1
|
Castro J, Maddern J, Chow CY, Tran P, Vetter I, King GF, Brierley SM. The voltage-gated sodium channel Na V1.7 underlies endometriosis-associated chronic pelvic pain. J Neurochem 2024; 168:3760-3776. [PMID: 36840383 DOI: 10.1111/jnc.15795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Chronic pelvic pain (CPP) is the primary symptom of endometriosis patients, but adequate treatments are lacking. Modulation of ion channels expressed by sensory nerves innervating the viscera has shown promise for the treatment of irritable bowel syndrome and overactive bladder. However, similar approaches for endometriosis-associated CPP remain underdeveloped. Here, we examined the role of the voltage-gated sodium (NaV) channel NaV1.7 in (i) the sensitivity of vagina-innervating sensory afferents and investigated whether (ii) NaV1.7 inhibition reduces nociceptive signals from the vagina and (iii) ameliorates endometriosis-associated CPP. The mechanical responsiveness of vagina-innervating sensory afferents was assessed with ex vivo single-unit recording preparations. Pain evoked by vaginal distension (VD) was quantified by the visceromotor response (VMR) in vivo. In control mice, pharmacological activation of NaV1.7 with OD1 sensitised vagina-innervating pelvic afferents to mechanical stimuli. Using a syngeneic mouse model of endometriosis, we established that endometriosis sensitised vagina-innervating pelvic afferents to mechanical stimuli. The highly selective NaV1.7 inhibitor Tsp1a revealed that this afferent hypersensitivity occurred in a NaV1.7-dependent manner. Moreover, in vivo intra-vaginal treatment with Tsp1a reduced the exaggerated VMRs to VD which is characteristic of mice with endometriosis. Conversely, Tsp1a did not alter ex vivo afferent mechanosensitivity nor in vivo VMRs to VD in Sham control mice. Collectively, these findings suggest that NaV1.7 plays a crucial role in endometriosis-induced vaginal hyperalgesia. Importantly, NaV1.7 inhibition selectively alleviated endometriosis-associated CPP without the loss of normal sensation, suggesting that selective targeting of NaV1.7 could improve the quality of life of women with endometriosis.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat Commun 2023; 14:2451. [PMID: 37117175 PMCID: PMC10147690 DOI: 10.1038/s41467-023-38162-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Pain therapy has remained conceptually stagnant since the opioid crisis, which highlighted the dangers of treating pain with opioids. An alternative addiction-free strategy to conventional painkiller-based treatment is targeting receptors at the origin of the pain pathway, such as transient receptor potential (TRP) ion channels. Thus, a founding member of the vanilloid subfamily of TRP channels, TRPV1, represents one of the most sought-after pain therapy targets. The need for selective TRPV1 inhibitors extends beyond pain treatment, to other diseases associated with this channel, including psychiatric disorders. Here we report the cryo-electron microscopy structures of human TRPV1 in the apo state and in complex with the TRPV1-specific nanomolar-affinity analgesic antagonist SB-366791. SB-366791 binds to the vanilloid site and acts as an allosteric hTRPV1 inhibitor. SB-366791 binding site is supported by mutagenesis combined with electrophysiological recordings and can be further explored to design new drugs targeting TRPV1 in disease conditions.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yury A Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Hwang SM, Jo YY, Cohen CF, Kim YH, Berta T, Park CK. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Int J Mol Sci 2022; 23:ijms23105772. [PMID: 35628583 PMCID: PMC9147560 DOI: 10.3390/ijms23105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Youn-Yi Jo
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon 21565, Korea;
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
| | - Yong-Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
- Correspondence: (T.B.); (C.-K.P.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
- Correspondence: (T.B.); (C.-K.P.)
| |
Collapse
|
4
|
Nazıroğlu M, Öz A, Yıldızhan K. Selenium and Neurological Diseases: Focus on Peripheral Pain and TRP Channels. Curr Neuropharmacol 2021; 18:501-517. [PMID: 31903884 PMCID: PMC7457405 DOI: 10.2174/1570159x18666200106152631] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022] Open
Abstract
Pain is a complex physiological process that includes many components. Growing evidence supports the idea that oxidative stress and Ca2+ signaling pathways participate in pain detection by neurons. The main source of endogenous reactive oxygen species (ROS) is mitochondrial dysfunction induced by membrane depolarization, which is in turn caused by Ca2+ influx into the cytosol of neurons. ROS are controlled by antioxidants, including selenium. Selenium plays an important role in the nervous system, including the brain, where it acts as a cofactor for glutathione peroxidase and is incorporated into selenoproteins involved in antioxidant defenses. It has neuroprotective effects through modulation of excessive ROS production, inflammation, and Ca2+ overload in several diseases, including inflammatory pain, hypersensitivity, allodynia, diabetic neuropathic pain, and nociceptive pain. Ca2+ entry across membranes is mediated by different channels, including transient receptor potential (TRP) channels, some of which (e.g., TRPA1, TRPM2, TRPV1, and TRPV4) can be activated by oxidative stress and have a role in the induction of peripheral pain. The results of recent studies indicate the modulator roles of selenium in peripheral pain through inhibition of TRP channels in the dorsal root ganglia of experimental animals. This review summarizes the protective role of selenium in TRP channel regulation, Ca2+ signaling, apoptosis, and mitochondrial oxidative stress in peripheral pain induction.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey
| | - Ahmi Öz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
5
|
Castro J, Maddern J, Erickson A, Caldwell A, Grundy L, Harrington AM, Brierley SM. Pharmacological modulation of voltage-gated sodium (NaV) channels alters nociception arising from the female reproductive tract. Pain 2021; 162:227-242. [PMID: 32826751 DOI: 10.1097/j.pain.0000000000002036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dyspareunia, also known as vaginal hyperalgesia, is a prevalent and debilitating symptom of gynaecological disorders such as endometriosis and vulvodynia. Despite this, the sensory pathways transmitting nociceptive information from female reproductive organs remain poorly characterised. As such, the development of specific treatments for pain associated with dyspareunia is currently lacking. Here, we examined, for the first time, (1) the mechanosensory properties of pelvic afferent nerves innervating the mouse vagina; (2) the expression profile of voltage-gated sodium (NaV) channels within these afferents; and (3) how pharmacological modulation of these channels alters vaginal nociceptive signalling ex vivo, in vitro, and in vivo. We developed a novel afferent recording preparation and characterised responses of pelvic afferents innervating the mouse vagina to different mechanical stimuli. Single-cell reverse transcription-polymerase chain reaction determined mRNA expression of NaV channels within vagina-innervating dorsal root ganglia neurons. Vagina-innervating dorsal root ganglia neuroexcitability was measured using whole-cell patch-clamp electrophysiology. Nociception evoked by vaginal distension was assessed by dorsal horn neuron activation within the spinal cord and quantification of visceromotor responses. We found that pelvic afferents innervating the vagina are tuned to detect various mechanical stimuli, with NaV channels abundantly expressed within these neurons. Pharmacological modulation of NaV channels (with veratridine or tetrodotoxin) correspondingly alters the excitability and mechanosensitivity of vagina-innervating afferents, as well as dorsal horn neuron activation and visceromotor responses evoked by vaginal distension. This study identifies potential molecular targets that can be used to modulate vaginal nociceptive signalling and aid in the development of approaches to manage endometriosis and vulvodynia-related dyspareunia.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, Australia
| |
Collapse
|
6
|
Maddern J, Grundy L, Castro J, Brierley SM. Pain in Endometriosis. Front Cell Neurosci 2020; 14:590823. [PMID: 33132854 PMCID: PMC7573391 DOI: 10.3389/fncel.2020.590823] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Endometriosis is a chronic and debilitating condition affecting ∼10% of women. Endometriosis is characterized by infertility and chronic pelvic pain, yet treatment options remain limited. In many respects this is related to an underlying lack of knowledge of the etiology and mechanisms contributing to endometriosis-induced pain. Whilst many studies focus on retrograde menstruation, and the formation and development of lesions in the pathogenesis of endometriosis, the mechanisms underlying the associated pain remain poorly described. Here we review the recent clinical and experimental evidence of the mechanisms contributing to chronic pain in endometriosis. This includes the roles of inflammation, neurogenic inflammation, neuroangiogenesis, peripheral sensitization and central sensitization. As endometriosis patients are also known to have co-morbidities such as irritable bowel syndrome and overactive bladder syndrome, we highlight how common nerve pathways innervating the colon, bladder and female reproductive tract can contribute to co-morbidity via cross-organ sensitization.
Collapse
Affiliation(s)
- Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, North Terrace Campus, Adelaide, SA, Australia
| |
Collapse
|
7
|
BARROS-NETO JA, SANTOS TMDM, CORTES ML, JESUS RPD, FREITAS MC, KRAYCHETE DC. Constipation in patients with myofascial pain syndrome as important aspect for clinical and nutritional treatment: A case-control study. REV NUTR 2017. [DOI: 10.1590/1678-98652017000500003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT Objective To identify the occurrence of constipation in patients with myofascial pain syndrome and to correlate these disorders with the clinical and nutritional variables. Methods This report describes a case-control study performed with 98 adults of both sexs, including 49 patients and 49 individuals without pain. The intensity of the reported pain was evaluated using the Pain Visual Analog Scale, which provided a simple and efficient measurement of pain intensity consisting of a 10cm horizontal line with the ends marked “absence of pain” and “worst possible pain”. The occurrence of constipation was evaluated using the Rome III criteria. A multivariate linear regression was proposed to investigate risk factors between the frequency of bowel movements per week and independent variables this study. Results The mean ages of the patients and controls were 45.9 (7.6) years and 41.2 (12.2) years, respectively. The intensity of the reported pain showed a mean of 7.3 (1.6) points. The likelihood of exhibiting constipation was 4.5 times higher in the patients than in the controls (p=0.001). The number of stools per week was negatively correlated with the intensity of the reported pain (r=-0.613, p<0.001). The use of benzodiazepines was negatively correlated with the frequency of bowel movements per week, while the use of muscle relaxants appeared to increase the frequency of defecation when combined with the use of benzodiazepines and adjusted for the intake of fiber, water and sexs (p=0.037). Conclusion Constipation was a frequent nosological entity in this patient population and the persistence of a change in intestinal motility showed a significant correlation with the pain intensity and low water intake. The reduction of the number of stools per week seems to be associated with the use of benzodiazepines.
Collapse
|
8
|
Nirenberg MJ, Chaouni R, Biller TM, Gilbert RM, Paisán-Ruiz C. A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome. Clin Genet 2017; 93:164-168. [PMID: 28436534 DOI: 10.1111/cge.13040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Cramp-fasciculation syndrome (CFS) is a rare muscle hyperexcitability syndrome that presents with muscle cramps, fasciculations, and stiffness, as well as pain, fatigue, anxiety, hyperreflexia, and paresthesias. Although familial cases have been reported, a genetic etiology has not yet been identified. We performed whole-exome sequencing followed by validation and cosegregation analyses on a father-son pair with CFS. Both subjects manifested other hypersensitivity-hyperexcitability symptoms, including asthma, gastroesophageal reflux, migraine, restless legs syndrome, tremor, cold hyperalgesia, and cardiac conduction defects. Most symptoms improved with carbamazepine, consistent with an underlying cation channelopathy. We identified a variant in the transient receptor potential ankyrin A1 channel (TRPA1) gene that selectively cosegregated with CFS and the other hypersensitivity-hyperexcitability symptoms. This variant (c.2755C>T) resulted in a premature stop codon at amino acid 919 (p.Arg919*) in the outer pore of the channel. TRPA1 is a widely distributed, promiscuous plasmalemmal cation channel that is strongly implicated in the pathophysiology of the specific hypersensitivity-hyperexcitability symptoms observed in these subjects. Thus, we have identified a novel TRPA1 variant that is associated with CFS as part of a generalized hypersensitivity-hyperexcitability disorder. These findings clarify the diverse functional roles of TRPA1, and underscore the importance of this channel as a potential therapeutic target.
Collapse
Affiliation(s)
- M J Nirenberg
- Department of Neurology, NYU School of Medicine, New York, New York
| | - R Chaouni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - T M Biller
- Department of Neurology, NYU School of Medicine, New York, New York
| | - R M Gilbert
- Department of Neurology, NYU School of Medicine, New York, New York
| | - C Paisán-Ruiz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York.,Departments of Psychiatry, Genetics and Genomic Sciences; Mindich Child Health and Development Institute; and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Abstract
Background Physical cooling of the eye surface relieves ocular discomfort, but translating this event to drug treatment of dry eye discomfort not been studied. Here, we synthesized a water-soluble TRPM8 receptor agonist called cryosim-3 (C3, 1-diisopropylphosphorylnonane) which selectively activates TRPM8 (linked to cooling) but not TRPV1 or TRPA1 (linked to nociception) and tested C3 in subjects with mild forms of dry eye disease. Methods A set of 1-dialkylphosphoryalkanes were tested for activation of TRPM8, TRPV1 and TRPA1 receptors in transfected cells. The bioactivity profiles were compared by perioral, topical, and intravenous delivery to anesthetized rats. The selected lead candidate C3 or vehicle (water) was applied with a cotton gauze pad to upper eyelids of patients with dry eye disease (n = 30). Cooling sensation, tear film break-up time (TBUT), basal tear secretion, and corneal staining were evaluated. C3 was then applied four times daily for 2 weeks to patients using a pre-loaded single unit applicator containing 2 mg/mL of C3 in water (n = 20) or water only. TBUT, basal tear secretion, and corneal staining, and three questionnaires surveys of ocular discomfort (VAS scale, OSDI, and CVS symptoms) were analyzed before and at 1 and 2 weeks thereafter. Results C3 was a selective and potent TRPM8 agonist without TRPV1 or TRPA1 activity. In test animals, the absence of shaking behavior after C3 perioral administration made it the first choice for further study. C3 increased tear secretion in an animal model of dry eye disease and did not irritate when wiped on eyes of volunteers. C3 singly applied (2 mg/ml) produced significant cooling in <5 min, an effecting lasting 46 min with an increase in tear secretion for 60 min. C3 applied for 2 weeks also significantly increased basal tear secretion with questionnaire surveys of ocular discomfort indices clearly showing improvement of symptoms at 1 and 2 weeks. No complaints of irritation or pain were reported by any subject. Conclusions C3 is a promising candidate for study of TRPM8 function on the eye surface and for relief of dry eye discomfort. Trial registration ISRCTN24802609 and ISRCTN13359367. Registered 23 March 2015 and 2 September 2015. Electronic supplementary material The online version of this article (doi:10.1186/s12886-017-0495-2) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Joshi A, Joshi A, Patel H, Ponnoth D, Stagni G. Cutaneous Penetration-Enhancing Effect of Menthol: Calcium Involvement. J Pharm Sci 2017; 106:1923-1932. [PMID: 28400197 DOI: 10.1016/j.xphs.2017.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
Menthol is a naturally occurring terpene used as a penetration enhancer in topical and transdermal formulations. Literature shows a growing interest in menthol's interactions with the transient receptor potential melastatin 8. A decrease in extracellular Ca2+ due to the activation of the transient receptor potential melastatin 8 receptor produces inhibition of E-cadherin expression that is responsible for cell-cell adhesion. Because calcium is present in the entire epidermis, the purpose of this study is to evaluate whether the aforementioned properties of menthol are also related to its penetration-enhancing effects. We formulated 16 gels: (i) drug-alone (diphenhydramine or lidocaine), (ii) drug with menthol, (iii) drug, menthol, and calcium channel blocker (CCB; verapamil or diltiazem), and (iv) drug and CCB. In vitro studies showed no effect of the CCB on the release of the drugs either with or without menthol. In vivo experiments were performed for each drug/menthol/CCB combination gel by applying 4 formulations on a shaved rabbit's dorsum on the same day. Dermis concentration profiles were assessed with microdialysis. The gels containing menthol showed higher penetration of drugs than those without whereas the addition of the CCB consistently inhibited the penetration-enhancing effects of menthol. In summary, these findings strongly support the involvement of calcium in the penetration-enhancing effect of menthol.
Collapse
Affiliation(s)
- Amit Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Abhay Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Hiren Patel
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Dovenia Ponnoth
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Grazia Stagni
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201.
| |
Collapse
|
11
|
Choi G, Hwang SW. Modulation of the Activities of Neuronal Ion Channels by Fatty Acid-Derived Pro-Resolvents. Front Physiol 2016; 7:523. [PMID: 27877134 PMCID: PMC5099253 DOI: 10.3389/fphys.2016.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Progress of inflammation depends on the balance between two biological mechanisms: pro-inflammatory and pro-resolving processes. Many extracellular and intracellular molecular components including cytokines, growth factors, steroids, neurotransmitters, and lipidergic mediators and their receptors contribute to the two processes, generated from cellular participants during inflammation. Fatty acid-derived mediators are crucial in directing the inflammatory phase and orchestrating heterogeneous reactions of participants such as inflamed cells, innate immune cells, vascular components, innervating neurons, etc. As well as activating specific types of receptor molecules, lipidergic mediators can actively control the functions of various ion channels via direct binding and/or signal transduction, thereby altering cellular functions. Lipid mediators can be divided into two classes based on which of the two processes they promote: pro-inflammatory, which includes prostaglandins and leukotrienes, and pro-resolving, which includes lipoxins, resolvins, and maresins. The research on the modulations of neuronal ion channels regarding the actions of the pro-inflammatory class has begun relatively earlier while the focus is currently expanding to cover the ion channel interaction with pro-resolvents. As a result, knowledge of inhibitory mechanisms by the pro-resolvents, historically seldom found for other known endogenous modulators or pro-inflammatory mediators, is accumulating particularly upon sensory neuronal cation channels. Diverse mechanistic explanations at molecular levels are being proposed and refined. Here we overviewed the interactions of lipidergic pro-resolvents with neuronal ion channels and outcomes from the interactions, focusing on transient receptor potential (TRP) ion channels. We also discuss unanswered hypotheses and perspectives regarding their interactions.
Collapse
Affiliation(s)
- Geunyeol Choi
- Department of Biomedical Sciences, Korea University Seoul, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea UniversitySeoul, South Korea; Department of Physiology, Korea University College of MedicineSeoul, South Korea
| |
Collapse
|
12
|
De Petrocellis L, Arroyo FJ, Orlando P, Schiano Moriello A, Vitale RM, Amodeo P, Sánchez A, Roncero C, Bianchini G, Martín MA, López-Alvarado P, Menéndez JC. Tetrahydroisoquinoline-Derived Urea and 2,5-Diketopiperazine Derivatives as Selective Antagonists of the Transient Receptor Potential Melastatin 8 (TRPM8) Channel Receptor and Antiprostate Cancer Agents. J Med Chem 2016; 59:5661-83. [PMID: 27232526 DOI: 10.1021/acs.jmedchem.5b01448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydroisoquinoline derivatives containing embedded urea functions were identified as selective TRPM8 channel receptor antagonists. Structure-activity relationships were investigated, with the following conclusions: (a) The urea function and the tetrahydroisoquinoline system are necessary for activity. (b) Bis(1-aryl-6,7dimethoxy-1,2,3,4-tetrahydroisoquinolyl)ureas are more active than compounds containing one tetrahydroisoquinoline ring and than an open phenetylamine ureide. (c) Trans compounds are more active than their cis isomers. (d) Aryl substituents are better than alkyls at the isoquinoline C-1 position. (e) Electron-withdrawing substituents lead to higher activities. The most potent compound is the 4-F derivative, with IC50 in the 10(-8) M range and selectivities around 1000:1 for most other TRP receptors. Selected compounds were found to be active in reducing the growth of LNCaP prostate cancer cells. TRPM8 inhibition reduces proliferation in the tumor cells tested but not in nontumor prostate cells, suggesting that the activity against prostate cancer is linked to TRPM8 inhibition.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Francisco J Arroyo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Pierangelo Orlando
- Endocannabinoid Research Group, Institute of Protein Biochemistry, National Research Council , Via P. Castellino 111, 80131 Naples, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Rosa Maria Vitale
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Pietro Amodeo
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Cesáreo Roncero
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Giulia Bianchini
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - M Antonia Martín
- S.D. Química Analítica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Pilar López-Alvarado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - J Carlos Menéndez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| |
Collapse
|
13
|
Abstract
The transient receptor potential canonical (TRPC) channels have gained interest as potential therapeutic targets for respiratory diseases, neurological disorders, cardiovascular disorders, pain, cancer and several other pathological conditions. The TRPC receptor family consists of seven isoforms (C1-C7) and has been divided into three subfamilies based on structural and functional similarities. Several pharmaceutical companies and academic institutes are currently exploring the potential of these nonselective cation channels as therapeutic targets using small molecule inhibitors or modulators. This review covers patents on TRPC receptor modulators published from 2002 to 2014. The review mainly focuses on TRPC receptor target biology, small and large molecule modulators and their therapeutic potential.
Collapse
|
14
|
Grubisha O, Mogg AJ, Sorge JL, Ball LJ, Sanger H, Ruble CLA, Folly EA, Ursu D, Broad LM. Pharmacological profiling of the TRPV3 channel in recombinant and native assays. Br J Pharmacol 2014; 171:2631-44. [PMID: 23848361 PMCID: PMC4009005 DOI: 10.1111/bph.12303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. EXPERIMENTAL APPROACH Medium-throughput cellular assays were developed using a Ca(2+) -sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. KEY RESULTS A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies.
Collapse
Affiliation(s)
- Olivera Grubisha
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Adrian J Mogg
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Jessica L Sorge
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Laura-Jayne Ball
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Helen Sanger
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | | | - Elizabeth A Folly
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Daniel Ursu
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Lisa M Broad
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| |
Collapse
|
15
|
Yoo S, Lim JY, Hwang SW. Sensory TRP channel interactions with endogenous lipids and their biological outcomes. Molecules 2014; 19:4708-44. [PMID: 24739932 PMCID: PMC6271031 DOI: 10.3390/molecules19044708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/30/2023] Open
Abstract
Lipids have long been studied as constituents of the cellular architecture and energy stores in the body. Evidence is now rapidly growing that particular lipid species are also important for molecular and cellular signaling. Here we review the current information on interactions between lipids and transient receptor potential (TRP) ion channels in nociceptive sensory afferents that mediate pain signaling. Sensory neuronal TRP channels play a crucial role in the detection of a variety of external and internal changes, particularly with damaging or pain-eliciting potentials that include noxiously high or low temperatures, stretching, and harmful substances. In addition, recent findings suggest that TRPs also contribute to altering synaptic plasticity that deteriorates chronic pain states. In both of these processes, specific lipids are often generated and have been found to strongly modulate TRP activities, resulting primarily in pain exacerbation. This review summarizes three standpoints viewing those lipid functions for TRP modulations as second messengers, intercellular transmitters, or bilayer building blocks. Based on these hypotheses, we discuss perspectives that account for how the TRP-lipid interaction contributes to the peripheral pain mechanism. Still a number of blurred aspects remain to be examined, which will be answered by future efforts and may help to better control pain states.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| |
Collapse
|
16
|
Ablin JN, Buskila D. Predicting fibromyalgia, a narrative review: are we better than fools and children? Eur J Pain 2014; 18:1060-6. [PMID: 24619570 DOI: 10.1002/j.1532-2149.2014.00481.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2014] [Indexed: 12/28/2022]
Abstract
Fibromyalgia syndrome (FMS) is a common and intriguing condition, manifest by chronic pain and fatigue. Although the pathogenesis of FMS is not yet completely understood, predicting the future development of FMS and chronic pain is a major challenge with great potential advantages, both from an individual as well as an epidemiological standpoint. Current knowledge indicates a genetic underpinning for FMS, and as increasing data are accumulated regarding the genetics involved, the prospect of utilizing these data for prediction becomes ever more attractive. The co-existence of FMS with multiple other functional disorders indicates that the clinical identification of such symptom constellations in a patient can alert the physician to the future development of FMS. Hypermobility syndrome is another clinical (as well as genetic) phenotype that has emerged as a risk factor for the development of FMS. Stressful events, including early life trauma, are also harbingers of the future development of FMS. Functional neuroimaging may help to elucidate the neural processes involved in central sensitization, and may ultimately also evolve into markers of predictive value. Last but not least, obesity and disturbed sleep are clinical (inter-related) features relevant for this spectrum. Future efforts will aim at integrating genetic, clinical and physiological data in the prediction of FMS and chronic pain.
Collapse
Affiliation(s)
- J N Ablin
- Institute of Rheumatology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
17
|
Harrington AM, Brierley SM, Isaacs NJ, Young RL, Blackshaw LA. Identifying spinal sensory pathways activated by noxious esophageal acid. Neurogastroenterol Motil 2013; 25:e660-8. [PMID: 23848546 DOI: 10.1111/nmo.12180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transient receptor potential vanilloid 1 (TRPV1) channel is critical for spinal afferent signaling of burning pain throughout the body. Such pain frequently originates from the esophagus, following acid reflux. The contribution of TRPV1 to spinal nociceptor signaling from the esophagus remains unclear. We aimed to identify the spinal afferent pathways that convey nociceptive signaling from the esophagus, specifically those sensitive to acid, and the extent to which TRPV1 contributes. METHODS Acid/pepsin (150 mM HCl/1 mg mL(-1) pepsin) or saline/pepsin was perfused into the esophageal lumen of anesthetized wild-type and TRPV1 null mice over 20 min, followed by atraumatic perfuse fixation and removal of the cervical and thoracic spinal cord and dorsal root ganglia (DRG). To identify neurons responsive to esophageal perfusate, immunolabeling for neuronal activation marker phosphorylated extracellular receptor-regulated kinase (pERK) was used. Labeling for calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) was then used to characterize responsive neurons. KEY RESULTS Esophageal acid/pepsin perfusion significantly increased the number of pERK-immunoreactive (IR) neurons in the DRG and the cervical and thoracic spinal cord dorsal horn (DH) relative to saline/pepsin (DRG P < 0.01; cervical DH P < 0.05 and thoracic DH P < 0.005). The number of pERK-IR neurons following acid perfusion was significantly attenuated in TRPV1 -/- mice (DH P < 0.05 and DRG P < 0.05). CONCLUSIONS & INFERENCES This study has identified populations of spinal afferent DRG neurons and DH neurons involved in signaling of noxious acid from the esophagus. There is a major contribution of TRPV1 to signaling within these pathways.
Collapse
Affiliation(s)
- A M Harrington
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
18
|
Arnold LM, Fan J, Russell IJ, Yunus MB, Khan MA, Kushner I, Olson JM, Iyengar SK. The fibromyalgia family study: a genome-wide linkage scan study. ARTHRITIS AND RHEUMATISM 2013; 65:1122-8. [PMID: 23280346 PMCID: PMC3618544 DOI: 10.1002/art.37842] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/18/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Familial aggregation of fibromyalgia has been increasingly recognized. The goal of this study was to conduct a genome-wide linkage scan to identify susceptibility loci for fibromyalgia. METHODS We genotyped members of 116 families from the Fibromyalgia Family Study and performed a model-free genome-wide linkage analysis of fibromyalgia with 341 microsatellite markers, using the Haseman-Elston regression approach. RESULTS The estimated sibling recurrence risk ratio (λs ) for fibromyalgia was 13.6 (95% confidence interval 10.0-18.5), based on a reported population prevalence of 2%. Genome-wide suggestive evidence of linkage was observed at markers D17S2196 (empirical P [Pe ]=0.00030) and D17S1294 (Pe=0.00035) on chromosome 17p11.2-q11.2. CONCLUSION The estimated sibling recurrence risk ratio (λs ) observed in this study suggests a strong genetic component of fibromyalgia. This is the first report of genome-wide suggestive linkage of fibromyalgia to the chromosome 17p11.2-q11.2 region. Further investigation of these multicase families from the Fibromyalgia Family Study is warranted to identify potential causal risk variants for fibromyalgia.
Collapse
Affiliation(s)
- Lesley M. Arnold
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jinbo Fan
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - I. Jon Russell
- Department of Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Muhammad B. Yunus
- Department of Medicine, University of Illinois College of Medicine, Peoria, Illinois
| | - Muhammad Asim Khan
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Irving Kushner
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jane M. Olson
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
19
|
Zhu B, Xia M, Xu X, Ludovici DW, Tennakoon M, Youngman MA, Matthews JM, Dax SL, Colburn RW, Qin N, Hutchinson TL, Lubin ML, Brandt MR, Stone DJ, Flores CM, Macielag MJ. Arylglycine derivatives as potent transient receptor potential melastatin 8 (TRPM8) antagonists. Bioorg Med Chem Lett 2013; 23:2234-7. [PMID: 23411075 DOI: 10.1016/j.bmcl.2013.01.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
A series of arylglycine-based analogs was synthesized and tested for TRPM8 antagonism in a cell-based functional assay. Following structure-activity relationship studies in vitro, a number of compounds were identified as potent TRPM8 antagonists and were subsequently evaluated in an in vivo pharmacodynamic assay of icilin-induced 'wet-dog' shaking in which compound 12 was fully effective. TRPM8 antagonists of the type described here may be useful in treating pain conditions wherein cold hypersensitivity is a dominant feature.
Collapse
Affiliation(s)
- Bin Zhu
- Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bang S, Yoo S, Yang TJ, Cho H, Hwang SW. Nociceptive and pro-inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation. Br J Pharmacol 2012; 166:1433-43. [PMID: 22300296 DOI: 10.1111/j.1476-5381.2012.01884.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Sensory neuronal and epidermal transient receptor potential ion channels (TRPs) serve an important role as pain sensor molecules. While many natural and synthetic ligands for sensory TRPs have been identified, little is known about the endogenous activator for TRPV4. Recently, we reported that endogenous metabolites produced by the mevalonate pathway regulate the activities of sensory neuronal TRPs. Here, we show that dimethylallyl pyrophosphate (DMAPP), a substance produced by the same pathway is an activator of TRPV4. EXPERIMENTAL APPROACH We examined the effects of DMAPP on sensory TRPs using Ca²⁺ imaging and whole-cell electrophysiology experiments with a heterologous expression system (HEK293T cells transfected with individual TRP channels), cultured sensory neurons and keratinocytes. We then evaluated nociceptive behavioural and inflammatory changes upon DMAPP administration in mice in vivo. KEY RESULTS In the HEK cell heterologous expression system, cultured sensory neurons and keratinocytes, µM concentrations of DMAPP activated TRPV4. Agonistic and antagonistic potencies of DMAPP for other sensory TRP channels were examined and activation of TRPV3 by camphor was found to be inhibited by DMAPP. In vivo assays, intraplantar injection of DMAPP acutely elicited nociceptive flinches that were prevented by pretreatment with TRPV4 blockers, indicating that DMAPP is a novel pain-producing molecule through TRPV4 activation. Further, DMAPP induced acute inflammation and noxious mechanical hypersensitivities in a TRPV4-dependent manner. CONCLUSIONS AND IMPLICATIONS Overall, we found a novel sensory TRP acting metabolite and suggest that its use may help to elucidate the physiological role of TRPV4 in nociception and associated inflammation.
Collapse
Affiliation(s)
- S Bang
- Korea University Graduate School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Hill L, Schug SA. Recent advances in the pharmaceutical management of pain. Expert Rev Clin Pharmacol 2012; 2:543-57. [PMID: 22112227 DOI: 10.1586/ecp.09.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pain is an unpleasant sensory and emotional experience for patients. Management of pain is the most frequent issue encountered by clinicians and treatment is usually with pharmacological therapy. This review discusses recent pharmaceutical advances in pain management with respect to new modes of analgesic delivery, as well as new analgesic agents and adjuvants that are currently being investigated for their analgesic properties. New modes of administration include transdermal delivery in the form of skin patches, transmucosal delivery, inhalational administration, various patient-controlled devices and extended-release analgesic formulations. Up-to-date research is presented on classical analgesics, such as opioids, anti-inflammatory agents, including cyclo-oxygenase-2 inhibitors and paracetamol (acetaminophen), local anesthetics and ketamine. In addition, newer agents such as antidepressants and antiepileptic drugs as well as medicinal cannabinoids are discussed. As our understanding of the multiple pain pathways involved in the pathogenesis of pain expands, further compounds with analgesic properties will be developed.
Collapse
Affiliation(s)
- Lisa Hill
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, GPO Box X2213, Perth, Western Australia 6001, Austrailia.
| | | |
Collapse
|
22
|
Vay L, Gu C, McNaughton PA. Current perspectives on the modulation of thermo-TRP channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 2012; 3:687-704. [PMID: 22111750 DOI: 10.1586/ecp.10.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The thermo transient receptor potential (TRP) ion channels, a recently discovered family of ion channels activated by temperature, are expressed in primary sensory nerve terminals, where they provide information regarding thermal changes in the environment. Six thermo-TRPs have been characterized to date: TRPV1-4, which respond to different levels of warmth and heat, and TRPM8 and TRPA1, which respond to cool temperatures. We review the current state of knowledge of thermo-TRPs, and of the modulation of their thermal thresholds by a range of inflammatory mediators. Blockers of these channels are likely to have therapeutic uses as novel analgesics but may also cause unacceptable side effects. Controlling the modulation of thermo-TRPs by inflammatory mediators may be a useful alternative strategy in developing novel analgesics.
Collapse
Affiliation(s)
- Laura Vay
- Deptartment of Pharmacology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1PD, UK
| | | | | |
Collapse
|
23
|
Inoue N, Ito S, Nogawa M, Tajima K, Kyoi T. Etodolac blocks the allyl isothiocyanate-induced response in mouse sensory neurons by selective TRPA1 activation. Pharmacology 2012; 90:47-54. [PMID: 22739568 DOI: 10.1159/000338756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/19/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The excitability of nociceptors is modulated by the transient receptor potential cation channel, ankyrin subfamily, member 1 (TRPA1). We have previously reported that etodolac, a nonsteroidal anti-inflammatory drug, attenuates mechanical allodynia in a mouse model of neuropathic pain by a mechanism that is independent of cyclooxygenase inhibition. Here, we investigate the role of TRPA1 in the mechanism of the antinociceptive action of etodolac in vitro and in vivo. EXPERIMENTAL APPROACH Ca(2+) influx was measured in HEK-293 cells expressing mouse TRPA1 and in mouse dorsal root ganglion (DRG) neurons. The effect of etodolac on the nociceptive behavior induced in mice by the TRPA1 agonist allyl isothiocyanate (AITC) was also measured. RESULTS Etodolac induced Ca(2+) influx in HEK-293 cells expressing mouse TRPA1 and in mouse DRG neurons. The Ca(2+) influx induced by etodolac was inhibited by pretreatment with the TRPA1-specific antagonist HC-030031. In contrast, etodolac did not induce Ca(2+) influx in cells expressing TRPV1, TRPV2 or TRPM8. In addition, pretreatment with etodolac inhibited the Ca(2+) influx induced by AITC. CONCLUSION AND IMPLICATION Etodolac showed a selective TRPA1 agonist action, providing evidence that etodolac desensitizes nociceptors by the selective activation of TRPA1. Etodolac may be clinically useful in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Naoki Inoue
- Exploratory Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., Kyoto, Japan.
| | | | | | | | | |
Collapse
|
24
|
Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012; 3:248-67. [PMID: 22860192 PMCID: PMC3369806 DOI: 10.1021/cn300006u] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Sonali S. Bharate
- Department of Pharmaceutics, P.E. Society’s Modern
College of Pharmacy for Ladies, Dehu-Alandi Road, Moshi,
Pune, India
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of Integrative Medicine
(CSIR), Canal
Road, Jammu-180001, India
| |
Collapse
|
25
|
New strategies to develop novel pain therapies: addressing thermoreceptors from different points of view. Pharmaceuticals (Basel) 2011; 5:16-48. [PMID: 24288041 PMCID: PMC3763626 DOI: 10.3390/ph5010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use.
Collapse
|
26
|
Chung MK, Jung SJ, Oh SB. Role of TRP channels in pain sensation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:615-36. [PMID: 21290319 DOI: 10.1007/978-94-007-0265-3_33] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is crucial for a living organism to recognize and discern potentially harmful noxious stimuli from innocuous stimuli to avoid hazards in the environment. However, unnecessary or exaggerated nociception is at best unpleasant and often compromises the quality of life. In order to lessen the intensity of nociception or eliminate the pathological pain, it is important to understand the nature of nociception and the mechanisms of hyperalgesia or allodynia. Transient receptor potential (TRP) channels play central roles in nociception under physiological and pathological conditions including inflammation and neuropathy. In this chapter, we will highlight the enormous progress in understanding the role of TRP channels in nociception. We will mainly focus on two TRP channels (TRPV1 and TRPA1) that have been particularly implicated in transducing signals associated with pain sensation, and briefly discuss the role of TRPM8, TRPV3 and TRPV4. We will stress debatable issues that needed to be resolved and provide perspectives for the future studies.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA.
| | | | | |
Collapse
|
27
|
Parks DJ, Parsons WH, Colburn RW, Meegalla SK, Ballentine SK, Illig CR, Qin N, Liu Y, Hutchinson TL, Lubin ML, Stone DJ, Baker JF, Schneider CR, Ma J, Damiano BP, Flores CM, Player MR. Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. J Med Chem 2010; 54:233-47. [PMID: 21128593 DOI: 10.1021/jm101075v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a nonselective cation channel that is thermoresponsive to cool to cold temperatures (8-28 °C) and also may be activated by chemical agonists such as menthol and icilin. Antagonism of TRPM8 activation is currently under investigation for the treatment of painful conditions related to cold, such as cold allodynia and cold hyperalgesia. The design, synthesis, and optimization of a class of selective TRPM8 antagonists based on a benzimidazole scaffold is described, leading to the identification of compounds that exhibited potent antagonism of TRPM8 in cell-based functional assays for human, rat, and canine TRPM8 channels. Numerous compounds in the series demonstrated excellent in vivo activity in the TRPM8-selective "wet-dog shakes" (WDS) pharmacodynamic model and in the rat chronic constriction injury (CCI)-induced model of neuropathic pain. Taken together, the present results suggest that the in vivo antagonism of TRPM8 constitutes a viable new strategy for treating a variety of disorders associated with cold hypersensitivity, including certain types of neuropathic pain.
Collapse
Affiliation(s)
- Daniel J Parks
- Janssen Research and Development, Spring House, Pennsylvania 19477-0776, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
NPPB structure-specifically activates TRPA1 channels. Biochem Pharmacol 2010; 80:113-21. [DOI: 10.1016/j.bcp.2010.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
|
29
|
Voight EA, Kort ME. Transient receptor potential vanilloid-1 antagonists: a survey of recent patent literature. Expert Opin Ther Pat 2010; 20:1107-22. [DOI: 10.1517/13543776.2010.497756] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Puttfarcken PS, Han P, Joshi SK, Neelands TR, Gauvin DM, Baker SJ, Lewis LGR, Bianchi BR, Mikusa JP, Koenig JR, Perner RJ, Kort ME, Honore P, Faltynek CR, Kym PR, Reilly RM. A-995662 [(R)-8-(4-methyl-5-(4-(trifluoromethyl)phenyl)oxazol-2-ylamino)-1,2,3,4-tetrahydronaphthalen-2-ol], a novel, selective TRPV1 receptor antagonist, reduces spinal release of glutamate and CGRP in a rat knee joint pain model. Pain 2010; 150:319-326. [PMID: 20621685 DOI: 10.1016/j.pain.2010.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/19/2010] [Accepted: 05/18/2010] [Indexed: 11/26/2022]
Abstract
The TRPV1 antagonist A-995662 demonstrates analgesic efficacy in monoiodoacetate-induced osteoarthritic (OA) pain in rat, and repeated dosing results in increased in vivo potency and a prolonged duration of action. To identify possible mechanism(s) underlying these observations, release of neuropeptides and the neurotransmitter glutamate from isolated spinal cord was measured. In OA rats, basal release of glutamate, bradykinin and calcitonin gene-related peptide (CGRP) was significantly elevated compared to naïve levels, whereas substance P (SP) levels were not changed. In vitro studies showed that capsaicin-evoked TRPV1-dependent CGRP release was 54.7+/-7.7% higher in OA, relative to levels measured for naïve rats, suggesting that TRPV1 activity was higher under OA conditions. The efficacy of A-995662 in OA corresponded with its ability to inhibit glutamate and CGRP release from the spinal cord. A single, fully efficacious dose of A-995662, 100 micromol/kg, reduced spinal glutamate and CGRP release, while a single sub-efficacious dose of A-995662 (25 micromol/kg) was ineffective. Multiple dosing with A-995662 increased the potency and duration of efficacy in OA rats. Changes in efficacy did not correlate with plasma concentrations of A-995662, but were accompanied with reductions in spinal glutamate release. These findings suggest that repeated dosing of TRPV1 antagonists enhances therapeutic potency and duration of action against OA pain, at least in part, by the sustained reduction in release of glutamate and CGRP from the spinal cord.
Collapse
Affiliation(s)
- Pamela S Puttfarcken
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brumovsky P, Gebhart G. Visceral organ cross-sensitization - an integrated perspective. Auton Neurosci 2010; 153:106-15. [PMID: 19679518 PMCID: PMC2818077 DOI: 10.1016/j.autneu.2009.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/12/2022]
Abstract
Viscero-somatic referral and sensitization has been well documented clinically and widely investigated, whereas viscero-visceral referral and sensitization (termed cross-organ sensitization) has only recently received attention as important to visceral disease states. Because second order neurons in the CNS have been extensively shown to receive convergent input from different visceral organs, it has been assumed that cross-organ sensitization arises by the same convergence-projection mechanism as advanced for viscero-somatic referral and sensitization. However, increasing evidence also suggests participation of peripheral mechanisms to explain referral and sensitization. We briefly summarize behavioral, morphological and physiological support of and focus on potential mechanisms underlying cross-organ sensitization.
Collapse
Affiliation(s)
- P.R. Brumovsky
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina
| | - G.F. Gebhart
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Vriens J, Appendino G, Nilius B. Pharmacology of Vanilloid Transient Receptor Potential Cation Channels. Mol Pharmacol 2009; 75:1262-79. [DOI: 10.1124/mol.109.055624] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|