1
|
Bento C, Katz M, Santos MMM, Afonso CAM. Striving for Uniformity: A Review on Advances and Challenges To Achieve Uniform Polyethylene Glycol. Org Process Res Dev 2024; 28:860-890. [PMID: 38660381 PMCID: PMC11036406 DOI: 10.1021/acs.oprd.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is the polymer of choice in drug delivery systems due to its biocompatibility and hydrophilicity. For over 20 years, this polymer has been widely used in the drug delivery of small drugs, proteins, oligonucleotides, and liposomes, improving the stability and pharmacokinetics of many drugs. However, despite the extensive clinical experience with PEG, concerns have emerged related to its use. These include hypersensitivity, purity, and nonbiodegradability. Moreover, conventional PEG is a mixture of polymers that can complicate drug synthesis and purification leading to unwanted immunogenic reactions. Studies have shown that uniform PEGylated drugs may be more effective than conventional PEGylated drugs as they can overcome issues related to molecular heterogeneity and immunogenicity. This has led to significant research efforts to develop synthetic procedures to produce uniform PEGs (monodisperse PEGs). As a result, iterative step-by-step controlled synthesis methods have been created over time and have shown promising results. Nonetheless, these procedures have presented numerous challenges due to their iterative nature and the requirement for multiple purification steps, resulting in increased costs and time consumption. Despite these challenges, the synthetic procedures went through several improvements. This review summarizes and discusses recent advances in the synthesis of uniform PEGs and its derivatives with a focus on overall yields, scalability, and purity of the polymers. Additionally, the available characterization methods for assessing polymer monodispersity are discussed as well as uniform PEG applications, side effects, and possible alternative polymers that can overcome the drawbacks.
Collapse
Affiliation(s)
- Cláudia Bento
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marianna Katz
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
| | - Maria M. M. Santos
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
2
|
Xu M, Yun Y, Li C, Ruan Y, Muraoka O, Xie W, Sun X. Radiation responsive PROTAC nanoparticles for tumor-specific proteolysis enhanced radiotherapy. J Mater Chem B 2024; 12:3240-3248. [PMID: 38437473 DOI: 10.1039/d3tb03046f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) is a promising strategy for cancer therapy. However, the always-on bioactivity of PROTACs may lead to non-target toxicity, which restricts their antitumor performance. Here, we developed an X-ray radiation responsive PROTAC nanomicelle (RCNprotac) by covalently conjugating a reported small molecule PROTAC (MZ1) to hydrophilic PEG via a diselenide bond-containing carbon chain, which then self-assembled into a 141.80 ± 5.66 nm nanomicelle. The RCNprotac displayed no bioactivity during circulation due to the occupation of the hydroxyl group on the E3 ubiquitin ligand component and could effectively accumulate at the tumor site owing to the enhanced permeability and retention effect. Upon exposure to X-ray radiation, the radiation-sensitive diselenide bonds were broken to specifically release MZ1 for tumor BRD4 protein degradation. Furthermore, the reduction in the BRD4 protein level could increase the tumor's sensitivity to radiation. RCNprotac showed a synergistic enhancement of antitumor effects both in vitro and in vivo. We believe that this X-ray-responsive PROTAC nanomicelle could provide a new strategy for the X-ray-activated spatiotemporally controlled protein degradation and for the BRD4 proteolysis enhanced tumor radiosensitivity.
Collapse
Affiliation(s)
- Mengxia Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyang Yun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Changjun Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Osamu Muraoka
- Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Investigation of anti-adhesion ability of 8-arm PEGNHS-modified porcine pericardium. Biomed Mater 2024; 19:035012. [PMID: 38422523 DOI: 10.1088/1748-605x/ad2ed3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In post-adhesion surgery, there is a clinical need for anti-adhesion membranes specifically designed for the liver, given the limited efficacy of current commercial products. To address this demand, we present a membrane suitable for liver surgery applications, fabricated through the modification of decellularized porcine pericardium with 20 KDa hexaglycerol octa (succinimidyloxyglutaryl) polyoxyethylene (8-arm PEGNHS). We also developed an optimized modification procedure to produce a high-performance anti-adhesion barrier. The modified membrane significantly inhibited fibroblast cell adherence while maintaining minimal levels of inflammation. By optimizing the modification ratio, we successfully controlled post-adhesion formation. Notably, the 8-arm PEG-modified pericardium with a molar ratio of 5 exhibited the ability to effectively prevent post-adhesion formation on the liver compared to both the control and Seprafilm®, with a low adhesion score of 0.5 out of 3.0. Histological analysis further confirmed its potential for easy separation. Furthermore, the membrane demonstrated regenerative capabilities, as evidenced by the proliferation of mesothelial cells on its surface, endowing anti-adhesion properties between the abdominal wall and liver. These findings highlight the membrane's potential as a reliable barrier for repeated liver resection procedures that require the removal of the membrane multiple times.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
5
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Effect of multi arm-PEG-NHS (polyethylene glycol n-hydroxysuccinimide) branching on cell adhesion to modified decellularized bovine and porcine pericardium. J Mater Chem B 2024; 12:1244-1256. [PMID: 38168715 DOI: 10.1039/d3tb01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implanting physical barrier materials to separate wounds from their surroundings is a promising strategy for preventing postoperative adhesions. Herein, we develop a material that switches from an anti-adhesive surface to an adhesive surface, preventing adhesion in the early stage of transplantation and then promoting recellularization. In this study, 2-arm, 4-arm, and 8-arm poly(ethylene glycol) succinimidyl glutarate (2-, 4-, 8-arm PEG-NHS) were used to modify the surface of decellularized porcine and bovine pericardium. The number of free amines on the surface of each material significantly decreased following modification regardless of the reaction molar ratio of NH2 and NHS, the number of PEG molecule branches, and the animal species of the decellularized tissue. The structure and mechanical properties of the pericardium were maintained after modification with PEG molecules. The time taken for the PEG molecules to detach through hydrolysis of the ester bonds differed between the samples, which resulted in different cell repulsion periods. By adjusting the reaction molar ratio, the number of PEG molecule branches, and the animal species of the decellularized pericardium, the duration of cell repulsion can be controlled and is expected to provide an anti-adhesion material for a variety of surgical procedures.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| |
Collapse
|
6
|
Postupalenko V, Marx L, Pantin M, Viertl D, Gsponer N, Giudice G, Gasilova N, Schottelius M, Lévy F, Garrouste P, Segura JM, Nyanguile O. Site-selective template-directed synthesis of antibody Fc conjugates with concomitant ligand release. Chem Sci 2024; 15:1324-1337. [PMID: 38274063 PMCID: PMC10806771 DOI: 10.1039/d3sc04324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Template-directed methods are emerging as some of the most effective means to conjugate payloads at selective sites of monoclonal antibodies (mAbs). We have previously reported a method based on an engineered Fc-III reactive peptide to conjugate a radionuclide chelator to K317 of antibodies with the concomitant release of the Fc-III peptide ligand. Here, our method was redesigned to target two lysines proximal to the Fc-III binding site, K248 and K439. Using energy minimization predictions and a semi-combinatorial synthesis approach, we sampled multiple Fc-III amino acid substituents of A3, H5, L6 and E8, which were then converted into Fc-III reactive conjugates. Middle-down MS/MS subunit analysis of the resulting trastuzumab conjugates revealed that K248 and K439 can be selectively targeted using the Fc-III reactive variants L6Dap, L6Orn, L6Y and A3K or A3hK, respectively. Across all variants tested, L6Orn-carbonate appeared to be the best candidate, yielding a degree and yield of conjugation of almost 2 and 100% for a broad array of payloads including radionuclide chelators, fluorescent dyes, click-chemistry reagents, pre-targeted imaging reagents, and some cytotoxic small molecules. Furthermore, L6Orn carbonate appeared to yield similar conjugation results across multiple IgG subtypes. In vivo proof of concept was achieved by conjugation of NODAGA to the PD1/PD-L1 immune checkpoint inhibitor antibody atezolizumab, followed by PET imaging of PD-L1 expression in mice bearing PD-L1 expressing tumor xenograft using radiolabeled [64Cu]Cu-atezolizumab.
Collapse
Affiliation(s)
- Viktoriia Postupalenko
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Léo Marx
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Mathilde Pantin
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne CH-1011 Lausanne
| | - Nadège Gsponer
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Gaëlle Giudice
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Natalia Gasilova
- EPFL Valais Wallis, MSEAP, ISIC-GE-VS rue de l'Industrie 17 1951 Sion Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- Agora, pôle de recherche sur le cancer 1011 Lausanne Switzerland
| | - Frédéric Lévy
- Debiopharm International SA Forum "après-demain", Chemin Messidor 5-7, Case postale 5911 1002 Lausanne Switzerland
| | - Patrick Garrouste
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Origène Nyanguile
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| |
Collapse
|
7
|
Kvarstein G, Kindlundh-Högberg AM, Ould Setti M, Namane R, Muzwidzwa R, Richter H, Hakkarainen KM. An observational post-authorization safety study (PASS) of naloxegol drug utilization in four European countries. Pharmacoepidemiol Drug Saf 2024; 33:e5710. [PMID: 37969030 DOI: 10.1002/pds.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE Naloxegol has been shown to be an efficient alternative to treat opioid-induced constipation (OIC). This study aimed at describing the characteristics of naloxegol users and assessing patterns of naloxegol use and associated factors. METHODS This drug utilization cohort study used observational registry data on patients newly prescribed naloxegol in four European countries. Patient characteristics and patterns of naloxegol use and associated factors were described. RESULTS A total of 17 254 naloxegol users were identified across the countries. Their median age was 56-71 years, and each country had a majority of women (ranging 57.5%-62.9%). Multiple comorbidities, including cancer, were common. Natural opium alkaloids and osmotically acting laxatives (excluding saline) were the most frequently used opioids and laxatives. Overall prior use of opioids ranged from 91.9% to 99.6% and overall prior use of laxatives ranged from 69.9% to 92.4%. Up to 77.7% had prior use of medications with interaction potential, and up to 44.5% used them concurrently with naloxegol. Naloxegol was discontinued by 55.1%-90.9% of users, typically during the first 30 days. Approximately 10%-30% switched to or augmented the treatment with another constipation medication or restarted naloxegol after discontinuation. Augmentation with another constipation medication was relatively common, suggesting that naloxegol was used for multifactorial constipation. CONCLUSION The present study reflects real-world clinical use of naloxegol, including in vulnerable patient groups. Some naloxegol users lacked laxative or regular opioid use within six months before index date or used naloxegol concomitantly with medications presenting an interaction potential.
Collapse
Affiliation(s)
- Gunnvald Kvarstein
- Institute for Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Pain Management and Research, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | | | - Mounir Ould Setti
- Global Database Studies, Real World Solutions, IQVIA, Espoo, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Rafik Namane
- Kyowa Kirin International plc, Galabank Business Park, Galashiels, UK
| | | | - Hartmut Richter
- Epidemiology, Real World Solutions, IQVIA, Frankfurt/Main, Germany
| | - Katja M Hakkarainen
- Global Database Studies, Real World Solutions, IQVIA, Mölndal, Sweden
- Epidemiology & Real-World Science, RWE Scientific Affairs, Parexel International, Gothenburg, Sweden
| |
Collapse
|
8
|
Gao Y, Joshi M, Zhao Z, Mitragotri S. PEGylated therapeutics in the clinic. Bioeng Transl Med 2024; 9:e10600. [PMID: 38193121 PMCID: PMC10771556 DOI: 10.1002/btm2.10600] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 01/10/2024] Open
Abstract
The covalent attachment of polyethylene glycol (PEG) to therapeutic agents, termed PEGylation, is a well-established and clinically proven drug delivery approach to improve the pharmacokinetics and pharmacodynamics of drugs. Specifically, PEGylation can improve the parent drug's solubility, extend its circulation time, and reduce its immunogenicity, with minimal undesirable properties. PEGylation technology has been applied to various therapeutic modalities including small molecules, aptamers, peptides, and proteins, leading to over 30 PEGylated drugs currently used in the clinic and many investigational PEGylated agents under clinical trials. Here, we summarize the diverse types of PEGylation strategies, the key advantages of PEGylated therapeutics over their parent drugs, and the broad applications and impacts of PEGylation in clinical settings. A particular focus has been given to the size, topology, and functionalities of PEG molecules utilized in clinically used PEGylated drugs, as well as those under clinical trials. An additional section has been dedicated to analyzing some representative PEGylated drugs that were discontinued at different stages of clinical studies. Finally, we critically discuss the current challenges faced in the development and clinical translation of PEGylated agents.
Collapse
Affiliation(s)
- Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
- Present address:
Department of BioengineeringThe University of Texas at DallasRichardsonTXUSA
| | - Maithili Joshi
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois at ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| |
Collapse
|
9
|
Song S, Sun D, Wang H, Wang J, Yan H, Zhao X, Fawcett JP, Xu X, Cai D, Gu J. Full-profile pharmacokinetics, anticancer activity and toxicity of an extended release trivalent PEGylated irinotecan prodrug. Acta Pharm Sin B 2023; 13:3444-3453. [PMID: 37655324 PMCID: PMC10466002 DOI: 10.1016/j.apsb.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Irinotecan is an anticancer topoisomerase I inhibitor that acts as a prodrug of the active metabolite, SN-38. Unfortunately, the limited utility of irinotecan is attributed to its pH-dependent stability, short half-life and dose-limiting toxicity. To address this problem, a novel trivalent PEGylated prodrug (PEG-[Irinotecan]3) has been synthesized and its full-profile pharmacokinetics, antitumor activity and toxicity compared with those of irinotecan. The results show that after intravenous administration to rats, PEG-[Irinotecan]3 undergoes stepwise loss of irinotecan to form PEG-[Irinotecan]3‒x (x = 1,2) and PEG-[linker] during which time the released irinotecan undergoes conversion to SN-38. As compared with conventional irinotecan, PEG-[Irinotecan]3 displays extended release of irinotecan and efficient formation of SN-38 with significantly improved AUC and half-life. In a colorectal cancer-bearing model in nude mice, the tumor concentrations of irinotecan and SN-38 produced by PEG-[Irinotecan]3 were respectively 86.2 and 2293 times higher at 48 h than produced by irinotecan. In summary, PEG-[Irinotecan]3 displays superior pharmacokinetic characteristics and antitumor activity with lower toxicity than irinotecan. This supports the view that PEG-[Irinotecan]3 is a superior anticancer drug to irinotecan and it has entered the phase II trial stage.
Collapse
Affiliation(s)
- Shiwen Song
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dong Sun
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hong Wang
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Food and Drug Inspection of NMPA, Changchun 130012, China
| | | | - Huijing Yan
- JenKem Technology Co., Ltd., Tianjin 300450, China
| | - Xuan Zhao
- JenKem Technology Co., Ltd., Tianjin 300450, China
| | - John Paul Fawcett
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Xu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Deqi Cai
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Beijing Institute of Drug Metabolism, Beijing 102209, China
| |
Collapse
|
10
|
Zhang S, Zhang C, Chen J, Deng F, Wu Z, Zhu D, Chen F, Duan Y, Zhao Y, Hou K. Efficacy of polyethylene glycol loxenatide versus insulin glargine on glycemic control in patients with type 2 diabetes: a randomized, open-label, parallel-group trial. Front Pharmacol 2023; 14:1171399. [PMID: 37214446 PMCID: PMC10194654 DOI: 10.3389/fphar.2023.1171399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Objective: This trial aimed to evaluate the glycemic control of polyethylene glycol loxenatide measured with continuous glucose monitoring (CGM) in patients with type 2 diabetes mellitus (T2DM), with the hypothesis that participants given PEG-Loxe would spend more time in time-in-range (TIR) than participants were given insulin glargine after 24 weeks of treatment. Methods: This 24-week, randomized, open-label, parallel-group study was conducted in the Department of Endocrine and Metabolic Diseases, Longhu Hospital, Shantou, China. Participants with T2DM, who were ≥45 years of age, HbA1c of 7.0%-11.0%, and treated at least 3 months with metformin were randomized (1:1) to receive PEG-Loxe or insulin glargine. The primary endpoint was TIR (blood glucose range: 3.9-10.0 mmol/L) during the last 2 weeks of treatment (weeks 22-24). Results: From March 2020 to April 2022, a total of 107 participants with T2DM were screened, of whom 78 were enrolled into the trial (n = 39 per group). At the end of treatment (weeks 22-24), participants given PEG-Loxe had a greater proportion of time in TIR compared with participants given insulin glargine [estimated treatment difference (ETD) of 13.4% (95% CI, 6.8 to 20.0, p < 0.001)]. The tight TIR (3.9-7.8 mmol/L) was greater with PEG-Loxe versus insulin glargine, with an ETD of 15.6% (95% CI, 8.9 to 22.4, p < 0.001). The time above range (TAR) was significantly lower with PEG-Loxe versus insulin glargine [ETD for level 1: -10.5% (95% CI: -14.9 to -6.0), p < 0.001; ETD for level 2: -4.7% (95% CI: -7.9 to -1.5), p = 0.004]. The time below range (TBR) was similar between the two groups. The mean glucose was lower with PEG-Loxe versus insulin glargine, with an ETD of -1.2 mmol/L (95% CI, -1.9 to -0.5, p = 0.001). The SD of CGM glucose levels was 1.88 mmol/L for PEG-Loxe and 2.22 mmol/L for insulin glargine [ETD -0.34 mmol/L (95% CI: -0.55 to -0.12), p = 0.002], with a similar CV between the two groups. Conclusion: The addition of once-weekly GLP-1RA PEG-Loxe to metformin was superior to insulin glargine in improving glycemic control and glycemic variability evaluated by CGM in middle-aged and elderly patients with T2DM.
Collapse
Affiliation(s)
- Shuo Zhang
- School of Public Health, Shantou University, Shantou, China
- Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chuanyan Zhang
- School of Public Health, Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jingxian Chen
- Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feiying Deng
- Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zezhen Wu
- Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yale Duan
- Department of Medical Affairs, Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Shanghai, China
| | - Yue Zhao
- Department of Medical Affairs, Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Shanghai, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China
- Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
11
|
Mohammed GK, Böttger R, Krizsan A, Volke D, Mötzing M, Li S, Knappe D, Hoffmann R. In Vitro Properties and Pharmacokinetics of Temporarily PEGylated Onc72 Prodrugs. Adv Healthc Mater 2023; 12:e2202368. [PMID: 36631971 PMCID: PMC11469207 DOI: 10.1002/adhm.202202368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Indexed: 01/13/2023]
Abstract
The favorable properties of antimicrobial peptides (AMPs) to rapidly kill pathogens are often limited by unfavorable pharmacokinetics due to fast degradation and renal clearance rates. Here, a prodrug strategy linking proline-rich AMP Onc72 to polyethylene glycol (PEGs) with average molecular weights of 5 and 20 kDa via a peptide linker containing a protease cleavage site is tested for the first time in vivo. Onc72 is released from these 5k- and 20k-prodrugs in mouse serum with half-life times (t1/2 ) of 8 and 14 h, respectively. Importantly, PEGylation protects Onc72 from proteolytic degradation providing a prolonged release of Onc72, balancing the degradation of free Onc72, and leading to relatively stable Onc72 concentrations and high antibacterial activities. The prodrugs are not hemolytic on human erythrocytes and show only slight cytotoxic effects on human cell lines indicating promising safety margins. When administered subcutaneously to female CD-1 mice, the prodrugs elimination t1/2 are 66 min and ≈5.5 h, respectively, compared to 43 min of free Onc72. The maximal Onc72 plasma levels are obtained ≈1 and ≈8 h postadministration, respectively. In conclusion, the prodrugs provide extended elimination t1/2 and a constant release of Onc72 in mice, potentially limiting adverse effects and increasing efficacy.
Collapse
Affiliation(s)
- Gubran Khalil Mohammed
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Roland Böttger
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBCV6T 1Z3Canada
| | - Andor Krizsan
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Daniela Volke
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Marina Mötzing
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Shyh‐Dar Li
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBCV6T 1Z3Canada
| | - Daniel Knappe
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
- EnBiotix GmbH04103LeipzigGermany
| | - Ralf Hoffmann
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| |
Collapse
|
12
|
Paulus J, Nachtigall B, Meyer P, Sewald N. RGD Peptidomimetic MMAE-Conjugate Addressing Integrin αVβ3-Expressing Cells with High Targeting Index. Chemistry 2023; 29:e202203476. [PMID: 36454662 DOI: 10.1002/chem.202203476] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Small molecule-drug conjugates (SMDCs) mimicking the RGD sequence (-Arg-Gly-Asp-) with a non-peptide moiety require a pharmacophore-independent attachment site. A library of 36 sulfonamide-modified RGD mimetics with nM to pM affinity for integrin αV β3 was synthesized and analysed via DAD mapping. The best structure of the conjugable RGD mimetic was used and a linker was attached to an aromatic ring by Negishi cross-coupling. The product retained high affinity and selectivity for integrin αV β3 . The conjugable RGD mimetic was then attached to an enzymatically cleavable GKGEVA linker equipped with a self-immolative PABC and the antimitotic drug monomethyl auristatin E (MMAE). The resulting SMDC preferred binding to integrin αV β3 over α5 β1 in a ratio of 1 : 4519 (ELISA) and showed selectivity for αV β3 -positive WM115 cells over αV β3 -negative M21-L cells in the in vitro cell adhesion assay as well as in cell viability assays with a targeting index of 134 (M21-L/WM115).
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Beate Nachtigall
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Peter Meyer
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
13
|
Díaz-Hernández M, Chang-Calderón J, Álvarez MA, Ramírez IR, Saez OLF, Medinilla AL, Castillo CYG, Borges CD, Chang SLL, León K, Carmenate T. PEGylation Strategy for Improving the Pharmacokinetic and Antitumoral Activity of the IL-2 No-alpha Mutein. Curr Pharm Des 2023; 29:3579-3588. [PMID: 38083887 DOI: 10.2174/0113816128279062231204110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In a previous work, an IL-2Rβγ biased mutant derived from human IL-2 and called IL-2noα, was designed and developed. Greater antitumor effects and lower toxicity were observed compared to native IL-2. Nevertheless, mutein has some disadvantages, such as a very short half-life of about 9-12 min, propensity for aggregation, and solubility problems. OBJECTIVE In this study, PEGylation was employed to improve the pharmacokinetic and antitumoral properties of the novel protein. METHODS Pegylated IL-2noα was characterized by polyacrylamide gel electrophoresis, size exclusion chromatography, in vitro cell proliferation and in vivo cell expansion bioassays, and pharmacokinetic and antitumor studies. RESULTS IL-2noα-conjugates with polyethylene glycol (PEG) of 1.2 kDa, 20 kDa, and 40 kDa were obtained by classical acylation. No significant changes in the secondary and tertiary structures of the modified protein were detected. A decrease in biological activity in vitro and a significant improvement in half-life were observed, especially for IL-2noα-PEG20K. PEGylation of IL-2noα with PEG20K did not affect the capacity of the mutant to induce preferential expansion of T effector cells over Treg cells. This pegylated IL-2noα exhibited a higher antimetastatic effect compared to unmodified IL-2noα in the B16F0 experimental metastases model, even when administered at lower doses and less frequently. CONCLUSION PEG20K was selected as the best modification strategy, to improve the blood circulation time of the IL-2noα with a superior antimetastatic effect achieved with lower doses.
Collapse
Affiliation(s)
| | - Janoi Chang-Calderón
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Miguel Angel Álvarez
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Ingrid Ruiz Ramírez
- Department of Quality Control, Center of Molecular Immunology (Cuba), Havana, Cuba
| | | | | | | | - Claudia Diaz Borges
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Sum Lai Lozada Chang
- Department of Product Development, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Kalet León
- Department of Research, Development and Bussines Direction, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Tania Carmenate
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| |
Collapse
|
14
|
Enhanced Therapeutic Effect of Optimized Melittin-dKLA, a Peptide Agent Targeting M2-like Tumor-Associated Macrophages in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms232415751. [PMID: 36555393 PMCID: PMC9779714 DOI: 10.3390/ijms232415751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high possibility of metastasis. M2-like tumor-associated macrophages (TAMs) are the main components of the tumor microenvironment (TME) and play a key role in TNBC metastasis. Therefore, TAMs may be a potential target for reducing TNBC metastasis. Melittin-dKLA, a peptide composed of fused melittin and pro-apoptotic peptide d(KLAKLAK)2 (dKLA), showed a potent therapeutic effect against cancers by depleting TAMs. However, melittin has a strong adverse hemolytic effect. Hence, we attempted to improve the therapeutic potential of melittin-dKLA by reducing toxicity and increasing stability. Nine truncated melittin fragments were synthesized and examined. Of the nine peptides, the melittin-dKLA8-26 showed the best binding properties to M2 macrophages and discriminated M0/M1/M2. All fragments, except melittin, lost their hemolytic effects. To increase the stability of the peptide, melittin-dKLA8-26 fragment was conjugated with PEGylation at the amino terminus and was named PEG-melittin-dKLA8-26. This final drug candidate was assessed in vivo in a murine TNBC model and showed superior effects on tumor growth, survival rates, and lung metastasis compared with the previously used melittin-dKLA. Taken together, our study showed that the novel PEG-melittin-dKLA8-26 possesses potential as a new drug for treating TNBC and TNBC-mediated metastasis by targeting TAMs.
Collapse
|
15
|
Willis R, McDonnell TCR, Pericleous C, Gonzalez EB, Schleh A, Romay-Penabad Z, Giles IP, Rahman A. PEGylated Domain I of Beta-2-Glycoprotein I Inhibits Thrombosis in a Chronic Mouse Model of the Antiphospholipid Syndrome. Front Immunol 2022; 13:842923. [PMID: 35479096 PMCID: PMC9035797 DOI: 10.3389/fimmu.2022.842923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disorder in which autoantibodies cause clinical effects of vascular thrombosis and pregnancy morbidity. The only evidence-based treatments are anticoagulant medications such as warfarin and heparin. These medications have a number of disadvantages, notably risk of haemorrhage. Therefore, there is a pressing need to develop new, more focused treatments that target the actual pathogenic disease process in APS. The pathogenic antibodies exert their effects by interacting with phospholipid-binding proteins, of which the most important is beta-2-glycoprotein I. This protein has five domains, of which the N-terminal Domain I (DI) is the main site for binding of pathogenic autoantibodies. We previously demonstrated bacterial expression of human DI and showed that this product could inhibit the ability of IgG from patients with APS (APS-IgG) to promote thrombosis in a mouse model. Since DI is a small 7kDa protein, its serum half-life would be too short to be therapeutically useful. We therefore used site-specific chemical addition of polyethylene glycol (PEG) to produce a larger variant of DI (PEG-DI) and showed that PEG-DI was equally effective as the non-PEGylated DI in inhibiting thrombosis caused by passive transfer of APS-IgG in mice. In this paper, we have used a mouse model that reflects human APS much more closely than the passive transfer of APS-IgG. In this model, the mice are immunized with human beta-2-glycoprotein I and develop endogenous anti-beta-2-glycoprotein I antibodies. When submitted to a pinch stimulus at the femoral vein, these mice develop clots. Our results show that PEG-DI inhibits production of thromboses in this model and also reduces expression of tissue factor in the aortas of the mice. No toxicity was seen in mice that received PEG-DI. Therefore, these results provide further evidence supporting possible efficacy of PEG-DI as a potential treatment for APS.
Collapse
Affiliation(s)
- Rohan Willis
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Thomas C. R. McDonnell
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Charis Pericleous
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Emilio B. Gonzalez
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Alvaro Schleh
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Zurina Romay-Penabad
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Ian P. Giles
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Anisur Rahman
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
16
|
Hong J, Tang Y, Zhou M, Deng J, Hu H, Xu D. Polyethylene glycol-modified mesoporous polydopamine nanoparticles co-loaded with dimethylcurcumin and indocyanine green for combination therapy of castration-resistant prostate cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Subasic CN, Ardana A, Chan LJ, Huang F, Scoble JA, Butcher NJ, Meagher L, Chiefari J, Kaminskas LM, Williams CC. Poly(HPMA-co-NIPAM) copolymer as an alternative to polyethylene glycol-based pharmacokinetic modulation of therapeutic proteins. Int J Pharm 2021; 608:121075. [PMID: 34481889 DOI: 10.1016/j.ijpharm.2021.121075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
PEGylation is the standard approach for prolonging the plasma exposure of protein therapeutics but has limitations. We explored whether polymers prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) may provide better alternatives to polyethylene glycol (PEG). Four RAFT polymers were synthesised with varying compositions, molar mass (Mn), and structures, including a homopolymer of N-(2-hydroxypropyl)methacrylamide, (pHPMA) and statistical copolymers of HPMA with poly(ethylene glycol methyl ether acrylate) p(HPMA-co-PEGA); HPMA and N-acryloylmorpholine, p(HPMA-co-NAM); and HPMA and N-isopropylacrylamide, p(HPMA-co-NIPAM). The intravenous pharmacokinetics of the polymers were then evaluated in rats. The in vitro activity and in vivo pharmacokinetics of p(HPMA-co-NIPAM)-conjugated trastuzumab Fab' and full length mAb were then evaluated. p(HPMA-co-NIPAM) prolonged plasma exposure more avidly compared to the other p(HPMA) polymers or PEG, irrespective of molecular weight. When conjugated to trastuzumab-Fab', p(HPMA-co-NIPAM) prolonged plasma exposure of the Fab' similar to PEG-Fab'. The generation of anti-PEG IgM in rats 7 days after intravenous and subcutaneous dosing of p(HPMA-co-NIPAM) conjugated trastuzumab mAb was also examined and was shown to exhibit lower immunogenicity than the PEGylated construct. These data suggest that p(HPMA-co-NIPAM) has potential as a promising copolymer for use as an alternative conjugation strategy to PEG, to prolong the plasma exposure of therapeutic proteins.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Aditya Ardana
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Linda J Chan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fei Huang
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Judith A Scoble
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Laurence Meagher
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia; Department of Materials Science and Engineering, Monash University, 20 Research Way, Clayton, Victoria 3168, Australia
| | - John Chiefari
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
18
|
Yi J, Li A, Li X, Park K, Zhou X, Yi F, Xiao Y, Yoon D, Tan T, Ostrow LW, Ma J, Zhou J. MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression. Antioxidants (Basel) 2021; 10:antiox10101522. [PMID: 34679657 PMCID: PMC8532806 DOI: 10.3390/antiox10101522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological events in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.
Collapse
Affiliation(s)
- Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Kiho Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Frank Yi
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Yajuan Xiao
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Dosuk Yoon
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Lyle W. Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
- Correspondence: (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
- Correspondence: (J.M.); (J.Z.)
| |
Collapse
|
19
|
Maikawa CL, d’Aquino AI, Vuong ET, Su B, Zou L, Chen PC, Nguyen LT, Autzen AAA, Mann JL, Webber MJ, Appel EA. Affinity-Directed Dynamics of Host-Guest Motifs for Pharmacokinetic Modulation via Supramolecular PEGylation. Biomacromolecules 2021; 22:3565-3573. [PMID: 34314146 PMCID: PMC8627827 DOI: 10.1021/acs.biomac.1c00648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins are an impactful class of therapeutics but can exhibit suboptimal therapeutic performance, arising from poor control over the timescale of clearance. Covalent PEGylation is one established strategy to extend circulation time but often at the cost of reduced activity and increased immunogenicity. Supramolecular PEGylation may afford similar benefits without necessitating that the protein be permanently modified with a polymer. Here, we show that insulin pharmacokinetics can be modulated by tuning the affinity-directed dynamics of a host-guest motif used to non-covalently endow insulin with a poly(ethylene glycol) (PEG) chain. When administered subcutaneously, supramolecular PEGylation with higher binding affinities extends the time of total insulin exposure systemically. Pharmacokinetic modeling reveals that the extension in the duration of exposure arises specifically from decreased absorption from the subcutaneous depot governed directly by the affinity and dynamics of host-guest exchange. The lifetime of the supramolecular interaction thus dictates the rate of absorption, with negligible impact attributed to association of the PEG upon rapid dilution of the supramolecular complex in circulation. This modular approach to supramolecular PEGylation offers a powerful tool to tune protein pharmacokinetics in response to the needs of different disease applications.
Collapse
Affiliation(s)
- Caitlin L. Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrea I. d’Aquino
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eric T. Vuong
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bo Su
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peyton C. Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Leslee T. Nguyen
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anton A. A. Autzen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Joseph L. Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew J. Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Endocrinology (Pediatrics), Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int J Pharm 2021; 605:120822. [PMID: 34182039 DOI: 10.1016/j.ijpharm.2021.120822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 01/17/2023]
Abstract
Due to the high frequency and mortality of breast cancer, developing efficient targeted drug delivery systems for frightening against this malignancy is among cancer research priorities. The aim of this study was to synthesize a targeted micellar formulation of docetaxel (DTX) using DTX, folic acid (FA) and polyethylene glycol (PEG) conjugates as building blocks. In the current study, two therapeutic polymers consisting of FA-PEG-DTX and PEG-DTX conjugates were synthesized and implemented to form folate-targeted and non-targeted micelles. Dissipative particle dynamics (DPD) method was used to simulate the behavior of the nanoparticle. The anti-cancer drug, DTX was loaded in to the micelles via solvent switching method in order to increase its solubility and stability. The cytotoxicity of the targeted and non-targeted formulations was evaluated against 4T1 and CHO cell lines. In vivo therapeutic efficiency was studied using ectopic tumor model of metastatic breast cancer, 4T1, in Female BALB/c mice. The successful synthesis of therapeutic polymers, FA-PEG-DTX and PEG-DTX were confirmed implementing 1HNMR spectral analysis. The size of DTX-loaded non-targeted and targeted micelles were 176.3 ± 8.3 and 181 ± 10.1 nm with PDI of 0.23 and 0.17, respectively. Loading efficiencies of DTX in non-targeted and targeted micelles were obtained to be 85% and 82%, respectively. In vitro release study at pH = 7.4 and pH = 5.4 showed a controlled and continuous drug release for both formulations, that was faster at pH = 5.4 (100% drug release within 120 h) than at pH = 7.4 (80% drug release within 150 h). The targeted formulation showed a significant higher cytotoxicity against 4T1 breast cancer cells (high expression of folate receptor) within the range of 12.5 to 200 μg/mL in comparison with no-targeted one. However, there was no significant difference between the cytotoxicity of the targeted and non-targeted formulations against CHO cell line as low-expressed cell line. In accordance with in vitro investigation, in vivo studies verified the ideal anti-tumor efficacy of the targeted formulation compared to Taxotere and non-targeted formulation. Based on the obtained data, FA-targeted DTX-loaded nano-micelles significantly increased the therapeutic efficacy of DTX and therefore can be considered as a new potent platform for breast cancer chemotherapy.
Collapse
|
21
|
Ramon J, Gonçalves V, Alvarenga A, Saez V, Nele M, Alves T. Integrated Lab-Scale Process Combining Purification and PEGylation of l-Asparaginase from Zymomonas mobilis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jose Ramon
- Department of Biochemical Engineering, School of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Vinicius Gonçalves
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Aline Alvarenga
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Vivian Saez
- Department of Analytical Chemistry, Chemical Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Marcio Nele
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Tito Alves
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
22
|
Ji L, Du Y, Xu M, Zhou X, Mo Z, Ma J, Li J, Li Y, Lin J, Wang Y, Yang J, Song W, Jin H, Pang S, Liu H, Li P, Liu J, Yao M, Li W, Jiang X, Shen F, Geng H, Zhou H, Ran J, Lei M, Du Y, Ye S, Guan Q, Lv W, Tan H, Chen T, Yang J, Qin G, Li S, Chen L. Efficacy and safety of PEGylated exenatide injection (PB-119) in treatment-naive type 2 diabetes mellitus patients: a Phase II randomised, double-blind, parallel, placebo-controlled study. Diabetologia 2021; 64:1066-1078. [PMID: 33687487 PMCID: PMC8012337 DOI: 10.1007/s00125-021-05392-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide 1 receptor agonists (GLP-1 RA) such as exenatide are used as monotherapy and add-on therapy for maintaining glycaemic control in patients with type 2 diabetes mellitus. The current study investigated the safety and efficacy of once-weekly PB-119, a PEGylated exenatide injection, in treatment-naive patients with type 2 diabetes. METHODS In this Phase II, randomised, placebo-controlled, double-blind study, we randomly assigned treatment-naive Chinese patients with type 2 diabetes in a 1:1:1:1 ratio to receive subcutaneous placebo or one of three subcutaneous doses of PB-119 (75, 150, and 200 μg) for 12 weeks. The primary endpoint was the change in HbA1c from baseline to week 12, and other endpoints were fasting plasma glucose, 2 h postprandial glucose (PPG), and proportion of patients with HbA1c < 53 mmol/mol (<7.0%) and ≤48 mmol/mol (≤6.5%) at 2, 4, 8 and 12 weeks of treatment. Safety was assessed in all patients who received at least one dose of study drug. RESULTS We randomly assigned 251 patients to one of the four treatment groups (n = 62 in placebo and 63 each in PB-119 75 μg, 150 μg and 200 μg groups). At the end of 12 weeks, mean differences in HbA1c in the treatment groups were -7.76 mmol/mol (95% CI -9.23, -4.63, p < 0.001) (-0.72%, 95% CI -1.01, -0.43), -12.89 mmol/mol (95% CI -16.05, -9.72, p < 0.001) (-1.18%, 95% CI -1.47, -0.89) and -11.14 mmol/mol (95% CI -14.19, -7.97, p <0 .001) (-1.02%, 95% CI -1.30, -0.73) in the 75 μg, 150 μg and 200 μg PB-119 groups, respectively, compared with that in the placebo group after adjusting for baseline HbA1c. Similar results were also observed for other efficacy endpoints across different time points. There was no incidence of treatment-emergent serious adverse event, severe hypoglycaemia or death. CONCLUSIONS/INTERPRETATION All tested PB-119 doses had superior efficacy compared with placebo and were safe and well tolerated over 12 weeks in treatment-naive Chinese patients with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT03520972 FUNDING: The study was funded by National Major Scientific and Technological Special Project for Significant New Drugs Development and PegBio.
Collapse
Affiliation(s)
- Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, China.
| | - Ying Du
- PegBio Co., Ltd, Suzhou, China
| | - Min Xu
- PegBio Co., Ltd, Suzhou, China
| | | | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing, China
| | - Jiarui Li
- The Third Endocrinology Department, Cangzhou Central Hospital, Cangzhou, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital, Beijing, China
| | - Jingna Lin
- Department of Endocrinology, Tianjin People's Hospital, Tianjin, China
| | - Yanjun Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Weihong Song
- Department of Endocrinology and Diabetes, Chenzhou No 1 People's Hospital, Chenzhou, China
| | - Hui Jin
- Department of Endocrinology, Zhongda Hospital Southeast University, Nanjing, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Jinan, China
| | - Hui Liu
- Department of Endocrinology, Luoyang Central Hospital, Luoyang, China
| | - Ping Li
- Department of Endocrinology, Yuncheng Central Hospital, Yuncheng, China
| | - Jie Liu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Science and Technology, Henan, China
| | - Minxiu Yao
- Department of Endocrinology, Qingdao Central Hospital, Qingdao, China
| | - Wenhui Li
- Department of Endocrinology, Beijing Union Medical College Hospital, Beijing, China
| | - Xiaohong Jiang
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Feixia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Haifeng Zhou
- Department of Endocrinology, The First People's Hospital, Changde, China
| | - Jianmin Ran
- Department of Endocrinology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Minxiang Lei
- Department of Endocrinology, Xiangya Hospital Central South University, Changsha, China
| | - Yinghong Du
- Department of Endocrinology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital, Jinan, China
| | - Wenshan Lv
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huiwen Tan
- Department of Endocrinology, West China Hospital Sichuan University, Sichuan, China
| | - Tao Chen
- Department of Endocrinology, West China Hospital Sichuan University, Sichuan, China
| | - Jinkui Yang
- Department of Endocrinology, Beijing Tongren Hospital, CMU, Beijing, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Shiyun Li
- Department of Endocrinology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Lei Chen
- Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
23
|
Hoguet V, Lasalle M, Maingot M, Dequirez G, Boulahjar R, Leroux F, Piveteau C, Herledan A, Biela A, Dumont J, Chávez-Talavera O, Belloy L, Duplan I, Hennuyer N, Butruille L, Lestavel S, Sevin E, Culot M, Gosselet F, Staels B, Deprez B, Tailleux A, Charton J. Beyond the Rule of 5: Impact of PEGylation with Various Polymer Sizes on Pharmacokinetic Properties, Structure-Properties Relationships of mPEGylated Small Agonists of TGR5 Receptor. J Med Chem 2021; 64:1593-1610. [PMID: 33470812 DOI: 10.1021/acs.jmedchem.0c01774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PEGylation of therapeutic agents is known to improve the pharmacokinetic behavior of macromolecular drugs and nanoparticles. In this work, we performed the conjugation of polyethylene glycols (220-5000 Da) to a series of non-steroidal small agonists of the bile acids receptor TGR5. A suitable anchoring position on the agonist was identified to retain full agonistic potency with the conjugates. We describe herein an extensive structure-properties relationships study allowing us to finely describe the non-linear effects of the PEG length on the physicochemical as well as the in vitro and in vivo pharmacokinetic properties of these compounds. When appending a PEG of suitable length to the TGR5 pharmacophore, we were able to identify either systemic or gut lumen-restricted TGR5 agonists.
Collapse
Affiliation(s)
- Vanessa Hoguet
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Manuel Lasalle
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Mathieu Maingot
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Geoffroy Dequirez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Rajaa Boulahjar
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Alexandre Biela
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Julie Dumont
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Loïc Belloy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Laura Butruille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Emmanuel Sevin
- Univ. Artois, UR 2465, Blood-brain barrier laboratory (LBHE), F-62300 Lens, France
| | - Maxime Culot
- Univ. Artois, UR 2465, Blood-brain barrier laboratory (LBHE), F-62300 Lens, France
| | - Fabien Gosselet
- Univ. Artois, UR 2465, Blood-brain barrier laboratory (LBHE), F-62300 Lens, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| |
Collapse
|
24
|
Replacement of L-amino acid peptides with D-amino acid peptides mitigates anti-PEG antibody generation against polymer-peptide conjugates in mice. J Control Release 2021; 331:142-153. [PMID: 33444669 DOI: 10.1016/j.jconrel.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
The generation of anti-PEG antibodies in response to PEGylated proteins, peptides, and carriers significantly limits their clinical applicability. IgM antibodies mediate the clearance of these therapeutics upon repeat injection, resulting in toxicity and hindered therapeutic efficacy. We observed this phenomenon in our polymer platform, virus-inspired polymer for endosomal release (VIPER), which employs pH-sensitive triggered display of a lytic peptide, melittin, to facilitate endosomal escape. While the polymer-peptide conjugate was well tolerated after a single injection, we observed unexpected mortality upon repeat injection. Thus, the goal of this work was to enhance the safety and tolerability of VIPER for frequent dosing. Based on previous reports on anti-PEG antibodies and the adjuvant activity of melittin, we characterized the antibody response to polymer, peptide, and polymer-peptide conjugates after repeat-dosing and measured high IgM titers that bound PEG. By substituting the L-amino acid peptide for its D-amino acid enantiomer, we significantly attenuated the anti-PEG antibody generation and toxicity, permitting repeat-injections. We attempted to rescue mice from L-melittin induced toxicity by prophylactic injection of platelet activating factor (PAF) antagonist CV-6209, but observed minimal effect, suggesting that PAF is not the primary mediator of the observed hypersensitivity response. Overall, we demonstrated that the D-amino acid polymer-peptide conjugates, unlike L-amino acid polymer-peptide conjugates, exhibit good tolerability in vivo, even upon repeat administration, and do not elicit the generation of anti-PEG antibodies.
Collapse
|
25
|
Xiao Z, Zheng X, An Y, Wang K, Zhang J, He H, Wu J. Zwitterionic hydrogel for sustained release of growth factors to enhance wound healing. Biomater Sci 2021; 9:882-891. [DOI: 10.1039/d0bm01608j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zwitterionic hydrogels outperform PEG hydrogels in delivering FGF2 for enhanced wound healing.
Collapse
Affiliation(s)
- Zecong Xiao
- School of Pharmaceutical Sciences
- Key Laboratory of Biotechnology and Pharmaceutical Engineering
- Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Xinyao Zheng
- Department of dermatology
- The Nanfang Hospital of Southern Medical University
- Guangzhou
- P. R. China
| | - Ying An
- School of Pharmaceutical Sciences
- Key Laboratory of Biotechnology and Pharmaceutical Engineering
- Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Kangning Wang
- School of Pharmaceutical Sciences
- Key Laboratory of Biotechnology and Pharmaceutical Engineering
- Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Junwen Zhang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Jiang Wu
- School of Pharmaceutical Sciences
- Key Laboratory of Biotechnology and Pharmaceutical Engineering
- Wenzhou Medical University
- Wenzhou
- P. R. China
| |
Collapse
|
26
|
Stereoselective synthesis of PEGylated azoles via 1,3-dipolar cycloaddition. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Wang C, Xiong M, Yang C, Yang D, Zheng J, Fan Y, Wang S, Gai Y, Lan X, Chen H, Zheng L, Huang K. PEGylated and Acylated Elabela Analogues Show Enhanced Receptor Binding, Prolonged Stability, and Remedy of Acute Kidney Injury. J Med Chem 2020; 63:16028-16042. [PMID: 33290073 DOI: 10.1021/acs.jmedchem.0c01913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI), mostly caused by renal ischemia-reperfusion (I/R) injury and nephrotoxins, is characterized by rapid deterioration in renal-functions without effective drug treatment available. Through activation of a G protein-coupled receptor APJ, a furin-cleaved fragment of Elabela (ELA[22-32], E11), an endogenous APJ ligand, protects against renal I/R injury. However, the poor plasma stability and relatively weak APJ-binding ability of E11 limit its application. To address these issues, we rationally designed and synthesized a set of E11 analogues modified by palmitic acid (Pal) or polyethylene glycol; improved plasma stability and APJ-binding capacity of these analogues were achieved. In cultured renal tubular cells, these analogues protected against hypoxia-reperfusion or cisplatin-caused injury. For renal I/R-injured mice, these analogues showed improved reno-protective effects than E11; notably, Pal-E11 showed therapeutic effects at 24 h post I/R injury. These results present ELA analogues as potential therapeutic options in managing AKI.
Collapse
Affiliation(s)
- Chao Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shun Wang
- Department of Blood Transfusion, Wuhan Hospital of Traditional and Western Medicine, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
28
|
Kumar S, Singh D, Kumari P, Malik RS, Poonam, Parang K, Tiwari RK. PEGylation and Cell-Penetrating Peptides: Glimpse into the Past and Prospects in the Future. Curr Top Med Chem 2020; 20:337-348. [PMID: 31994461 DOI: 10.2174/1568026620666200128142603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
Several drug molecules have shown low bioavailability and pharmacokinetic profile due to metabolism by enzymes, excretion by the renal system, or due to other physiochemical properties of drug molecules. These problems have resulted in the loss of efficacy and the gain of side effects associated with drug molecules. PEGylation is one of the strategies to overcome these pharmacokinetic issues and has been successful in the clinic. Cell-penetrating Peptides (CPPs) help to deliver molecules across biological membranes and could be used to deliver cargo selectively to the intracellular site or to the drug target. Hence CPPs could be used to improve the efficacy and selectivity of the drug. However, due to the peptidic nature of CPPs, they have a low pharmacokinetic profile. Using PEGylation and CPPs together as a component of a drug delivery system, the and efficacy of drug molecules could be improved. The other important pharmacokinetic properties such as short half-life, solubility, stability, absorption, metabolism, and elimination could be also improved. Here in this review, we summarized PEGylated CPPs or PEGylation based formulations for CPPs used in a drug delivery system for several biomedical applications until August 2019.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Deenbandhu Chottu Ram University of Science and Technology, Murthal 131039, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohta 124001, India
| | - Pooja Kumari
- Department of Chemistry, Deenbandhu Chottu Ram University of Science and Technology, Murthal 131039, India
| | - Rajender Singh Malik
- Department of Chemistry, Deenbandhu Chottu Ram University of Science and Technology, Murthal 131039, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| |
Collapse
|
29
|
Marques MMB, Santos AS. Pd-Catalyzed Functionalization of Aryl Amines on a Soluble Polymer Support. Synlett 2020. [DOI: 10.1055/s-0040-1707261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractHerein we report the use of a soluble polymer support PEG-2000 on Pd-catalyzed reactions to improve the functionalization of aromatic amines and the synthesis of N-heterocycles. Compatibility of metal-catalyzed reactions for assembling privileged structures such as functionalized anilines were studied. PEG-supported anilines were found to be suitable substrates for Pd-catalyzed N-arylation, Sonogashira and Heck reactions. PEGylated substrates were prepared in yields up to 94%. This work consists on a proof of concept on the use of PEGylated anilines on Pd-catalyzed cross-coupling reactions. Indole core was attained in 82% and 62% yields, via two different routes.
Collapse
|
30
|
Findling O, Sellner J. Second-generation immunotherapeutics in multiple sclerosis: can we discard their precursors? Drug Discov Today 2020; 26:416-428. [PMID: 33248250 DOI: 10.1016/j.drudis.2020.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/18/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022]
Abstract
Options for disease-modifying therapies in multiple sclerosis have increased over the past two decades. Among these innovations are interferon-β, glatiramer acetate, fumaric acid and dihydroorotate dehydrogenase inhibitors, an antibody targeting the migration of immune cells, a compound that traps immune cells in lymphoid organs by sphingosine 1-phosphate receptor (S1PR) modulation and immune-reconstitution therapies. Second-generation drugs such as pegylated interferon-β, advanced CD20 depleting antibodies, more-specific S1PR modulators and new formulations have been developed to achieve higher efficacy while exhibiting fewer side effects. In this review, we address the shortcomings of the parent drugs, present the pros and cons of the second-generation therapies and summarize upcoming developments in the field of immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Oliver Findling
- Department of Neurology, Kantonsspital Aarau, Aarau, Switzerland; Department of Neurology, University Hospital Tulln, Karl-Landsteiner-University, Tulln, Austria
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| |
Collapse
|
31
|
Pfeil J, Simonetti M, Lauer U, Volkmer R, von Thülen B, Durek P, Krähmer R, Leenders F, Hamann A, Hoffmann U. Tolerogenic Immunomodulation by PEGylated Antigenic Peptides. Front Immunol 2020; 11:529035. [PMID: 33162973 PMCID: PMC7581722 DOI: 10.3389/fimmu.2020.529035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/22/2020] [Indexed: 01/29/2023] Open
Abstract
Current treatments for autoimmune disorders rely on non-specific immunomodulatory and global immunosuppressive drugs, which show a variable degree of efficiency and are often accompanied by side effects. In contrast, strategies aiming at inducing antigen-specific tolerance promise an exclusive specificity of the immunomodulation. However, although successful in experimental models, peptide-based tolerogenic "inverse" vaccines have largely failed to show efficacy in clinical trials. Recent studies showed that repetitive T cell epitopes, coupling of peptides to autologous cells, or peptides coupled to nanoparticles can improve the tolerogenic efficacy of peptides, suggesting that size and biophysical properties of antigen constructs affect the induction of tolerance. As these materials bear hurdles with respect to preparation or regulatory aspects, we wondered whether conjugation of peptides to the well-established and clinically proven synthetic material polyethylene glycol (PEG) might also work. We here coupled the T cell epitope OVA323-339 to polyethylene glycols of different size and structure and tested the impact of these nano-sized constructs on regulatory (Treg) and effector T cells in the DO11.10 adoptive transfer mouse model. Systemic vaccination with PEGylated peptides resulted in highly increased frequencies of Foxp3+ Tregs and reduced frequencies of antigen-specific T cells producing pro-inflammatory TNF compared to vaccination with the native peptide. PEGylation was found to extend the bioavailability of the model peptide. Both tolerogenicity and bioavailability were dependent on PEG size and structure. In conclusion, PEGylation of antigenic peptides is an effective and feasible strategy to improve Treg-inducing, peptide-based vaccines with potential use for the treatment of autoimmune diseases, allergies, and transplant rejection.
Collapse
Affiliation(s)
- Jennifer Pfeil
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Mario Simonetti
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Uta Lauer
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Rudolf Volkmer
- Institute for Medical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
| | | | | | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Ute Hoffmann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
32
|
Nookala Krishnamurthy M, Narula G, Gandhi K, Awase A, Pandit R, Raut S, Singh R, Gota V, Banavali SD. Randomized, Parallel Group, Open-Label Bioequivalence Trial of Intramuscular Pegaspargase in Patients With Relapsed Acute Lymphoblastic Leukemia. JCO Glob Oncol 2020; 6:1009-1016. [PMID: 32628582 PMCID: PMC7392740 DOI: 10.1200/go.20.00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Pegylated asparaginase is comparatively safer than native asparaginase in the management of acute lymphoblastic leukemia (ALL). However, the high price and nonavailability in low- and middle-income countries limits its use. In 2014, the first generic of pegaspargase (Hamsyl) was approved in India for use as a second-line treatment option for ALL. The aim of this study was to assess whether the generic pegaspargase (the test product) was bioequivalent with the reference product (Oncaspar). PATIENTS AND METHODS This study was an open-label, parallel-group, comparative pharmacokinetic study in pediatric patients with relapsed ALL receiving their first dose (1,000 IU/m2) of pegaspargase administered intramuscularly. Patients were randomly assigned 1-to-1 to either the test or the reference product. The 2 formulations were considered equivalent if the 90% CIs for area under the plasma asparaginase activity–time curve (AUC0-t) geometric mean test-to-reference ratio was within 75% to 133%. RESULTS Twenty-nine patients (6-18 years of age) were enrolled in this study, of whom 24 completed the study criteria and were considered for safety analysis (5 patients were ineligible for the assessment). Three patients were excluded from analysis, because of presence of anti-asparaginase antibodies, leaving 21 patients who were considered for bioequivalence pharmacokinetics data. The point estimate of AUC0-t for the test-to-reference ratio was 95.05 (90% CI, 75.07% to 120.33%). Maximum plasma concentration, trough concentrations (day 14), half-life, volume of distribution, drug clearance, and changes in the asparagine and glutamine levels were not significantly different between products. Adverse events were comparable in both groups. CONCLUSION Generic and reference pegaspargase had equivalent pharmacokinetics with comparable safety. This could be a safe and cost-effective alternative for patients with ALL, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Manjunath Nookala Krishnamurthy
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India
| | - Gaurav Narula
- Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India.,Tata Memorial Hospital, Mumbai, India
| | - Khushboo Gandhi
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India
| | - Ankita Awase
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India
| | - Ruta Pandit
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India
| | - Sunil Raut
- Gennova Biopharmaceuticals Ltd, Pune, India
| | - Ritu Singh
- Gennova Biopharmaceuticals Ltd, Pune, India
| | - Vikram Gota
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India
| | - Shripad Dinanath Banavali
- Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India.,Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
33
|
Mahara A, Kitai M, Masunaga H, Hikima T, Ohya Y, Sasaki S, Sakurai S, Yamaoka T. Modification of decellularized vascular xenografts with 8-arm polyethylene glycol suppresses macrophage infiltration but maintains graft degradability. J Biomed Mater Res A 2020; 108:2005-2014. [PMID: 32323458 DOI: 10.1002/jbm.a.36960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022]
Abstract
Because acellular vascular xenografts induce an immunological reaction through macrophage infiltration, they are conventionally crosslinked with glutaraldehyde (GA). However, the GA crosslinking reaction inhibits not only the host immune reaction around the graft but also the graft's enzymatic degradability, which is one of the key characteristics of acellular grafts that allow them to be replaced by host tissue. In this study, we used an 8-arm polyethylene glycol (PEG) to successfully suppress macrophage infiltration, without eliminating graft degradation. Decellularized ostrich carotid arteries were modified with GA or N-hydroxysuccinimide-activated 8-arm PEG (8-arm PEG-NHS), which has a molecular weight of 17 kDa. To evaluate the enzymatic degradation in vitro, the graft was immersed in a collagenase solution for 12 hr. The 8-arm PEG-modified graft was degraded to the same extent as the unmodified graft, but the GA-modified graft was not degraded. The graft was transplanted into rat subcutaneous tissue for up to 8 weeks. Although CD68-positive cells accumulated in the unmodified graft, they did not infiltrate into either modified graft. However, the GA-modified grafts calcified, but the 8-arm PEG-modified graft did not calcify after transplantation. These data suggested that 8-arm PEG-NHS is a promising modification agent for biodegradable vascular xenografts, to suppress acute macrophage infiltration only.
Collapse
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shin-machi Suita Osaka, Japan
| | - Marina Kitai
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shin-machi Suita Osaka, Japan.,Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, Japan
| | - Hiroyasu Masunaga
- Registered Institution for Facilities Use Promotion, Japan Synchrotoron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Takaaki Hikima
- Registered Institution for Facilities Use Promotion, Japan Synchrotoron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, Japan
| | - Sono Sasaki
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - Shinichi Sakurai
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shin-machi Suita Osaka, Japan
| |
Collapse
|
34
|
Lindner T, Altmann A, Krämer S, Kleist C, Loktev A, Kratochwil C, Giesel F, Mier W, Marme F, Debus J, Haberkorn U. Design and Development of 99mTc-Labeled FAPI Tracers for SPECT Imaging and 188Re Therapy. J Nucl Med 2020; 61:1507-1513. [PMID: 32169911 DOI: 10.2967/jnumed.119.239731] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Most epithelial tumors recruit fibroblasts and other nonmalignant cells and activate them into cancer-associated fibroblasts. This often leads to overexpression of the membrane serine protease fibroblast-activating protein (FAP). It has already been shown that DOTA-bearing FAP inhibitors (FAPIs) generate high-contrast images with PET/CT scans. Since SPECT is a lower-cost and more widely available alternative to PET, 99mTc-labeled FAPIs represent attractive tracers for imaging applications in a larger number of patients. Furthermore, the chemically homologous nuclide 188Re is available from generators, which allows FAP-targeted endoradiotherapy. Methods: For the preparation of 99mTc-tricarbonyl complexes, a chelator was selected whose carboxylic acids can easily be converted into various derivatives in the finished product, enabling a platform strategy based on the original tracer. The obtained 99mTc complexes were investigated in vitro by binding and competition experiments on FAP-transfected HT-1080 (HT-1080-FAP) or on mouse FAP-expressing (HEK-muFAP) and CD26-expressing (HEKCD26) HEK cells and characterized by planar scintigraphy and organ distribution studies in tumor-bearing mice. Furthermore, a first-in-humans application was done on 2 patients with ovarian and pancreatic cancer, respectively. Results: 99mTc-FAPI-19 showed specific binding to recombinant FAP-expressing cells with high affinity. Unfortunately, liver accumulation, biliary excretion, and no tumor uptake were observed on planar scintigraphy for a HT-1080-FAP-xenotransplanted mouse. To improve the pharmacokinetic properties, hydrophilic amino acids were attached to the chelator moiety of the compound. The resulting 99mTc-labeled FAPI tracers revealed excellent binding properties (≤45% binding; >95% internalization), high affinity (half-maximal inhibitory concentration, 6.4-12.7 nM), and significant tumor uptake (≤5.4% injected dose per gram of tissue) in biodistribution studies. The lead candidate 99mTc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with metastasized ovarian and pancreatic cancer for follow-up to therapy with 90Y-FAPI-46. 99mTc-FAPI-34 accumulated in the tumor lesions, as also shown on PET/CT imaging using 68Ga-FAPI-46. Conclusion: 99mTc-FAPI-34 represents a powerful tracer for diagnostic scintigraphy, especially when PET imaging is not available. Additionally, the chelator used in this compound allows labeling with the therapeutic nuclide 188Re, which is planned for the near future.
Collapse
Affiliation(s)
- Thomas Lindner
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany
| | - Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Krämer
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany
| | - Christian Kleist
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany
| | - Anastasia Loktev
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany
| | - Frederik Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany
| | - Frederik Marme
- Translational Gynecologic Oncology, University Hospital Mannheim, Mannheim, Germany; and
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg Germany .,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
35
|
Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020; 43:1978-1997. [DOI: 10.1002/jssc.201901340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Shiwen Song
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Research Institute of Translational MedicineThe First Bethune Hospital of Jilin University Changchun P. R. China
| | - Dong Sun
- Department of Biopharmacy, College of Life ScienceJilin University Changchun P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education”Yantai University Yantai P. R. China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| |
Collapse
|
36
|
Castro-Hernández A, Cortez-Lemus NA. Thermo/pH Responsive Star and Linear Copolymers Containing a Cholic Acid-Derived Monomer, N-Isopropylacrylamide and Acrylic Acid: Synthesis and Solution Properties. Polymers (Basel) 2019; 11:E1859. [PMID: 31717987 PMCID: PMC6918292 DOI: 10.3390/polym11111859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/03/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023] Open
Abstract
In this work three CTAs trithiocarbonate-type were synthesized-bifunctional (with PEG), trifunctional (with glycerol), and tetrafunctional (PERT)-and used in the controlled polymerization of 2-(acryloyloxy)ethyl cholate (CAE) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The resulting macroCTAs containing a cholic acid-derived polymer were chain extended with N-isopropylacrylamide with or without acrylic acid. The thermosensitive and/or pH properties of these copolymers were studied in PBS solutions. The copolymers synthesized without poly(acrylic acid) (PAAc) were unstable above the transition temperature. Similar behavior was observed for the copolymer solutions containing PAAc (2% in feed) at lower values of pH showing a faster precipitation above the LCST. On the contrary, copolymer solutions containing PAAc showed great stability at higher pH values for a longer time period at 37 °C. Interestingly, the Dh of the aggregates ranged from 18 to 30 nm in all copolymers (with or without PAAc) below the transition temperature, although the topology and the block sequence in the chain were significantly different.
Collapse
Affiliation(s)
| | - Norma Aidé Cortez-Lemus
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, A. P. 1166. Tijuana C.P. 22000, B. C., Mexico;
| |
Collapse
|
37
|
Morozova EA, Kulikova VV, Anufrieva NV, Minakov AN, Chernov AS, Telegin GB, Revtovich SV, Koval VS, Demidkina TV. Methionine γ-lyase in enzyme prodrug therapy: An improvement of pharmacokinetic parameters of the enzyme. Int J Biol Macromol 2019; 140:1277-1283. [DOI: 10.1016/j.ijbiomac.2019.08.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
|
38
|
Filipi M, Jack S. Interferons in the Treatment of Multiple Sclerosis: A Clinical Efficacy, Safety, and Tolerability Update. Int J MS Care 2019; 22:165-172. [PMID: 32863784 DOI: 10.7224/1537-2073.2018-063] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interferon beta (IFNβ) was the first disease-modifying therapy available to treat multiple sclerosis (MS), providing patients with a treatment that resulted in reduced relapse rates and delays in the onset of disability. Four IFNβ drugs are currently approved to treat relapsing forms of MS: subcutaneous (SC) IFNβ-1b, SC IFNβ-1a, intramuscular IFNβ-1a, and, most recently, SC peginterferon beta-1a. Peginterferon beta-1a has an extended half-life and requires less frequent administration than other available treatments (once every 2 weeks vs every other day, 3 times per week, or weekly). Large randomized controlled clinical trials have confirmed the efficacy of interferons for the treatment of relapsing MS. The most frequent adverse events in patients receiving IFNs include injection site reactions and flu-like symptoms. Patient education and mitigation strategies are key to managing these adverse events and supporting therapy adherence. With fewer injections needed, peginterferon beta-1a is associated with less frequent discomfort, which may translate to improved adherence, a major factor in treatment efficacy. Because the available interferon therapies differ in administration route and frequency of injection, switching among these therapies may be a viable option for patients who experience issues with tolerability. Although a variety of disease-modifying therapies are now available to treat relapsing MS, the efficacy and long-term safety profile of interferons make them an important first-line option for treatment.
Collapse
|
39
|
Melnikov MV, Kasatkin DS, Volkov AI, Boyko AN. [The pegylated form of interferon beta in the treatment of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:136-141. [PMID: 31626182 DOI: 10.17116/jnevro2019119081136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interferons-beta (IFN-β) along with glatiramer acetate is one of the most commonly used disease modifying treatment (DMT) of multiple sclerosis (MS) associated with effectiveness and acceptable safety profile. At the same time, therapy with IFN-β has a number of limitations associated with a high frequency of injections and production of neutralizing antibodies. The development of the pegylated form of IFN-β (PEG-IFN-β) is aimed at resolving these issues. This article reviewed the mechanism of action, efficacy, safety and tolerability of PEG-IFN-β in the treatment of MS.
Collapse
Affiliation(s)
- M V Melnikov
- Pirogov Russian National Research Medical University, Moscow, Russia; National Research Center Institute of Immunology of the Federal Medical-Biological Agency, Moscow, Russia; Federal Center of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - D S Kasatkin
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - A I Volkov
- Federal Center of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Federal Center of Cerebrovascular Pathology and Stroke, Moscow, Russia
| |
Collapse
|
40
|
Freches D, Rocks N, Patil HP, Perin F, Van Snick J, Vanbever R, Cataldo D. Preclinical evaluation of topically-administered PEGylated Fab' lung toxicity. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100019. [PMID: 31517284 PMCID: PMC6733299 DOI: 10.1016/j.ijpx.2019.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022]
Abstract
PEGylation is a promising approach to increase the residence time of antibody fragments in the lungs and sustain their therapeutic effects. However, concerns arise as to the potential pulmonary toxicity of antibody fragments conjugated to high molecular weight (HMW) polyethylene glycol (PEG), notably after repeated administrations, and the possibility of PEG accumulation in the lungs. The purpose of this proof-of-concept study is to give insights about the safety of lung administration of a Fab’ anti-IL17A antibody fragment conjugated to two-armed 40 kDa PEG (PEG40). The presence of the PEG40 moiety inside alveolar macrophages remained stable for at least 24 h after intratracheal administration of PEG40-Fab’ to mice. PEG40 was then progressively cleared from alveolar macrophages. Incubation of PEG40 alone with macrophages in vitro did not significantly harm macrophages and did not affect phagocytosis or the production of inflammatory markers. After acute or chronic administration of PEG40-Fab’ to mice, no signs of significant pulmonary toxicity or inflammatory cell accumulation were observed. A vacuolization of alveolar macrophages not associated with any inflammation was noticed when PEG40, PEG40-Fab’, or unPEGylated Fab’ were administered. To conclude this preliminary proof of concept study, acute or repeated pulmonary administrations of PEGylated Fab’ appear safe in rodents.
Collapse
Affiliation(s)
- Danielle Freches
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Natacha Rocks
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I, GIGA-Research, University of Liege, Liege, Belgium
| | - Harshad P Patil
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Fabienne Perin
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I, GIGA-Research, University of Liege, Liege, Belgium
| | - Jacques Van Snick
- Ludwig Cancer Research Ltd, Brussels Branch, Avenue Hippocrate 74, UCLouvain, 7459, B-1200 Brussels, Belgium
| | - Rita Vanbever
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I, GIGA-Research, University of Liege, Liege, Belgium.,Department of Respiratory Diseases, University of Liege and CHU Liege, Liege, Belgium
| |
Collapse
|
41
|
Sanden A, Suhm S, Rüdt M, Hubbuch J. Fourier-transform infrared spectroscopy as a process analytical technology for near real time in-line estimation of the degree of PEGylation in chromatography. J Chromatogr A 2019; 1608:460410. [PMID: 31395360 DOI: 10.1016/j.chroma.2019.460410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 11/17/2022]
Abstract
PEGylation of biological macromolecules is a well-established strategy to increase circulation half-life, decrease renal clearance and improve biocompatibility. PEGylation is a process in which polyethylene glycol (PEG) is covalently attached to a target molecule. The production of PEGylated biopharmaceuticals is usually executed by first producing and purifying the base molecule followed by the PEGylation reaction and purification of the modified molecule. Most PEGylated pharmaceuticals are produced by random PEGylation in batch mode and need to be purified as mainly the mono-PEGylated form is the desired drug product. In this work we propose a method to estimate the degree of PEGylation (DOP) of modified protein eluting from a chromatography column in near real-time. extended multiplicative signal correction (EMSC) is used in conjunction with asymmetric least squares (aaLS) to alleviate the influence of a salt gradient during ion exchange chromatography (IEX) on the spectral data. To convert the raw data obtained from spectral data to the actual DOP additional information obtained from off-line measurements is utilized. Once the signal correction is applied to in-line spectral data the DOP can be estimated without further use of off-line analytics. As the prerequisites for the application of this method are relatively easy to obtain it may also find use to speed up process development.
Collapse
Affiliation(s)
- Adrian Sanden
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany
| | - Susanna Suhm
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany
| | - Matthias Rüdt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany.
| |
Collapse
|
42
|
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14:5541-5554. [PMID: 31410002 PMCID: PMC6650620 DOI: 10.2147/ijn.s200490] [Citation(s) in RCA: 662] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, 47 million people live with dementia globally, and it is estimated to increase more than threefold (~131 million) by 2050. Alzheimer's disease (AD) is one of the major causative factors to induce progressive dementia. AD is a neurodegenerative disease, and its pathogenesis has been attributed to extracellular aggregates of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles made of hyperphosphorylated τ-protein in cortical and limbic areas of the human brain. It is characterized by memory loss and progressive neurocognitive dysfunction. The anomalous processing of APP by β-secretases and γ-secretases leads to production of Aβ40 and Aβ42 monomers, which further oligomerize and aggregate into senile plaques. The disease also intensifies through infectious agents like HIV. Additionally, during disease pathogenesis, the presence of high concentrations of Aβ peptides in central nervous system initiates microglial infiltration. Upon coming into vicinity of Aβ, microglia get activated, endocytose Aβ, and contribute toward their clearance via TREM2 surface receptors, simultaneously triggering innate immunoresponse against the aggregation. In addition to a detailed report on causative factors leading to AD, the present review also discusses the current state of the art in AD therapeutics and diagnostics, including labeling and imaging techniques employed as contrast agents for better visualization and sensing of the plaques. The review also points to an urgent need for nanotechnology as an efficient therapeutic strategy to increase the bioavailability of drugs in the central nervous system.
Collapse
Affiliation(s)
- Sneham Tiwari
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Venkata Atluri
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Ajeet Kaushik
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Adriana Yndart
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| |
Collapse
|
43
|
Rahme K, Dagher N. Chemistry Routes for Copolymer Synthesis Containing PEG for Targeting, Imaging, and Drug Delivery Purposes. Pharmaceutics 2019; 11:pharmaceutics11070327. [PMID: 31336703 PMCID: PMC6680653 DOI: 10.3390/pharmaceutics11070327] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Polyethylene glycol (PEG) is one of the most frequently used polymers for coating nanocarriers to enhance their biocompatibility, hydrophilicity, stability, and biodegradability. PEG is now considered to be among the best biocompatible polymers. It offers sterical hindrance against other nanoparticles and blood components such as opsonin, preventing their macrophage phagocytosis and resulting in a prolonged circulation time in blood stream, consequently a ‘stealth character’ in vivo. Therefore, PEG has a very promising future for the development of current therapeutics and biomedical applications. Moreover, the vast number of molecules that PEG can conjugate with might enhance its ability to have an optimistic perspective for the future. This review will present an update on the chemistry used in the modern conjugation methods for a variety of PEG conjugates, such methods include, but are not limited to, the synthesis of targeting PEG conjugates (i.e., Peptides, Folate, Biotin, Mannose etc.), imaging PEG conjugates (i.e., Coumarin, Near Infrared dyes etc.) and delivery PEG conjugates (i.e., doxorubicin, paclitaxel, and other hydrophobic low molecular weight drugs). Furthermore, the type of nanoparticles carrying those conjugates, along with their biomedical uses, will be briefly discussed.
Collapse
Affiliation(s)
- Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, P.O. Box 72, Zouk Mikael, Lebanon.
| | - Nazih Dagher
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, P.O. Box 72, Zouk Mikael, Lebanon
| |
Collapse
|
44
|
Wang L, Subasic C, Minchin RF, Kaminskas LM. Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. Nanomedicine (Lond) 2019; 14:1605-1621. [PMID: 31166140 DOI: 10.2217/nnm-2018-0478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lymphatic metastasis plays an important role in cancer progression and prognosis. However, conventional small-molecule chemotherapy drugs inefficiently access the lymphatic system, making the effective eradication of lymphatic metastases difficult without dose-limiting toxicity. Various formulation and nanomedicine-based approaches can be used to significantly enhance the trafficking of small-molecule, peptide and protein drugs toward the lymphatic system to enhance drug exposure at sites of lymphatic cancer growth. However, a number of obstacles exist in translating improved lymphatic exposure into improved chemotherapeutic outcomes. This review highlights the opportunities and challenges inherent in employing formulation and nanomedicinal approaches to improve chemotherapeutic drug activity within the lymphatic system and, importantly, at sites of lymphatic cancer metastasis.
Collapse
Affiliation(s)
- Lili Wang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher Subasic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
45
|
Abstract
Introduction: PEGylation is a well-established technology for improving the therapeutic value of drugs by attaching polyethylene glycol (PEG). The first PEGylated enzyme products appeared on the market in the early 1990s; currently, more than 18 PEGylated products have been approved by Food and Drug Administration, which encompass various classes of drug molecules, such as enzymes, interferons, granulocyte colony-stimulating factors, hormones, antibody fragments, coagulation factors, oligonucleotide aptamers, synthetic peptides, and small organic molecules. Areas covered: While PEGylated products mainly comprise biologic drugs, such as recombinant proteins and enzymes, non-biologic drugs have recently emerged as a target for PEGylation. This review focuses on the recent development of PEGylated non-biologic drugs, such as small organic molecules, synthetic peptides, and aptamers. Expert opinion: Several PEGylated versions of anti-cancer drugs, opioid agonists, glucagon-like peptide-1 receptor agonists, and oligonucleotide aptamers are in active development stage, and it is likely that they will have a dramatic impact on the market. Although some safety concerns about PEG in clinical trials have been recently issued, PEGylation is still a commercially attractive proposition as a half-life extension technology for long-acting drug development.
Collapse
Affiliation(s)
- Eun Ji Park
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea.,b D&D Pharmatech , Seongnam , Republic of Korea
| | - Jiyoung Choi
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Kang Choon Lee
- b D&D Pharmatech , Seongnam , Republic of Korea.,c College of Pharmacy , SungKyunKwan University , Suwon , Republic of Korea
| | - Dong Hee Na
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| |
Collapse
|
46
|
Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:324-336. [PMID: 31068982 PMCID: PMC6493319 DOI: 10.1080/14686996.2019.1590126] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 05/02/2023]
Abstract
Polymeric-micelle carrier systems have emerged as a novel drug-carrier system and have been actively studied for anticancer drug targeting. In contrast, toxicological and immunological concerns related to not only polymeric-micelle carrier systems, but also other nanocarrier systems, have received little attention owing to researchers' focus on therapeutic effects. However, in recent clinical contexts, biopharmaceuticals' effects on immune responses have come to light, requiring that researchers substantively explore the potential negative side effects of nanocarrier systems and of therapeutic proteins in order to develop nanocarrier systems suitable for clinical use. The present review describes current insights into both toxicological and immunological issues regarding polymeric-micelle carrier systems. The review focuses on immunogenicity issues of polymeric-micelle carrier systems possessing poly(ethylene glycol) (PEG). We conclude that PEG-related immunogenicity is deeply related to characteristics of a counterpart block of PEG-conjugates, and we propose future directions for addressing this unresolved issue.
Collapse
Affiliation(s)
- Kouichi Shiraishi
- Division of Medical Engineering, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba, Japan
| | - Masayuki Yokoyama
- Division of Medical Engineering, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba, Japan
| |
Collapse
|
47
|
Ochiai H, Yoshida K, Shibutani H, Kanatani A, Nishiuchi Y. Spontaneously Cleavable Glycosylated Linker Capable of Extended Release of Its Conjugated Peptide. Chem Pharm Bull (Tokyo) 2019; 67:236-243. [DOI: 10.1248/cpb.c18-00626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Yin L, Su C, Ren T, Meng X, Shi M, Paul Fawcett J, Zhang M, Hu W, Gu J. MS All strategy for comprehensive quantitative analysis of PEGylated-doxorubicin, PEG and doxorubicin by LC-high resolution q-q-TOF mass spectrometry coupled with all window acquisition of all fragment ion spectra. Analyst 2018; 142:4279-4288. [PMID: 29022970 DOI: 10.1039/c7an00470b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent attachment of polyethylene glycol (PEG) to therapeutic compounds (known as PEGylation) is one of the most promising techniques to improve the biological efficacy of small molecular weight drugs. After administration, PEGylated prodrugs can be metabolized into pharmacologically active compounds so that PEGylated drug, free drug and released PEG are present simultaneously in the body. Understanding the pharmacokinetic behavior of these three compounds is needed to guide the development of pegylated theranostic agents. However, PEGs are polydisperse molecules with a wide range of molecular weights, so that the simultaneous quantitation of PEGs and PEGylated molecules in biological matrices is very challenging. This article reports the application of a data-independent acquisition method (MSAll) based on liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-q-q-TOF-MS) in the positive ion mode to the simultaneous determination of methoxyPEG2000-doxorubicin (mPEG2K-Dox) and its breakdown products in rat blood. Using the MSAll technique, precursor ions of all molecules are generated in q1, fragmented to product ions in q2 (collision cell), and subjected to TOF separation before precursor and product ions are recorded using low and high collision energies (CE) respectively in different experiments for a single sample injection. In this study, dissociation in q2 generated a series of high resolution PEG-related product ions at m/z 89.0611, 133.0869, 177.1102, 221.1366, 265.1622, 309.1878, and 353.2108 corresponding to fragments containing various numbers of ethylene oxide subunits, Dox-related product ions at m/z 321.0838 and 361.0785, and an mPEG2K-Dox specific product ion at m/z 365.0735. Detection of mPEGs and mPEG2K-Dox was based on high resolution extracted ions of mPEG and the specific compound. The method was successfully applied to a pharmacokinetic study of doxorubicin, mPEG2K (methylated polyethylene glycol 2K), and mPEG2K-doxorubicin in rats after a single intravenous injection of mPEG2K-doxorubicin. To the best of our knowledge, this is the first assay that simultaneously determines mPEG, Dox, and mPEG2K-Dox in a biological matrix. We believe the MSAll technique as applied in this study can be potentially extended to the determination of other PEGylated small molecules or polymeric compounds.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fragoso YD, Adoni T, Brooks JBB, Finkelsztejn A, da Gama PD, Grzesiuk AK, Marques VD, Parolin MFK, Sato HK, Varela DL, Vasconcelos CCF. Practical Evidence-Based Recommendations for Patients with Multiple Sclerosis Who Want to Have Children. Neurol Ther 2018; 7:207-232. [PMID: 30167914 PMCID: PMC6283793 DOI: 10.1007/s40120-018-0110-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) management presently aims to reach a state of no (or minimal) evidence of disease activity. The development and commercialization of new drugs has led to a renewed interest in family planning, since patients with MS may face a future with reduced (or no) disease-related neurological disability. The advice of neurologists is often sought by patients who want to have children and need to know more about disease control at conception and during pregnancy and the puerperium. When MS is well controlled, the simple withdrawal of drugs for patients who intend to conceive is not an option. On the other hand, not all treatments presently recommended for MS are considered safe during conception, pregnancy and/or breastfeeding. The objective of the present study was to summarize the practical and evidence-based recommendations for family planning when our patients (women and men) have MS.Funding TEVA Pharmaceutical Brazil.
Collapse
Affiliation(s)
| | - Tarso Adoni
- Hospital Sirio-Libanes de Sao Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Henry K Sato
- Instituto de Neurologia de Curitiba, Curitiba, PR, Brazil
| | | | | |
Collapse
|
50
|
Imada T, Moriya K, Uchiyama M, Inukai N, Hitotsuyanagi M, Masuda A, Suzuki T, Ayukawa S, Tagawa YI, Dohmae N, Kohara M, Yamamura M, Kiga D. A Highly Bioactive Lys-Deficient IFN Leads to a Site-Specific Di-PEGylated IFN with Equivalent Bioactivity to That of Unmodified IFN-α2b. ACS Synth Biol 2018; 7:2537-2546. [PMID: 30277749 DOI: 10.1021/acssynbio.8b00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although conjugation with polyethylene glycol (PEGylation) improves the pharmacokinetics of therapeutic proteins, it drastically decreases their bioactivity. Site-specific PEGylation counters the reduction in bioactivity, but developing PEGylated proteins with equivalent bioactivity to that of their unmodified counterparts remains challenging. This study aimed to generate PEGylated proteins with equivalent bioactivity to that of unmodified counterparts. Using interferon (IFN) as a model protein, a highly bioactive Lys-deficient protein variant generated using our unique directed evolution methods enables the design of a site-specific di-PEGylated protein. Antiviral activity of our di-PEGylated IFN was similar to that of unmodified IFN-α2b. The di-PEGylated IFN exhibited 3.0-fold greater antiviral activity than that of a commercial PEGylated IFN. Moreover, our di-PEGylated IFN showed higher in vitro and in vivo stability than those of unmodified IFN-α2b. Hence, we propose that highly bioactive Lys-deficient proteins solve the limitation of conventional PEGylation with respect to the reduction in bioactivity of PEGylated proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Akiko Masuda
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Shotaro Ayukawa
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| | | | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Michinori Kohara
- Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | | | - Daisuke Kiga
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| |
Collapse
|