/j.1755-5949.2008.00072.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
High dose cyclophosphamide (HDC) has been successfully used for the treatment of a variety of autoimmune diseases. In this study, we sought to determine whether the use of high dose cyclophosphamide provided stabilization of relapsing remitting MS (RRMS), secondary progressive MS (SPMS), or primary progressive MS (PPMS). The parameters evaluated were EDSS scores, lesion load and brain volumes by MRI and frequency of relapses. Twenty-three patients underwent immunoablative therapy with HDC and were followed for 3.5 years. Nine were relapsing remitting (RRMS), 11 secondary progressive (SPMS), and 3 primary progressive (PPMS). Four of 9 RRMS have had no clinical progression up to 3.5 years following treatment. Three of 9 patients maintained a normal neurologic examination with improved EDSS scores. Seven of the nine RRMS patients had reduction in flare frequency which was maintained for 3.5 years following treatment or no immunomodulating agents. Subgroup analysis in the RRMS patients of lesion load and brain parenchymal volume revealed a favorable trend in these parameters which did not reach statistical significance. The treatment was generally ineffective for SPMS and failed in the 2 PPMS patients. HDC was well tolerated, demonstrated a good safety profile and had minimal adverse effects. These results along with previous reports suggest that early use of HDC therapy in RRMS is promising.
Collapse
|
38
|
Gaindh D, Jeffries N, Ohayon J, Richert ND, Pellicano C, Frank JA, McFarland H, Bagnato F. The effect of interferon beta-1b on size of short-lived enhancing lesions in patients with multiple sclerosis. Expert Opin Biol Ther 2009; 8:1823-9. [PMID: 18990070 DOI: 10.1517/14712590802510629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Contrast enhancing lesions (CELs) in MRI represent inflammatory events in multiple sclerosis (MS). IFN-beta-1b decreases the formation of CELs. However, the ability of IFN-beta-1b to reduce the size of CELs arising during therapy has not been extensively investigated. METHODS Thirty patients with relapsing-remitting (RR) MS were followed for a 3-month pre-therapy phase then for a 6-month therapy phase during which treatment with IFN-beta-1b at a dosage of 250 microg subcutaneously injected every other day was employed. Each patient underwent monthly clinical and MRI examinations. For all patients, CELs were identified on postcontrast T1-weighted MRIs. CEL number, size, and volume were computed using Medx software. RESULTS The average number and total lesion volume of CELs visible during the therapy phase were significantly lower than the number and total lesion volume of CELs observed in the pre-therapy phase. However, there was no significant reduction between pre-therapy and therapy phases in the mean size of individual lesions arising during the respective phases. CONCLUSIONS Since size of CELs has been related to severity of tissue damage, the lack of size decrease during therapy suggested a limited therapeutic effect of IFN-beta-1b if a blood-brain barrier breakdown has occurred.
Collapse
Affiliation(s)
- Deeya Gaindh
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sternberg Z, Chadha K, Lieberman A, Hojnacki D, Drake A, Zamboni P, Rocco P, Grazioli E, Weinstock-Guttman B, Munschauer F. Quercetin and interferon-β modulate immune response(s) in peripheral blood mononuclear cells isolated from multiple sclerosis patients. J Neuroimmunol 2008; 205:142-7. [DOI: 10.1016/j.jneuroim.2008.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/27/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
|
40
|
Popovich PG, Longbrake EE. Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 2008; 9:481-93. [PMID: 18490917 DOI: 10.1038/nrn2398] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental and clinical data have demonstrated that activating the immune system in the CNS can be destructive. However, other studies have shown that enhancing an immune response can be therapeutic, and several clinical trials have been initiated with the aim of boosting immune responses in the CNS of individuals with spinal cord injury, multiple sclerosis and Alzheimer's disease. Here, we evaluate the controversies in the field and discuss the remaining scientific challenges that are associated with enhancing immune function in the CNS to treat neurological diseases.
Collapse
Affiliation(s)
- Phillip G Popovich
- Ohio State University, 786 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
41
|
Wang T, Chen L, Ahmed E, Ma L, Yin D, Zhou P, Shen J, Xu H, Wang CR, Alegre ML, Chong AS. Prevention of allograft tolerance by bacterial infection with Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2008; 180:5991-9. [PMID: 18424719 DOI: 10.4049/jimmunol.180.9.5991] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to certain viruses and parasites has been shown to prevent the induction of transplantation tolerance in mice via the generation of cross-reactive memory T cell responses or the induction of bystander activation. Bacterial infections are common in the perioperative period of solid organ allograft recipients in the clinic, and correlations between bacterial infections and acute allograft rejection have been reported. However, whether bacterial infections at the time of transplantation have any effect on the generation of transplantation tolerance remains to be established. We used the Gram-positive intracellular bacterium Listeria monocytogenes (LM) as a model pathogen because its effects on immune responses are well described. Perioperative LM infection prevented cardiac and skin allograft acceptance induced by anti-CD154 and donor-specific transfusion in mice. LM-mediated rejection was not due to the generation of cross-reactive T cells and was largely independent of signaling via MyD88, an adaptor for most TLRs, IL-1, and IL-18. Instead, transplant rejection following LM infection was dependent on the expression of the phagosome-lysing pore former listeriolysin O and on type I IFN receptor signaling. Our results indicate that bacterial exposure at the time of transplantation can antagonize tolerogenic regimens by enhancing alloantigen-specific immune responses independently of the generation of cross-reactive memory T cells.
Collapse
Affiliation(s)
- Tongmin Wang
- Section of Transplantation, Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lallemand C, Meritet JF, Erickson R, Grossberg S, Roullet E, Lyon-Caen O, Lebon P, Tovey M. Quantification of Neutralizing Antibodies to Human Type I Interferons Using Division-Arrested Frozen Cells Carrying an Interferon-Regulated Reporter-Gene. J Interferon Cytokine Res 2008; 28:393-404. [DOI: 10.1089/jir.2007.0142] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- C. Lallemand
- Laboratory of Viral Oncology, CNRS FRE, Institut André Lwoff, Jonesboro, AR
| | - J.-F. Meritet
- Laboratory of Virology, Groupe Hospitalier Cochin-Saint-Vincent-de-Paul, Université René Descartes, Paris, France
| | - R. Erickson
- NeutekBio Ltd., Galway Technology Centre, Galway, Ireland
| | - S.E. Grossberg
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - E. Roullet
- Neurology Department, Hôpital Tenon, Jonesboro, AR
| | - O. Lyon-Caen
- Fédération de Neurologie, Hôpital de la Salpetriກre, Paris, France
| | - P. Lebon
- Laboratory of Virology, Groupe Hospitalier Cochin-Saint-Vincent-de-Paul, Université René Descartes, Paris, France
| | - M.G. Tovey
- Laboratory of Viral Oncology, CNRS FRE, Institut André Lwoff, Jonesboro, AR
| |
Collapse
|
43
|
Rees AJ, Kain R. Interferon-β: A Novel Way to Treat Nephrotic Syndrome? J Am Soc Nephrol 2007; 18:2797-8. [DOI: 10.1681/asn.2007091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
44
|
Lang KS, Burow A, Kurrer M, Lang PA, Recher M. The role of the innate immune response in autoimmune disease. J Autoimmun 2007; 29:206-12. [PMID: 17904335 DOI: 10.1016/j.jaut.2007.07.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autoimmune diseases are the clinical correlate of a dysregulation of the immune system, involving multiple steps and multiple components of both the innate and the adaptive immune system. Innate immune cells are sensitive to a very limited repertoire of foreign "patterns" that bind to selective "pattern recognition receptors". In contrast, adaptive auto-reactive T or B cells bear receptors specific for antigens including "self" antigens and are rendered non-reactive by several "quality control" mechanisms. Under special conditions, activation of cells of the innate immune system can break the state of inactivity of auto-reactive cells of the adaptive immune system, thereby provoking autoimmune disease. Here we review examples to illustrate how innate immune activation influences autoimmune disease and point to the implications for the treatment of human autoimmune disease.
Collapse
Affiliation(s)
- Karl S Lang
- Institute of Experimental Immunology, University Hospital of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
45
|
Rani MRS, Shrock J, Appachi S, Rudick RA, Williams BRG, Ransohoff RM. Novel interferon-beta-induced gene expression in peripheral blood cells. J Leukoc Biol 2007; 82:1353-1360. [PMID: 17709400 DOI: 10.1189/jlb.0507273] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/26/2007] [Accepted: 07/30/2007] [Indexed: 12/19/2022] Open
Abstract
Type I IFNs are used for treating viral, neoplastic, and inflammatory disorders. The protein products encoded by IFN-stimulated genes (ISGs) likely mediate clinical effects of IFN in patients. Macroarray assays, used for studying ISG induction in IFN-treated patients, comprise genes identified predominantly through analysis of long-term cell lines. To discover genes induced selectively by IFN-beta in PBMC, we exposed whole blood to physiological concentrations of IFN-beta. PBMC were prepared, and RNA was extracted, reverse-transcribed, and hybridized to cDNA microarrays, and microarray analysis identified 39 ISGs and 20 IFN-repressed genes (IRGs). Thirty-three ISGs were known previously, and six ISGs were novel. New ISGs included GTP cyclohydrolase 1; hypothetical protein LOC129607; hypothetical protein FLJ38348; leucine aminopeptidase 3; squalene epoxidase; and GTP-binding protein overexpressed in skeletal muscle. Twenty IRGs included IL-1beta and CXCL8, which had been identified earlier. CXCL1 was a novel IRG identified in the current study. PCR analysis demonstrated the regulation of six novel ISGs and CXCL1 as an IRG in PBMC and astrocytoma cells. Results were validated using RNA obtained ex vivo from blood of patients after injection with IFN-beta. Identification of new ISGs and IRGs in primary PBMC will enhance macroarray assays for monitoring IFN responsiveness.
Collapse
Affiliation(s)
- M R Sandhya Rani
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, NC30, Mellen Center for MS Treatment and Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|