1
|
de Miguel L, Ballester P, Egoavil C, Sánchez-Ocaña ML, García-Muñoz AM, Cerdá B, Zafrilla P, Ramos E, Peiró AM. Pharmacogenetics May Prevent Psychotropic Adverse Events in Autism Spectrum Disorder: An Observational Pilot Study. Pharmaceuticals (Basel) 2023; 16:1496. [PMID: 37895967 PMCID: PMC10610471 DOI: 10.3390/ph16101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Up to 73% of individuals with autism spectrum disorder (ASD) and intellectual disability (ID) currently have prescriptions for psychotropic drugs. This is explained by a higher prevalence of medical and psychiatric chronic comorbidities, which favors polypharmacy, increasing the probability of the appearance of adverse events (AEs). These could be a preventable cause of harm to patients with ASD and an unnecessary waste of healthcare resources. OBJECTIVE To study the impact of pharmacogenetic markers on the prevention of AE appearance in a population with ASD and ID. METHODS This is a cross-sectional, observational study (n = 118, 72 participants completed all information) in the ASD population. Sociodemographic and pharmacological data were gathered. The Udvalg for Kliniske Undersøgelser Scale (UKU Scale) was used to identify AEs related to the use of psychotropic medication. Polymorphisms of DOP2, ABCB1, and COMT were genotyped and correlated with the AE to find candidate genes. Furthermore, a review of all medications assessed in a clinical trial for adults with autism was performed to enrich the search for potential pharmacogenetic markers, keeping in mind the usual medications. RESULTS The majority of the study population were men (75%) with multiple comorbidities and polypharmacy, the most frequently prescribed drugs were antipsychotics (69%); 21% of the participants had four or more AEs related to psychotropic drugs. The most common were "Neurological" and" Psychiatric" (both 41%). Statistical analysis results suggested a significant correlation between the neurological symptoms and the DOP2 genotype, given that they are not equally distributed among its allelic variants. The final review considered 19 manuscripts of medications for adults with ASD, and the confirmed genetic markers for those medications were consulted in databases. CONCLUSION A possible correlation between neurologic AEs and polymorphisms of DOP2 was observed; therefore, studying this gene could contribute to the safety of this population's prescriptions. The following studies are underway to maximize statistical power and have a better representation of the population.
Collapse
Affiliation(s)
- Laura de Miguel
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Pura Ballester
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Cecilia Egoavil
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology Unit, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - María Luisa Sánchez-Ocaña
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Ana María García-Muñoz
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Begoña Cerdá
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Pilar Zafrilla
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Enrique Ramos
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Ana M. Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
- Clinical Pharmacology Unit, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| |
Collapse
|
2
|
Siani-Rose M, Cox S, Goldstein B, Abrams D, Taylor M, Kurek I. Cannabis-Responsive Biomarkers: A Pharmacometabolomics-Based Application to Evaluate the Impact of Medical Cannabis Treatment on Children with Autism Spectrum Disorder. Cannabis Cannabinoid Res 2023; 8:126-137. [PMID: 34874191 PMCID: PMC9940806 DOI: 10.1089/can.2021.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions that impact behavior, communication, social interaction, and learning abilities. Treatment of ASD with medical cannabis (MC) shows promising results in reducing the severity of certain behavioral aspects. The goals of this observational study are to demonstrate the potential of metabolic biomarkers to (1) objectively determine the impact on metabolites of MC treatment and (2) suggest the metabolic pathways of children with ASD, who respond to MC treatment. Materials and Methods: The impact of effective physician-supervised MC treatment on children with ASD (n=15), compared with an age-matched group of typically developing (TD; n=9) children, was evaluated in an observational study design. Each child followed a unique MC regimen determined by their specific response over at least 1 year of treatment, which included the following: tetrahydrocannabinol-dominant MC (dosing range 0.05-50 mg per dose) in 40% of children and cannabidiol-dominant MC (dosing range 7.5-200 mg per dose) in 60% of children. Samples from the ASD group collected pre-MC treatment and at time of maximal impact, and from the TD group, were subjected to salivary metabolomics analysis. Ten minutes before saliva sampling, parents filled out behavioral rating surveys. Results: Sixty-five potential cannabis-responsive biomarkers exhibiting a shift toward the TD physiological levels were identified in children with ASD after MC treatment. For each biomarker, the physiological levels were determined based on the values detected in the TD group. A similar qualitative improvement trend in children with ASD treated with MC was also observed in the behavioral surveys. Twenty-three potential Cannabis-Responsive biomarkers exhibiting change toward TD mean were categorized as anti-inflammatory, bioenergy associated, neurotransmitters, amino acids, and endocannabinoids. The changes in the levels of the Cannabis-Responsive biomarkers N-acetylaspartic acid, spermine, and dehydroisoandrosterone 3-sulfate have been previously linked to behavioral symptoms commonly observed in individuals with ASD. Conclusions: Our results suggest Cannabis-Responsive biomarkers shift toward the TD mean after MC treatment and can potentially quantify benefit at the metabolic level. These changes appear to be similar to the trend described in behavior surveys. Larger trials are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
| | - Stephany Cox
- Cannformatics, Inc., San Francisco, California, USA
| | | | | | | | - Itzhak Kurek
- Cannformatics, Inc., San Francisco, California, USA
- Address correspondence to: Itzhak Kurek, PhD Cannformatics, Inc., 3869 Cesar Chavez Street, San Francisco, CA 94131, USA,
| |
Collapse
|
3
|
Raz N, Heller I, Lombardi T, Marino G, Davidson EM, Eyal AM. Terpene-Enriched CBD oil for treating autism-derived symptoms unresponsive to pure CBD: Case report. Front Pharmacol 2022; 13:979403. [PMID: 36386202 PMCID: PMC9649447 DOI: 10.3389/fphar.2022.979403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 09/07/2023] Open
Abstract
Cannabidiol (CBD) rich products are successfully used in some countries for treating symptoms associated with autism spectrum disorder (ASD). Yet, CBD provides insufficient intervention in some individuals, or for some characterizing symptoms of ASD, raising the need for improved compositions. The current study presents a case wherein pure CBD was sufficient for treating ASD during childhood and early adolescence. However, it became insufficient during puberty accompanied by increased hyperactivity, agitation, and frequent severe aggressive behavior. Increasing the CBD dose did not result in significant improvement. Enriching the pure CBD with a carefully selected blend of anxiolytic and calming terpenes, resulted in gradual elimination of those aggressive events. Importantly, this was achieved with a significantly reduced CBD dose, being less than one-half the amount used when treating with pure CBD. This case demonstrates a strong improvement in efficacy due to terpene enrichment, where pure CBD was not sufficient. Combined with terpenes' high safety index and the ease with which they can be incorporated into cannabinoid-containing products, terpene-enriched CBD products may provide a preferred approach for treating ASD and related conditions. The careful selection of terpenes to be added enables maximizing the efficacy and tailoring the composition to particular and changing needs of ASD subjects, e.g., at different times of the day (daytime vs nighttime products).
Collapse
Affiliation(s)
- Noa Raz
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | - Iso Heller
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | | | - Giorgio Marino
- Neurology and Psychiatry Private Clinic, SIPI, Naples–Campania, Italy
| | - Elyad M. Davidson
- Department of Anesthesiology, CCM and Pain Relief, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | |
Collapse
|
4
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
5
|
da Silva EA, Medeiros WMB, Torro N, de Sousa JMM, de Almeida IBCM, da Costa FB, Pontes KM, Nunes ELG, da Rosa MD, de Albuquerque KLGD. Cannabis and cannabinoid use in autism spectrum disorder: a systematic review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2021; 44:e20200149. [PMID: 34043900 PMCID: PMC9887656 DOI: 10.47626/2237-6089-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and social interaction, associated with the presence of restricted and repetitive patterns of behavior, interests, or activities. Cannabis has been used to alleviate symptoms associated with ASD. METHOD We carried out a systematic review of studies that investigated the clinical effects of cannabis and cannabinoid use on ASD, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA checklist). The search was carried out in four databases: MEDLINE/PubMed, Scientific Electronic Library Online (SciELO), Scopus, and Web of Science. No limits were established for language during the selection process. Nine studies were selected and analyzed. RESULTS Some studies showed that cannabis products reduced the number and/or intensity of different symptoms, including hyperactivity, attacks of self-mutilation and anger, sleep problems, anxiety, restlessness, psychomotor agitation, irritability, aggressiveness perseverance, and depression. Moreover, they found an improvement in cognition, sensory sensitivity, attention, social interaction, and language. The most common adverse effects were sleep disorders, restlessness, nervousness and change in appetite. CONCLUSION Cannabis and cannabinoids may have promising effects in the treatment of symptoms related to ASD, and can be used as a therapeutic alternative in the relief of those symptoms. However, randomized, blind, placebo-controlled clinical trials are necessary to clarify findings on the effects of cannabis and its cannabinoids in individuals with ASD. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO), code 164161.
Collapse
Affiliation(s)
- Estácio Amaro da Silva
- Departamento de PsicologiaUniversidade Federal da ParaíbaJoão PessoaPBBrazil Departamento de Psicologia, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Wandersonia Moreira Brito Medeiros
- Departamento de PsicologiaUniversidade Federal da ParaíbaJoão PessoaPBBrazil Departamento de Psicologia, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Nelson Torro
- Departamento de PsicologiaUniversidade Federal da ParaíbaJoão PessoaPBBrazil Departamento de Psicologia, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.
| | | | | | | | | | - Eliane Lima Guerra Nunes
- Sociedade Brasileira de Estudo da Cannabis Sativa Sociedade Brasileira de Estudo da Cannabis Sativa.
| | - Marine Diniz da Rosa
- Departamento de FonoaudiologiaUFPBJoão PessoaPBBrazil Departamento de Fonoaudiologia, UFPB, João Pessoa, PB, Brazil.
| | | |
Collapse
|
6
|
The Multi-Targeting Ligand ST-2223 with Histamine H 3 Receptor and Dopamine D 2/D 3 Receptor Antagonist Properties Mitigates Autism-Like Repetitive Behaviors and Brain Oxidative Stress in Mice. Int J Mol Sci 2021; 22:ijms22041947. [PMID: 33669336 PMCID: PMC7920280 DOI: 10.3390/ijms22041947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by social and communicative impairments, as well as repetitive and restricted behaviors (RRBs). With the limited effectiveness of current pharmacotherapies in treating repetitive behaviors, the present study determined the effects of acute systemic treatment of the novel multi-targeting ligand ST-2223, with incorporated histamine H3 receptor (H3R) and dopamine D2/D3 receptor affinity properties, on ASD-related RRBs in a male Black and Tan BRachyury (BTBR) mouse model of ASD. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly mitigated the increase in marble burying and self-grooming, and improved reduced spontaneous alternation in BTBR mice (all p < 0.05). Similarly, reference drugs memantine (MEM, 5 mg/kg, i.p.) and aripiprazole (ARP, 1 mg/kg, i.p.), reversed abnormally high levels of several RRBs in BTBR (p < 0.05). Moreover, ST-2223 palliated the disturbed anxiety levels observed in an open field test (all p < 0.05), but did not restore the hyperactivity parameters, whereas MEM failed to restore mouse anxiety and hyperactivity. In addition, ST-2223 (5 mg/kg, i.p.) mitigated oxidative stress status by decreasing the elevated levels of malondialdehyde (MDA), and increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in different brain parts of treated BTBR mice (all p < 0.05). These preliminary in vivo findings demonstrate the ameliorative effects of ST-2223 on RRBs in a mouse model of ASD, suggesting its pharmacological prospective to rescue core ASD-related behaviors. Further confirmatory investigations on its effects on various brain neurotransmitters, e.g., dopamine and histamine, in different brain regions are still warranted to corroborate and expand these initial data.
Collapse
|
7
|
Scarante FF, Ribeiro MA, Almeida-Santos AF, Guimarães FS, Campos AC. Glial Cells and Their Contribution to the Mechanisms of Action of Cannabidiol in Neuropsychiatric Disorders. Front Pharmacol 2021; 11:618065. [PMID: 33613284 PMCID: PMC7890128 DOI: 10.3389/fphar.2020.618065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid with a broad-range of therapeutic potential in several conditions, including neurological (epilepsy, neurodegenerative diseases, traumatic and ischemic brain injuries) and psychiatric disorders (schizophrenia, addiction, major depressive disorder, and anxiety). The pharmacological mechanisms responsible for these effects are still unclear, and more than 60 potential molecular targets have been described. Regarding neuropsychiatric disorders, most studies investigating these mechanisms have focused on neuronal cells. However, glial cells (astrocytes, oligodendrocytes, microglia) also play a crucial role in keeping the homeostasis of the central nervous system. Changes in glial functions have been associated with neuropathological conditions, including those for which CBD is proposed to be useful. Mostly in vitro studies have indicated that CBD modulate the activation of proinflammatory pathways, energy metabolism, calcium homeostasis, and the proliferative rate of glial cells. Likewise, some of the molecular targets proposed for CBD actions are f expressed in glial cells, including pharmacological receptors such as CB1, CB2, PPAR-γ, and 5-HT1A. In the present review, we discuss the currently available evidence suggesting that part of the CBD effects are mediated by interference with glial cell function. We also propose additional studies that need to be performed to unveil the contribution of glial cells to CBD effects in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Franciele F. Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa A. Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana F. Almeida-Santos
- Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C. Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Yu Y, Chaulagain A, Pedersen SA, Lydersen S, Leventhal BL, Szatmari P, Aleksic B, Ozaki N, Skokauskas N. Pharmacotherapy of restricted/repetitive behavior in autism spectrum disorder:a systematic review and meta-analysis. BMC Psychiatry 2020; 20:121. [PMID: 32164636 PMCID: PMC7068977 DOI: 10.1186/s12888-020-2477-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This paper is a systematic review and meta-analysis of the efficacy of available medications for the treatment of restricted/repetitive behavior (RRBs) in Autism Spectrum Disorder (ASD). METHOD We searched MEDLINE, Embase, PsycINFO, The Cochrane Library (Cochrane Database of Systematic Reviews (CDRS), the Cochrane Central Register of Controlled Trials (CENTRAL), database of Abstracts of Reviews of Effects (DARE)), Scopus, Epistimonikos, Clinicaltrials.gov, and included all randomized controlled trials published after 1993 that were directed at RRBs in patients with ASD of all ages. We extracted the relevant data from the published studies with a predefined data extraction form and assessed the risk of bias. The primary outcomes were change in restricted/repetitive behavior. We performed a meta-analysis using the random effect model and included studies with given mean and standard deviation. This study is registered with PROSPERO number CRD42018092660). RESULTS We identified 14 randomized controlled trials that met initial inclusion criteria. After closer inspection, nine trials - involving 552 patients in total - were included in the final analysis. The meta-analysis found no significant difference between medications (including fluvoxamine, risperidone, fluoxetine, citalopram, oxytocin, N-Acetylcysteine, buspirone) and placebo in the treatment of RRBs in ASD (P = 0.20). Similarly, the sub-group meta-analysis also showed no significant difference between Selective Serotonin Reuptake Inhibitor (SSRIs) and placebo in the treatment of RRBs in ASD (P = 0.68). There was no evidence of publication bias. CONCLUSION This meta-analysis finds little support for the routine use of medications to treat restricted/repetitive behaviors in Autism Spectrum Disorder. Further research of large, balanced trials with precise assessment tools and long-term follow-up are needed. TRIAL REGISTRATION The study protocol is registered in PROSPERO (Reference number: CRD42018092660).
Collapse
Affiliation(s)
- Yanjie Yu
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Ashmita Chaulagain
- Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sindre Andre Pedersen
- Library Section for Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Lydersen
- Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bennett L. Leventhal
- Division of Child & Adolescent Psychiatry, University of California, San Francisco, San Francisco, USA
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, Ontario Canada
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Norbert Skokauskas
- Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Hong MP, Erickson CA. Investigational drugs in early-stage clinical trials for autism spectrum disorder. Expert Opin Investig Drugs 2019; 28:709-718. [PMID: 31352835 DOI: 10.1080/13543784.2019.1649656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Pharmacologic interventions in Autism Spectrum Disorder (ASD) have historically focused on symptom-based approaches. However, a treatment for the core social deficits has remained unidentified. While a definitive theory for the cause of ASD is not yet known, recent advances in our understanding of ASD pathophysiology have opened the door for research on new pharmaceutical methods to target core symptomology. Areas covered: Herein, we review the novel pharmacologic therapies undergoing early-stage clinical trials for the treatment of the social symptoms associated with ASD. Specifically, these strategies center on altering neurologic excitatory and inhibitory imbalance, neuropeptide abnormalities, immunologic dysfunction, and biochemical deficiencies in ASD. Expert opinion: Utilizing the growing field of knowledge regarding the pathological mechanisms and altered neurobiology of individuals with ASD has led to the development of many innovative pharmaceutical interventions. Clinical trials for neurobiologic and immunologic targets show promise in impacting the social behavior and processing deficits in ASD but need evaluation in larger clinical trials and continued biomarker development to more effectively and consistently assess pharmacologic effects. Additionally, evaluating patient-specific drug responsivity and integrating behavioral intervention in conjunction with pharmacologic treatment is crucial to developing a successful approach to ASD treatment.
Collapse
Affiliation(s)
- Michael P Hong
- a Division of Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b College of Medicine, University of Cincinnati , Cincinnati , Oh , USA
| | - Craig A Erickson
- a Division of Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b College of Medicine, University of Cincinnati , Cincinnati , Oh , USA
| |
Collapse
|
10
|
Kirsten TB, Casarin RC, Bernardi MM, Felicio LF. Pioglitazone abolishes cognition impairments as well as BDNF and neurotensin disturbances in a rat model of autism. Biol Open 2019; 8:bio.041327. [PMID: 31036753 PMCID: PMC6550086 DOI: 10.1242/bio.041327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown that exposure of rats to lipopolysaccharide (LPS) during gestation induces autistic-like behaviors in juvenile offspring and pioglitazone post treatment corrects social and communication deficits. The first objective of the present study was to evaluate the cognition of the rats, because this is also a behavioral sphere committed in autism. Second, biomarkers related to pioglitazone pathways and autism were studied to try to understand their mechanisms. We used our rat model of autism and pioglitazone was administered daily to these young offspring. T-maze spontaneous alternations tests, plasma levels of brain-derived neurotrophic factor (BDNF), beta-endorphin, neurotensin, oxytocin, and substance P were all studied. Exposure of rats to LPS during gestation induced cognitive deficits in the young offspring, elevated BDNF levels and decreased neurotensin levels. Daily postnatal pioglitazone treatment abolished cognition impairments as well as BDNF and neurotensin disturbances. Together with our previous studies, we suggest pioglitazone as a candidate for the treatment of autism, because it improved the responses of the three most typical autistic-like behaviors. BDNF and neurotensin also appeared to be related to the autistic-like behaviors and should be considered for therapeutic purposes. Summary: Exposure of rats to lipopolysaccharide during gestation induced autistic-like behaviors in the juvenile offspring. Daily postnatal pioglitazone treatment abolished cognition impairments as well as brain-derived neurotrophic factor and neurotensin disturbances.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil .,Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil
| | - Renato C Casarin
- Graduate Program of Dentistry, Paulista University, São Paulo 04026-002, Brazil
| | - Maria M Bernardi
- Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil.,Graduate Program of Dentistry, Paulista University, São Paulo 04026-002, Brazil
| | - Luciano F Felicio
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
11
|
Barchel D, Stolar O, De-Haan T, Ziv-Baran T, Saban N, Fuchs DO, Koren G, Berkovitch M. Oral Cannabidiol Use in Children With Autism Spectrum Disorder to Treat Related Symptoms and Co-morbidities. Front Pharmacol 2019; 9:1521. [PMID: 30687090 PMCID: PMC6333745 DOI: 10.3389/fphar.2018.01521] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/12/2018] [Indexed: 02/04/2023] Open
Abstract
Objective: Children with autism spectrum disorder (ASD) commonly exhibit comorbid symptoms such as aggression, hyperactivity and anxiety. Several studies are being conducted worldwide on cannabidiol use in ASD; however, these studies are still ongoing, and data on the effects of its use is very limited. In this study we aimed to report the experience of parents who administer, under supervision, oral cannabinoids to their children with ASD. Methods: After obtaining a license from the Israeli Ministry of Health, parents of children with ASD were instructed by a nurse practitioner how to administer oral drops of cannabidiol oil. Information on comorbid symptoms and safety was prospectively recorded biweekly during follow-up interviews. An independent group of specialists analyzed these data for changes in ASD symptoms and drug safety. Results: 53 children at a median age of 11 (4–22) year received cannabidiol for a median duration of 66 days (30–588). Self-injury and rage attacks (n = 34) improved in 67.6% and worsened in 8.8%. Hyperactivity symptoms (n = 38) improved in 68.4%, did not change in 28.9% and worsened in 2.6%. Sleep problems (n = 21) improved in 71.4% and worsened in 4.7%. Anxiety (n = 17) improved in 47.1% and worsened in 23.5%. Adverse effects, mostly somnolence and change in appetite were mild. Conclusion: Parents’ reports suggest that cannabidiol may improve ASD comorbidity symptoms; however, the long-term effects should be evaluated in large scale studies.
Collapse
Affiliation(s)
- Dana Barchel
- Clinical Pharmacology and Toxicology Unit, Assaf Harofeh Medical Center, Tel Aviv, Israel
| | - Orit Stolar
- Autistic Spectrum Disorder Clinic, Assaf Harofeh Medical Center, Tel Aviv, Israel
| | - Tal De-Haan
- Clinical Pharmacology and Toxicology Unit, Assaf Harofeh Medical Center, Tel Aviv, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Danny Or Fuchs
- Clinical Pharmacology and Toxicology Unit, Assaf Harofeh Medical Center, Tel Aviv, Israel
| | - Gideon Koren
- Clinical Pharmacology and Toxicology Unit, Assaf Harofeh Medical Center, Tel Aviv, Israel.,Maccabi Institute for Health Services Research, Tel Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Assaf Harofeh Medical Center, Tel Aviv, Israel
| |
Collapse
|
12
|
Zhao Y, Zhou C, Yu H, Zhang W, Cheng F, Yu H, Zhou D, Li B, Liu J, Dai J, Zhong J, Chen M, Huang T, Pan R, Duan S, Hu Z. Association between the methylation of six apoptosis‑associated genes with autism spectrum disorder. Mol Med Rep 2018; 18:4629-4634. [PMID: 30221723 DOI: 10.3892/mmr.2018.9473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/17/2018] [Indexed: 11/05/2022] Open
Abstract
Excessive apoptosis hinders the process of brain maturation and is regarded as one of the principal risk factors for the development of autism spectrum disorder (ASD). The aim of the present study was to investigate the association between the methylation of six apoptosis‑associated genes [transforming growth factor β 1 (TGFB1), BCL2 associated X, apoptosis regulator, insulin like growth factor binding protein 3, protein kinase C β 1, presenilin 2 and C‑C motif chemokine ligand 2] and ASD. Using quantitative methylation‑specific polymerase chain reaction technology, DNA methylation levels were detected in 42 autistic and 26 control subjects. The logistic regression analysis results demonstrated that of the six genes, only TGFB1 was significantly hypomethylated in peripheral blood samples from children with autism compared with control samples (mean percentage of methylated reference, 0.011% vs. 0.019%; age‑adjusted P=0.028). In addition, TGFB1 methylation was identified to be positively associated with the interaction ability score from the Autism Behavior Checklist (r=0.452; P=0.035). These data suggested that decreased TGFB1 methylation may contribute to the development of ASD.
Collapse
Affiliation(s)
- Yuanzhi Zhao
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wenwu Zhang
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Fang Cheng
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Haihang Yu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Dongsheng Zhou
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jing Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Min Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhenyu Hu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
13
|
Kirsten TB, Casarin RC, Bernardi MM, Felicio LF. Pioglitazone abolishes autistic-like behaviors via the IL-6 pathway. PLoS One 2018; 13:e0197060. [PMID: 29791472 PMCID: PMC5965820 DOI: 10.1371/journal.pone.0197060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023] Open
Abstract
Autism is characterized by social deficits, communication abnormalities, and repetitive behaviors. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infections by gram-negative bacteria, induces autistic-like behaviors. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism. We selected pioglitazone to block or ease the impairments induced by LPS because although this drug was designed as an anti-diabetic drug (it has an insulin effect), it also exerts anti-inflammatory effects. Juvenile offspring were treated daily with pioglitazone, and the main behaviors related to autism, namely, socialization (play behavior) and communication (50-kHz ultrasonic vocalizations), were studied. Biomarkers linked to autism and/or pioglitazone were also studied to attempt to understand the mechanisms involved, namely, IL-6, TNF-alpha, MCP-1, insulin, and leptin. Prenatal LPS exposure induced social deficits and communicational abnormalities in juvenile rat offspring as well as elevated plasma IL-6 levels. Daily postnatal pioglitazone treatment blocked the impairments found in terms of the time spent on social interaction, the number of vocalizations (i.e., autistic-like behaviors) and the elevated plasma IL-6 levels. Thus, pioglitazone appears to be a relevant candidate for the treatment of autism. The present findings may contribute to a better understanding and treatment of autism and associated diseases.
Collapse
Affiliation(s)
- Thiago Berti Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
- * E-mail:
| | - Renato C. Casarin
- Graduate Program of Dentistry, Paulista University, São Paulo, Brazil
| | - Maria M. Bernardi
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
- Graduate Program of Dentistry, Paulista University, São Paulo, Brazil
| | - Luciano F. Felicio
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J 2018; 41:63-87. [PMID: 29866603 PMCID: PMC6138769 DOI: 10.1016/j.bj.2018.03.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Current research efforts on neurological diseases are focused on identifying novel disease biomarkers to aid in diagnosis, provide accurate prognostic information and monitor disease progression. With advances in detection and quantification methods in genomics, proteomics and metabolomics, saliva has emerged as a good source of samples for detection of disease biomarkers. Obtaining a sample of saliva offers multiple advantages over the currently tested biological fluids as it is a non-invasive, painless and simple procedure that does not require expert training or harbour undesirable side effects for the patients. Here, we review the existing literature on salivary biomarkers and examine their validity in diagnosing and monitoring neurodegenerative and neuropsychiatric disorders such as autism and Alzheimer's, Parkinson's and Huntington's disease. Based on the available research, amyloid beta peptide, tau protein, lactoferrin, alpha-synuclein, DJ-1 protein, chromogranin A, huntingtin protein, DNA methylation disruptions, and micro-RNA profiles provide display a reliable degree of consistency and validity as disease biomarkers.
Collapse
Affiliation(s)
- Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Haraty
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ziad Salame
- Research Department, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA.
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
15
|
Xu X, Wu D, Hou S, Zhu J, Li J, Tang J. Prenatal exposure to TAK242 affects the childhood autism in offspring in animal models of autism spectrum disorder. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1016-1020. [PMID: 29085596 PMCID: PMC5651454 DOI: 10.22038/ijbms.2017.9270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To evaluate whether prenatal exposure to TAK242 affects childhood autism in the offspring in animal models of autism spectrum disorder (ASD). MATERIALS AND METHODS The pregnant rats were pseudo-randomly divided into three groups, the ASD model group, the TAK242 treatment group, and the control group. The ASD model was constructed by injecting IP with LPS. The blood samples from 1-month-old offspring were collected for cytokine evaluation and the social interaction test was used in the offspring of ASD rats. Rats were killed and the hippocampus, cerebral cortex, and cerebellum were used for the immunohistochemical study. RESULTS As compared to the control, the levels of IFN-γ, IL-1β, IL-2, and IL-6 were significantly increased (P<0.05), and the levels of IL-4, IL-10, and TGF-β were significantly decreased (P <0.05) in the offspring of ASD rats; whereas those cytokines were significantly reversed after prenatal exposure to TAK242 (P<0.05). The hesitation time and none-social interaction time were significantly increased as compared to the control (P<0.05); whereas they were both decreased after prenatal exposure to TAK242 (P<0.05). This was contrary to the social interaction time (P<0.05). The expression of GFAP and IBA1 in the cortex, hippocampus, and cerebellum were stronger in the LPS group as compared to control group, and this effect was reversed after prenatal exposure to TAK242. CONCLUSION Prenatal exposure to TAK242 affects serum cytokines levels and the social interaction time in rat offspring in animal models of ASD.
Collapse
Affiliation(s)
- Xiaoyan Xu
- The Children's Neurorehabilitation Center, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, China
| | - De Wu
- The Children's Neurorehabilitation Center, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, China
| | - Shu Hou
- Department of Pediatrics, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, China
| | - Jing Zhu
- The Children's Neurorehabilitation Center, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, China
| | - Jing Li
- The Children's Neurorehabilitation Center, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiulai Tang
- The Children's Neurorehabilitation Center, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
16
|
McClellan L, Dominick KC, Pedapati EV, Wink LK, Erickson CA. Lurasidone for the treatment of irritability and anger in autism spectrum disorders. Expert Opin Investig Drugs 2017; 26:985-989. [DOI: 10.1080/13543784.2017.1353600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lynn McClellan
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kelli C. Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Logan K. Wink
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
17
|
Evidence of Mitochondrial Dysfunction in Autism: Biochemical Links, Genetic-Based Associations, and Non-Energy-Related Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28630658 PMCID: PMC5467355 DOI: 10.1155/2017/4314025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD), the fastest growing developmental disability in the United States, represents a group of neurodevelopmental disorders characterized by impaired social interaction and communication as well as restricted and repetitive behavior. The underlying cause of autism is unknown and therapy is currently limited to targeting behavioral abnormalities. Emerging studies suggest a link between mitochondrial dysfunction and ASD. Here, we review the evidence demonstrating this potential connection. We focus specifically on biochemical links, genetic-based associations, non-energy related mechanisms, and novel therapeutic strategies.
Collapse
|
18
|
Deal LS, DeMuro C, DiBenedetti D, Lewis S. Development of the Observable Behaviors of Autism Spectrum Disorder Scale. Ther Innov Regul Sci 2017; 51:372-379. [PMID: 30231702 DOI: 10.1177/2168479016680258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The objective of this research was to develop a caregiver-reported clinical outcome assessment (COA) measure designed to assess observable behaviors of children, ages 4 to 12 years, with autism spectrum disorder (ASD) for supporting labeling claims of treatment benefit. METHODS Development of the measure included a review of the literature and existing instruments, conceptual disease model development, concept elicitation focus groups, item generation, and cognitive debriefing interviews. RESULTS Predominant characteristics and behaviors of ASD identified by the literature and instrument reviews included sociability, communication deficits, stereotypy, inattention and hyperactivity, irritability, anxiety, and familial impact. In each of the 10 instruments reviewed, evidence of content validity was limited or nonexistent. Predominant themes arose across 8 major categories during concept elicitation. A total of 27 concepts were identified through focus group feedback and formed the basis for item development and cognitive pre-testing. Revisions to the items yielded a final version of a daily diary containing 21 items assessing observable behaviors and characteristics of ASD in children 4 to 12 years old. CONCLUSIONS The Observable Behaviors of ASD Scale (OBAS) was developed as a self-administered, caregiver-reported measure containing 8 predominant themes. Items are scored on one of two 5-point ordinal categorical response scales, and the recall period for each item is "the past 24 hours." This research provides evidence that the OBAS is content valid for assessing treatment benefit, which was found to be lacking in other instruments.
Collapse
Affiliation(s)
| | - Carla DeMuro
- 2 RTI Health Solutions, Research Triangle Park, NC, USA
| | | | - Sandy Lewis
- 2 RTI Health Solutions, Research Triangle Park, NC, USA
| |
Collapse
|
19
|
Lipopolysaccharide Exposure Induces Maternal Hypozincemia, and Prenatal Zinc Treatment Prevents Autistic-Like Behaviors and Disturbances in the Striatal Dopaminergic and mTOR Systems of Offspring. PLoS One 2015. [PMID: 26218250 PMCID: PMC4517817 DOI: 10.1371/journal.pone.0134565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autism is characterized by social deficits, repetitive behaviors, and cognitive inflexibility. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces autistic-like behaviors. To understand the causes of autistic-like behaviors, we evaluated maternal serum metal concentrations, which are involved in intrauterine development and infection/inflammation. We identified reduced maternal levels of zinc, magnesium, selenium and manganese after LPS exposure. Because LPS induced maternal hypozincemia, we treated dams with zinc in an attempt to prevent or ease the impairments in the offspring. We evaluated the social and cognitive autistic-like behaviors and brain tissues of the offspring to identify the central mechanism that triggers the development of autism. Prenatal LPS exposure impaired play behaviors and T-maze spontaneous alternations, i.e., it induced autistic-like behaviors. Prenatal LPS also decreased tyrosine hydroxylase levels and increased the levels of mammalian target of rapamycin (mTOR) in the striatum. Thus, striatal dopaminergic impairments may be related to autism. Moreover, excessive signaling through the mTOR pathway has been considered a biomarker of autism, corroborating our rat model of autism. Prenatal zinc treatment prevented these autistic-like behaviors and striatal dopaminergic and mTOR disturbances in the offspring induced by LPS exposure. The present findings revealed a possible relation between maternal hypozincemia during gestation and the onset of autism. Furthermore, prenatal zinc administration appears to have a beneficial effect on the prevention of autism.
Collapse
|
20
|
Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure. Life Sci 2015; 130:12-7. [DOI: 10.1016/j.lfs.2015.02.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
|
21
|
Spooren W, Lindemann L, Ghosh A, Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 2012; 33:669-84. [PMID: 23084458 DOI: 10.1016/j.tips.2012.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/04/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
Autism and autism spectrum disorders (ASDs) affect millions of individuals worldwide. Despite increased autism diagnoses over the past 30 years, therapeutic intervention is often 'trial and error'. This approach has identified some beneficial agents, but complex heterogeneous disorders require a more personalized treatment regimen. Many ASD risk factors are genetic, implicating impaired synaptic development and function. Monogenetic disorders (e.g., fragile X syndrome, Rett syndrome, and neurofibromatosis) that have phenotypic overlap with autism provide insights into ASD pathology through the identification novel drug targets (e.g., glutamatergic receptors). Encouragingly, some of these novel drug targets provide symptomatic improvement, even in patients who have lived with ASDs for protracted periods of time. Consequently, a targeted drug discovery approach is expected to deliver improved agents for the treatment and management of ASDs. Here, we review the opportunities and challenges in drug development for autism and provide insight into the neurobiology of ASDs.
Collapse
Affiliation(s)
- Will Spooren
- CNS Research and Early Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | | | | | |
Collapse
|
22
|
Davis NO, Kollins SH. Treatment for co-occurring attention deficit/hyperactivity disorder and autism spectrum disorder. Neurotherapeutics 2012; 9:518-30. [PMID: 22678458 PMCID: PMC3441928 DOI: 10.1007/s13311-012-0126-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Interest in the co-occurrence of attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) has grown in the last decade. Research on clinical populations supports the frequent co-occurrence of ADHD traits (e.g., hyperactivity) in individuals with ASD and ASD traits (e.g., social communication deficits) in individuals with ADHD. Similar trends in co-occurring traits have been observed in population-based samples, as well as family and genetic studies of affected individuals. Despite increased interest in co-occurring ADHD and ASD, relatively little research has been devoted to treatment considerations. The vast majority of intervention research has examined pharmacological treatment using traditional ADHD medications. Relatively few psychosocial interventions have directly addressed co-occurring symptoms. Treatment development will benefit from enhanced understanding of the phenomenon of co-occurring ADHD and ASD. Key topics for future research include examining developmental trajectories of co-occurring disorders, comorbid psychiatric conditions, deficits in social skills, and the nature of executive functioning impairment in individuals with co-occurring ADHD and ASD. In the current review, research in these areas is reviewed along with recommendation for future study. Given that clinicians are routinely observing and treating individuals with co-occurring symptoms, further research will yield needed information to inform intervention development and maximize benefits for affected individuals.
Collapse
Affiliation(s)
- Naomi Ornstein Davis
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Rd., Pavilion East, Suite 300, Durham, NC 27705, USA.
| | | |
Collapse
|
23
|
Memantine for comorbid obsessive-compulsive disorder and Asperger disorder suggests a link in glutamatergic dysregulation. J Clin Psychopharmacol 2011; 31:673-5. [PMID: 21881459 DOI: 10.1097/jcp.0b013e31822c92d4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Preface: Pediatric and adolescent psychopharmacology: the past, the present, and the future. Pediatr Clin North Am 2011; 58:xv-xxiv. [PMID: 21281843 DOI: 10.1016/j.pcl.2010.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|