1
|
Villavicencio-Tejo F, Olesen MA, Aránguiz A, Quintanilla RA. Activation of the Nrf2 Pathway Prevents Mitochondrial Dysfunction Induced by Caspase-3 Cleaved Tau: Implications for Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11030515. [PMID: 35326165 PMCID: PMC8944569 DOI: 10.3390/antiox11030515] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by memory and cognitive impairment, accompanied by the accumulation of extracellular deposits of amyloid β-peptide (Aβ) and the presence of neurofibrillary tangles (NFTs) composed of pathological forms of tau protein. Mitochondrial dysfunction and oxidative stress are also critical elements for AD development. We previously showed that the presence of caspase-3 cleaved tau, a relevant pathological form of tau in AD, induced mitochondrial dysfunction and oxidative damage in different neuronal models. Recent studies demonstrated that the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a significant role in the antioxidant response promoting neuroprotection. Here, we studied the effects of Nrf2 activation using sulforaphane (SFN) against mitochondrial injury induced by caspase-3 cleaved tau. We used immortalized cortical neurons to evaluate mitochondrial bioenergetics and ROS levels in control and SFN-treated cells. Expression of caspase-3 cleaved tau induced mitochondrial fragmentation, depolarization, ATP loss, and increased ROS levels. Treatment with SFN for 24 h significantly prevented these mitochondrial abnormalities, and reduced ROS levels. Analysis of Western blots and rt-PCR studies showed that SFN treatment increased the expression of several Nrf2-related antioxidants genes in caspase-3 cleaved tau cells. These results indicate a potential role of the Nrf2 pathway in preventing mitochondrial dysfunction induced by pathological forms of tau in AD.
Collapse
|
2
|
Mitochondrial Targeting Probes, Drug Conjugates, and Gene Therapeutics. Methods Mol Biol 2021. [PMID: 34766305 DOI: 10.1007/978-1-0716-1752-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitochondria represent an important drug target for many phatology, including neurodegeneration, metabolic disease, heart failure, ischemia-reperfusion injury, and cancer. Mitochondrial dysfunctions are caused by mutation in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins. Cell-penetrating peptides (CPPs) have been employed to overcome biological barriers, target this organelle, and therapeuticaly restore mitochondrial functions. Here, we describe recent methods used to deliver oligonucleotides targeting mitochondrial protein by using mitochondrial penetrating peptides. In particular, we highlight recent advances of formulated peptides/oligonucleotides nanocomplexes as a proof-of-principle for pharmaceutical form of peptide-based therapeutics.
Collapse
|
3
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
4
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Nikseresht S, Hilton JB, Kysenius K, Liddell JR, Crouch PJ. Copper-ATSM as a Treatment for ALS: Support from Mutant SOD1 Models and Beyond. Life (Basel) 2020; 10:E271. [PMID: 33158182 PMCID: PMC7694234 DOI: 10.3390/life10110271] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier permeant, copper-containing compound, CuII(atsm), has successfully progressed from fundamental research outcomes in the laboratory through to phase 2/3 clinical assessment in patients with the highly aggressive and fatal neurodegenerative condition of amyotrophic lateral sclerosis (ALS). The most compelling outcomes to date to indicate potential for disease-modification have come from pre-clinical studies utilising mouse models that involve transgenic expression of mutated superoxide dismutase 1 (SOD1). Mutant SOD1 mice provide a very robust mammalian model of ALS with high validity, but mutations in SOD1 account for only a small percentage of ALS cases in the clinic, with the preponderant amount of cases being sporadic and of unknown aetiology. As per other putative drugs for ALS developed and tested primarily in mutant SOD1 mice, this raises important questions about the pertinence of CuII(atsm) to broader clinical translation. This review highlights some of the challenges associated with the clinical translation of new treatment options for ALS. It then provides a brief account of pre-clinical outcomes for CuII(atsm) in SOD1 mouse models of ALS, followed by an outline of additional studies which report positive outcomes for CuII(atsm) when assessed in cell and mouse models of neurodegeneration which do not involve mutant SOD1. Clinical evidence for CuII(atsm) selectively targeting affected regions of the CNS in patients is also presented. Overall, this review summarises the existing evidence which indicates why clinical relevance of CuII(atsm) likely extends beyond the context of cases of ALS caused by mutant SOD1.
Collapse
Affiliation(s)
- Sara Nikseresht
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC 3010, Australia; (S.N.); (J.B.H.); (J.R.L.)
| | - James B.W. Hilton
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC 3010, Australia; (S.N.); (J.B.H.); (J.R.L.)
| | - Kai Kysenius
- Department of Pharmacology and Therapeutics and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Jeffrey R. Liddell
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC 3010, Australia; (S.N.); (J.B.H.); (J.R.L.)
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
6
|
Soutar MPM, Kempthorne L, Annuario E, Luft C, Wray S, Ketteler R, Ludtmann MHR, Plun-Favreau H. FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy. Autophagy 2019; 15:2002-2011. [PMID: 31060423 PMCID: PMC6844515 DOI: 10.1080/15548627.2019.1603549] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial quality control is essential for maintaining a healthy population of mitochondria. Two proteins associated with Parkinson disease, the kinase PINK1 and the E3 ubiquitin ligase PRKN, play a central role in the selective degradation of heavily damaged mitochondria (mitophagy), thus avoiding their toxic accumulation. Most of the knowledge on PINK1-PRKN mitophagy comes from in vitro experiments involving the treatment of mammalian cells with high concentrations of mitochondrial uncouplers, such as CCCP. These chemicals have been shown to mediate off target effects, other than mitochondrial depolarization. A matter of controversy between mitochondrial physiologists and cell biologists is the discrepancy between concentrations of CCCP needed to activate mitophagy (usually >10 μM), when compared to the much lower concentrations used to depolarize mitochondria (<1 μM). Thus, there is an urgent need for optimizing the current methods to assess PINK1-PRKN mitophagy in vitro. In this study, we address the utilization of high CCCP concentrations commonly used to activate mitophagy. Combining live fluorescence microscopy and biochemistry, we show that the FBS/BSA in the cell culture medium reduces the ability of CCCP to induce PINK1 accumulation at depolarized mitochondria, subsequent PRKN recruitment and ubiquitin phosphorylation, and ultimately mitochondrial clearance. As a result, high concentrations of CCCP are required to induce mitophagy in FBS/BSA containing media. These data unite mitochondrial physiology and mitophagy studies and are a first step toward a consensus on optimal experimental conditions for PINK1-PRKN mitophagy and mitochondrial physiology investigations to be carried out in parallel. Abbreviations: BSA: bovine serum albumin; CCCP: carbonyl cyanide m-chlorophenylhydrazone; DMEM: dulbecco's Modified Eagle's Medium; DNP: 2,4-dinitrophenol; FBS: fetal bovine serum; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; GSH: glutathione; HBSS: Hanks' balanced salt solution; mtKeima: mitochondria-targeted monomeric keima-red; PBS: phosphate buffered saline; PD: Parkinson disease; PINK1: PTEN induced kinase 1; POE SHSY5Ys: FLAG-PRKN over-expressing SHSY5Y cells; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TMRM: tetramethylrhodamine methyl ester; WB: western blot; WT: wild-type; ΔΨm: mitochondrial membrane potential.
Collapse
Affiliation(s)
| | - Liam Kempthorne
- Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Emily Annuario
- Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, UCL, London, UK
| | - Selina Wray
- Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, London, UK
| | | | | |
Collapse
|
7
|
Abstract
Polyphosphate (polyP), an extremely simple polyanion, has long been known to be involved in a variety of different cellular processes, ranging from stress resistance, biofilm formation, and virulence in bacteria to bone mineralization, blood clotting, and mammalian target of rapamycin (mTOR) signaling in mammalian organisms. Our laboratory recently discovered a completely unexpected role of polyP as a stabilizing scaffold for β-sheet-containing protein-folding intermediates. This realization led us to investigate the effects of polyP on amyloidogenic processes and the novel concept that polyP might play a role in neurodegenerative diseases. In this review, we will summarize recent results that show that polyP is a physiological modifier that accelerates amyloid fiber formation, alters fiber morphology, and protects cells against amyloid toxicity. We will review the current knowledge on the distribution, levels, and roles of polyP in the mammalian brain, and discuss potential mechanisms by which polyP might ameliorate amyloid toxicity.
Collapse
|
8
|
Boyina HK, Jerald MK, Bharatraj DK, Diwan PV. Influence of fisetin combined with hesperidin on chronic mild hyperhomocysteinemia induced cognitive dysfunction and oxidative stress in wistar rats. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Bartolome F, de la Cueva M, Pascual C, Antequera D, Fernandez T, Gil C, Martinez A, Carro E. Amyloid β-induced impairments on mitochondrial dynamics, hippocampal neurogenesis, and memory are restored by phosphodiesterase 7 inhibition. ALZHEIMERS RESEARCH & THERAPY 2018; 10:24. [PMID: 29458418 PMCID: PMC5819290 DOI: 10.1186/s13195-018-0352-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/30/2018] [Indexed: 01/19/2023]
Abstract
Background The phosphodiesterase (PDE) 7 inhibitor S14 is a cell-permeable small heterocyclic molecule that is able to cross the blood–brain barrier. We previously found that intraperitoneal treatment with S14 exerted neuroprotection in an Alzheimer’s disease (AD) model (in APP/PS1 mice). The objective of this study was to investigate the neurogenic and cellular effects of oral administration of S14 on amyloid β (Aβ) overload. Methods We orally administered the PDE7 inhibitor S14 (15 mg/kg/day) or vehicle in 6-month-old APP/PS1 mice. After 5 weeks of S14 treatment, we evaluated cognitive functions and brain tissues. We also assessed the effects of S14 on the Aβ-treated human neuroblastome SH-SY5Y cell line. Results Targeting the cyclic adenosine monophosphate (cAMP)/cAMP-response element binding protein (CREB) pathway, S14 rescued cognitive decline by improving hippocampal neurogenesis in APP/PS1 transgenic mice. Additionally, S14 treatment reverted the Aβ-induced reduction in mitochondrial mass in APP/PS1 mice and in the human neuroblastoma SH-SY5Y cells co-exposed to Aβ. The restoration of the mitochondrial mass was found to be a dual effect of S14: a rescue of the mitochondrial biogenesis formerly slowed down by Aβ overload, and a reduction in the Aβ-increased mitochondrial clearance mechanism of mitophagy. Conclusions Here, we show new therapeutic effects of the PDE7 inhibitor, confirming S14 as a potential therapeutic drug for AD. Electronic supplementary material The online version of this article (10.1186/s13195-018-0352-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Bartolome
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain. .,Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.
| | - Macarena de la Cueva
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Consuelo Pascual
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Desiree Antequera
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.,Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Tamara Fernandez
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Eva Carro
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain. .,Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
10
|
Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L, Bacha AB. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis 2017; 32:1983-1997. [PMID: 28831647 DOI: 10.1007/s11011-017-0085-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is behaviorally defined by social and communication impairments and restricted interests and repetitive behaviors. There is currently no biomarkers that can help in the diagnosis. Several studies suggest that mitochondrial dysfunction is commonly involved in ASD pathophysiology, but standard mitochondrial biomarkers are thought to be very variable. In the present study we examine a wide variety of plasma biomarkers of mitochondrial metabolism and the related abnormalities of oxidative stress and apoptosis in 41 ASD patients assessed for ASD severity using the Childhood Autism Rating Scales and 41 non-related age and sex matched healthy controls. Our findings confirm previous studies indicating abnormal mitochondrial and related biomarkers in children with ASD including pyruvate, creatine kinase, Complex 1, Glutathione S-Transferase, glutathione and Caspase 7. As a novel finding, we report that lactate dehydrogenase is abnormal in children with ASD. We also identified that only the most severe children demonstrated abnormalities in Complex 1 activity and Glutathione S-Transferase. Additionally, we find that several biomarkers could be candidates for differentiating children with ASD and typically developing children, including Caspase 7, gluthatione and Glutathione S-Transferase by themselves and lactate dehydrogenase and Complex I when added to other biomarkers in combination. Caspase 7 was the most discriminating biomarker between ASD patients and healthy controls suggesting its potential use as diagnostic marker for the early recognition of ASD pathophysiology. This study confirms that several mitochondrial biomarkers are abnormal in children with ASD and suggest that certain mitochondrial biomarkers can differentiate between ASD and typically developing children, making them possibly useful as a tool to diagnosis ASD and identify ASD subgroups.
Collapse
Affiliation(s)
- Asma M Khemakhem
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Richard E Frye
- Arkansas Children's Research Institute, Slot 512-41B, Room R4041, 13 Children's Way, Little Rock, AR, 72202, USA.
| | - Afaf El-Ansary
- Autism Research and Treatment Center, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Central Laboratory, King Saud University, P.O Box 22452, Zip code, Riyadh, 11495, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
| | - Abir Ben Bacha
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, 3038, Sfax, Tunisia
- Biochemistry Department, Science College, King Saud University, P.O Box 22452, Zip code, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
11
|
Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation. Redox Biol 2017; 14:474-484. [PMID: 29096320 PMCID: PMC5680522 DOI: 10.1016/j.redox.2017.10.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
Sporadic cases account for 90–95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report that mesenchymal stem cells (MSCs) derived from the bone marrow of patients with PSP exhibit mitochondrial dysfunction in the form of decreased membrane potential and inhibited NADH-dependent respiration. Furthermore, mitochondrial dysfunction in PSP-MSCs led to a significant increase in mitochondrial ROS generation and oxidative stress, which resulted in decrease of major cellular antioxidant GSH. Additionally, higher basal rate of mitochondrial degradation and lower levels of biogenesis were found in PSP-MSCs, together leading to a reduction in mitochondrial mass. This phenotype was biologically relevant to MSC stemness properties, as it heavily impaired their differentiation into adipocytes, which mostly rely on mitochondrial metabolism for their bioenergetic demand. The defect in adipogenic differentiation was detected as a significant impairment of intracellular lipid droplet formation in PSP-MSCs. This result was corroborated at the transcriptional level by a significant reduction of PPARγ and FABP4 expression, two key genes involved in the adipogenic molecular network. Our findings in PSP-MSCs provide new insights into the etiology of ‘idiopathic’ parkinsonism, and confirm that mitochondrial dysfunction is important to the development of parkinsonism, independent of the type of the cell. PSP pathology leads to inhibition of mitochondrial respiration and decrease mitochondrial membrane potential. Mitochondrial dysfunction in PSP-MSCs induces ROS generation and oxidative stress. Higher rate of mitophagy reduces mitochondrial mass in PSP-MSCs. PSP impairs differentiation properties in MSCs.
Collapse
|
12
|
Petrillo S, Piermarini E, Pastore A, Vasco G, Schirinzi T, Carrozzo R, Bertini E, Piemonte F. Nrf2-Inducers Counteract Neurodegeneration in Frataxin-Silenced Motor Neurons: Disclosing New Therapeutic Targets for Friedreich's Ataxia. Int J Mol Sci 2017; 18:E2173. [PMID: 29057804 PMCID: PMC5666854 DOI: 10.3390/ijms18102173] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is actively involved in Friedreich's Ataxia (FA), thus pharmacological targeting of the antioxidant machinery may have therapeutic value. Here, we analyzed the relevance of the antioxidant phase II response mediated by the transcription factor Nrf2 on frataxin-deficient cultured motor neurons and on fibroblasts of patients. The in vitro treatment of the potent Nrf2 activator sulforaphane increased Nrf2 protein levels and led to the upregulation of phase II antioxidant enzymes. The neuroprotective effects were accompanied by an increase in neurites' number and extension. Sulforaphane (SFN) is a natural compound of many diets and is now being used in clinical trials for other pathologies. Our results provide morphological and biochemical evidence to endorse a neuroprotective strategy that may have therapeutic relevance for FA. The findings of this work reinforce the crucial importance of Nrf2 in FA and provide a rationale for using Nrf2-inducers as pharmacological agents.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Emanuela Piermarini
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
- Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | - Anna Pastore
- Laboratory of Biochemistry, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Via Torre di Palidoro, Passoscuro Fiumicino, 00050 Rome, Italy.
| | - Tommaso Schirinzi
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Via Torre di Palidoro, Passoscuro Fiumicino, 00050 Rome, Italy.
| | - Rosalba Carrozzo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
13
|
Angelova PR, Abramov AY. Alpha-synuclein and beta-amyloid – different targets, same players: calcium, free radicals and mitochondria in the mechanism of neurodegeneration. Biochem Biophys Res Commun 2017; 483:1110-1115. [DOI: 10.1016/j.bbrc.2016.07.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/23/2016] [Indexed: 01/31/2023]
|
14
|
Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 2016; 100:94-107. [PMID: 27242268 PMCID: PMC5124549 DOI: 10.1016/j.freeradbiomed.2016.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases such as diabetes and heart failure has revealed the need for a multi-disciplinary research integrating the key metabolic pathways which change the susceptibility to environmental or pathologic stress. At the physiological level these include the circadian control of metabolism which aligns metabolism with temporal demand. The mitochondria play an important role in integrating the redox signals and metabolic flux in response to the changing activities associated with chronobiology, exercise and diet. At the molecular level this involves dynamic post-translational modifications regulating transcription, metabolism and autophagy. In this review we will discuss different examples of mechanisms which link these processes together. An important pathway capable of linking signaling to metabolism is the post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein modification that plays an important role in impaired cellular stress responses. Circadian clocks have also emerged as critical regulators of numerous cardiometabolic processes, including glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging concept of bioenergetic health will be discussed.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Delgado-Camprubi M, Esteras N, Soutar MP, Plun-Favreau H, Abramov AY. Deficiency of Parkinson's disease-related gene Fbxo7 is associated with impaired mitochondrial metabolism by PARP activation. Cell Death Differ 2016; 24:120-131. [PMID: 27689878 PMCID: PMC5260490 DOI: 10.1038/cdd.2016.104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/28/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022] Open
Abstract
The Parkinson's disease (PD)-related protein F-box only protein 7 (Fbxo7) is the substrate-recognition component of the Skp1-Cullin-F-box protein E3 ubiquitin ligase complex. We have recently shown that PD-associated mutations in Fbxo7 disrupt mitochondrial autophagy (mitophagy), suggesting a role for Fbxo7 in modulating mitochondrial homeostasis. Here we report that Fbxo7 deficiency is associated with reduced cellular NAD+ levels, which results in increased mitochondrial NADH redox index and impaired activity of complex I in the electron transport chain. Under these conditions of compromised respiration, mitochondrial membrane potential and ATP contents are reduced, and cytosolic reactive oxygen species (ROS) production is increased. ROS activates poly (ADP-ribose) polymerase (PARP) activity in Fbxo7-deficient cells. PARP inhibitor restores cellular NAD+ content and redox index and ATP pool, suggesting that PARP overactivation is cause of decreased complex I-driven respiration. These findings bring new insight into the mechanism of Fbxo7 deficiency, emphasising the importance of mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Marta Delgado-Camprubi
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Noemi Esteras
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Marc Pm Soutar
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Helene Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
16
|
Joyce PI, Fratta P, Landman AS, Mcgoldrick P, Wackerhage H, Groves M, Busam BS, Galino J, Corrochano S, Beskina OA, Esapa C, Ryder E, Carter S, Stewart M, Codner G, Hilton H, Teboul L, Tucker J, Lionikas A, Estabel J, Ramirez-Solis R, White JK, Brandner S, Plagnol V, Bennet DLH, Abramov AY, Greensmith L, Fisher EMC, Acevedo-Arozena A. Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration. Hum Mol Genet 2015; 25:291-307. [PMID: 26604141 PMCID: PMC4706115 DOI: 10.1093/hmg/ddv471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106−/−), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106−/− mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106−/− mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106−/− mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106−/− motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Peter I Joyce
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Pietro Fratta
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Philip Mcgoldrick
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Michael Groves
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Jorge Galino
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Olga A Beskina
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Edward Ryder
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah Carter
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | - Gemma Codner
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Lydia Teboul
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Jennifer Tucker
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | - Jeanne Estabel
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and
| | - Ramiro Ramirez-Solis
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and
| | - Jacqueline K White
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and
| | - Sebastian Brandner
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - David L H Bennet
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Andrey Y Abramov
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | - Linda Greensmith
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK,
| | - Elizabeth M C Fisher
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK,
| | | |
Collapse
|
17
|
Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:1387-400. [PMID: 26050974 PMCID: PMC10481969 DOI: 10.1016/j.bbabio.2015.05.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
The aging process is accompanied by the onset of disease and a general decline in wellness. Insights into the aging process have revealed a number of cellular hallmarks of aging, among these epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, and stem cell exhaustion. Mitochondrial dysfunction increasingly appears to be a common factor connecting several of these hallmarks, driving the aging process and afflicting tissues throughout the body. Recent research has uncovered a much more complex involvement of mitochondria in the cell than has previously been appreciated and revealed novel ways in which mitochondrial defects feed into disease pathology. In this review we evaluate ways in which problems in mitochondria contribute to disease beyond the well-known mechanisms of oxidative stress and bioenergetic deficits, and we predict the direction that mitochondrial disease research will take in years to come.
Collapse
Affiliation(s)
- Rebecca K Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Tyler Hilsabeck
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; The University of Texas, San Antonio, TX 78249, USA
| | - Shane L Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
18
|
Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol Biol 2015; 1264:263-70. [PMID: 25631020 DOI: 10.1007/978-1-4939-2257-4_23] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the process of energy production, mitochondrial networks are key elements to allow metabolism of substrates into ATP. Many pathological conditions have been associated with mitochondrial dysfunction as mitochondria are associated with a wide range of cellular processes. Therefore, any disruption in the energy production induces devastating effects that can ultimately lead to cell death due to chemical ischemia. To address the mitochondrial health and function, there are several bioenergetic parameters reflecting either whole mitochondrial functionality or individual mitochondrial complexes. Particularly, metabolism of nutrients in the tricarboxylic acid cycle provides substrates used to generate electron carriers (nicotinamide adenine dinucleotide [NADH] and flavin adenine dinucleotide [FADH2]) which ultimately donate electrons to the mitochondrial electron transport chain. The levels of NADH and FADH2 can be estimated through imaging of NADH/NAD(P)H or FAD autofluorescence. This report demonstrates how to perform and analyze NADH/NAD(P)H and FAD autofluorescence in a time-course-dependent manner and provides information about NADH and FAD redox indexes both reflecting the activity of the mitochondrial electron transport chain (ETC). Furthermore, total pools of NADH and FAD can be estimated providing information about the rate of substrate supply into the ETC. Finally, the analysis of NADH autofluorescence after induction of maximal respiration can offer information about the pentose phosphate pathway activity where glucose can be alternatively oxidized instead of pyruvate.
Collapse
|
19
|
Abeti R, Abramov AY. Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol Res 2015; 99:377-81. [DOI: 10.1016/j.phrs.2015.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
|
20
|
Prakash A, Kumar A. Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in β-amyloid induced Alzheimer׳s disease. Eur J Pharmacol 2014; 741:104-11. [DOI: 10.1016/j.ejphar.2014.07.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/15/2014] [Accepted: 07/14/2014] [Indexed: 01/20/2023]
|
21
|
Angelova PR, Agrawalla BK, Elustondo PA, Gordon J, Shiba T, Abramov AY, Chang YT, Pavlov EV. In situ investigation of mammalian inorganic polyphosphate localization using novel selective fluorescent probes JC-D7 and JC-D8. ACS Chem Biol 2014; 9:2101-10. [PMID: 25007079 DOI: 10.1021/cb5000696] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inorganic polyphosphate (polyP) is a polymer composed of many orthophosphates linked together by phosphoanhydride bonds. Recent studies demonstrate that in addition to its important role in the function of microorganisms, polyP plays multiple important roles in the pathological and physiological function of higher eukaryotes, including mammalians. However, due to the dramatically lower abundance of polyP in mammalian cells when comparing to microorganisms, its investigation poses an experimental challenge. Here, we present the identification of novel fluorescent probes that allow for specific labeling of synthetic polyP in vitro as well as endogenous polyP in living cells. These probes demonstrate high selectivity for the labeling of polyP that was not sensitive to a number of ubiquitous organic polyphosphates, notably RNA. Use of these probes allowed us to demonstrate the real time detection of polyP release from lysosomes in live cells. Furthermore, we have been able to detect the increased levels of polyP in cells with Parkinson's disease related mutations.
Collapse
Affiliation(s)
- Plamena R. Angelova
- Institute
of Neurology, University College London, London WC1E 6BT, United Kingdom
| | | | - Pia A. Elustondo
- Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada Canada
| | - Jacob Gordon
- Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada Canada
| | | | - Andrey Y. Abramov
- Institute
of Neurology, University College London, London WC1E 6BT, United Kingdom
| | - Young-Tae Chang
- National University of Singapore, Singapore 119077, Singapore
| | - Evgeny V. Pavlov
- Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada Canada
| |
Collapse
|
22
|
Streck EL, Gonçalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J. Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA 2014; 36:156-67. [DOI: 10.1590/1516-4446-2013-1224] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Emilio L. Streck
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Cinara L. Gonçalves
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Camila B. Furlanetto
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Giselli Scaini
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - João Quevedo
- National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil; UNESC, Brazil
| |
Collapse
|
23
|
Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, Eckert GP. Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime. Mol Neurobiol 2014; 50:107-18. [PMID: 24633813 DOI: 10.1007/s12035-014-8663-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT). One prominent target of the mutant huntingtin protein (mhtt) is the mitochondrion, affecting its morphology, distribution, and function. Thus, mitochondria have been suggested as potential therapeutic targets for the treatment of HD. Olesoxime, a cholesterol-like compound, promotes motor neuron survival and neurite outgrowth in vitro, and its effects are presumed to occur via a direct interaction with mitochondrial membranes (MMs). We examined the properties of MMs isolated from cell and animal models of HD as well as the effects of olesoxime on MM fluidity and cholesterol levels. MMs isolated from brains of aged Hdh Q111/Q111 knock-in mice showed a significant decrease in 1,6-diphenyl-hexatriene (DPH) anisotropy, which is inversely correlated with membrane fluidity. Similar increases in MM fluidity were observed in striatal STHdh Q111/Q111 cells as well as in MMs isolated from brains of BACHD transgenic rats. Treatment of STHdh cells with olesoxime decreased the fluidity of isolated MMs. Decreased membrane fluidity was also measured in olesoxime-treated MMs isolated from brains of HD knock-in mice. In both models, treatment with olesoxime restored HD-specific changes in MMs. Accordingly, olesoxime significantly counteracted the mhtt-induced increase in MM fluidity of MMs isolated from brains of BACHD rats after 12 months of treatment in vivo, possibly by enhancing MM cholesterol levels. Thus, olesoxime may represent a novel pharmacological tool to treat mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Janett Eckmann
- Department of Pharmacology, Biocenter, Goethe-University Campus Riedberg, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam. Biochem Soc Trans 2013; 41:1331-4. [DOI: 10.1042/bst20130054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.
Collapse
|
25
|
Essa MM, Subash S, Braidy N, Al-Adawi S, Lim CK, Manivasagam T, Guillemin GJ. Role of NAD(+), Oxidative Stress, and Tryptophan Metabolism in Autism Spectrum Disorders. Int J Tryptophan Res 2013; 6:15-28. [PMID: 23922500 PMCID: PMC3729335 DOI: 10.4137/ijtr.s11355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neuro-developmental disorder characterized by impaired social interaction, reduced/absent verbal and non-verbal communication, and repetitive behavior during early childhood. The etiology of this developmental disorder is poorly understood, and no biomarkers have been identified. Identification of novel biochemical markers related to autism would be advantageous for earlier clinical diagnosis and intervention. Studies suggest that oxidative stress-induced mechanisms and reduced antioxidant defense, mitochondrial dysfunction, and impaired energy metabolism (NAD(+), NADH, ATP, pyruvate, and lactate), are major causes of ASD. This review provides renewed insight regarding current autism research related to oxidative stress, mitochondrial dysfunction, and altered tryptophan metabolism in ASD.
Collapse
Affiliation(s)
- Musthafa Mohamed Essa
- Dept of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman. ; School of Medical Sciences, Department of Pharmacology, Faculty of Medicine, University of NSW, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Gibson GE, Hirsch JA, Cirio RT, Jordan BD, Fonzetti P, Elder J. Abnormal thiamine-dependent processes in Alzheimer's Disease. Lessons from diabetes. Mol Cell Neurosci 2012; 55:17-25. [PMID: 22982063 DOI: 10.1016/j.mcn.2012.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/30/2023] Open
Abstract
Reduced glucose metabolism is an invariant feature of Alzheimer's Disease (AD) and an outstanding biomarker of disease progression. Glucose metabolism may be an attractive therapeutic target, whether the decline initiates AD pathophysiology or is a critical component of a cascade. The cause of cerebral regional glucose hypometabolism remains unclear. Thiamine-dependent processes are critical in glucose metabolism and are diminished in brains of AD patients at autopsy. Further, the reductions in thiamine-dependent processes are highly correlated to the decline in clinical dementia rating scales. In animal models, thiamine deficiency exacerbates plaque formation, promotes phosphorylation of tau and impairs memory. In contrast, treatment of mouse models of AD with the thiamine derivative benfotiamine diminishes plaques, decreases phosphorylation of tau and reverses memory deficits. Diabetes predisposes to AD, which suggests they may share some common mechanisms. Benfotiamine diminishes peripheral neuropathy in diabetic humans and animals. In diabetes, benfotiamine induces key thiamine-dependent enzymes of the pentose shunt to reduce accumulation of toxic metabolites including advanced glycation end products (AGE). Related mechanisms may lead to reversal of plaque formation by benfotiamine in animals. If so, the use of benfotiamine could provide a safe intervention to reverse biological and clinical processes of AD progression. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Gary E Gibson
- Department of Neurology and Neuroscience, Weill Cornell Medical College, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch 2012; 464:111-21. [PMID: 22615071 PMCID: PMC3387496 DOI: 10.1007/s00424-012-1112-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 11/18/2022]
Abstract
Understanding the mechanisms of neuronal dysfunction and death represents a major frontier in contemporary medicine, involving the acute cell death in stroke, and the attrition of the major neurodegenerative diseases, including Parkinson's, Alzheimer's, Huntington's and Motoneuron diseases. A growing body of evidence implicates mitochondrial dysfunction as a key step in the pathogenesis of all these diseases, with the promise that mitochondrial processes represent valuable potential therapeutic targets. Each disease is characterised by the loss of a specific vulnerable population of cells—dopaminergic neurons in Parkinson's disease, spinal motoneurons in Motoneuron disease, for example. We discuss the possible roles of cell type-specific calcium signalling mechanisms in defining the pathological phenotype of each of these major diseases and review central mechanisms of calcium-dependent mitochondrial-mediated cell death.
Collapse
|
28
|
Mechanism of oxidative stress in neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:428010. [PMID: 22685618 PMCID: PMC3362933 DOI: 10.1155/2012/428010] [Citation(s) in RCA: 595] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment.
Collapse
|
29
|
Abstract
Major psychiatric illnesses such as mood disorders and schizophrenia are chronic, recurrent mental illnesses that affect the lives of millions of individuals. Although these disorders have traditionally been viewed as 'neurochemical diseases', it is now clear that they are associated with impairments of synaptic plasticity and cellular resilience. Although most patients with these disorders do not have classic mitochondrial disorders, there is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses. Enhancing mitochondrial function could represent an important avenue for the development of novel therapeutics and also presents an opportunity for a potentially more efficient drug-development process.
Collapse
|
30
|
Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, Murphy AN. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 2011; 6:e21746. [PMID: 21799747 PMCID: PMC3143121 DOI: 10.1371/journal.pone.0021746] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 12/21/2022] Open
Abstract
Recently developed technologies have enabled multi-well measurement of O(2) consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1-10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples.
Collapse
Affiliation(s)
- George W. Rogers
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - Martin D. Brand
- Buck Institute for Age Research, Novato, California, United States of America
| | - Susanna Petrosyan
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Deepthi Ashok
- Buck Institute for Age Research, Novato, California, United States of America
| | - Alvaro A. Elorza
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - David A. Ferrick
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - Anne N. Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
31
|
Fitzgerald JC, Camprubi MD, Dunn L, Wu HC, Ip NY, Kruger R, Martins LM, Wood NW, Plun-Favreau H. Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function. Cell Death Differ 2011; 19:257-66. [PMID: 21701498 DOI: 10.1038/cdd.2011.90] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The role of the serine protease HtrA2 in neuroprotection was initially identified by the demonstration of neurodegeneration in mice lacking HtrA2 expression or function, and the interesting finding that mutations adjacent to two putative phosphorylation sites (S142 and S400) have been found in Parkinson's disease patients. However, the mechanism of this neuroprotection and the signalling pathways associated with it remain mostly unknown. Here we report that cyclin-dependent kinase-5 (Cdk5), a kinase implicated in the pathogenesis of several neurodegenerative diseases, is responsible for phosphorylating HtrA2 at S400. HtrA2 and Cdk5 interact in human and mouse cell lines and brain, and Cdk5 phosphorylates S400 on HtrA2 in a p38-dependent manner. Phosphorylation of HtrA2 at S400 is involved in maintaining mitochondrial membrane potential under stress conditions and is important for mitochondrial function, conferring cells protection against cellular stress.
Collapse
Affiliation(s)
- J C Fitzgerald
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ren R, Zhang Y, Li B, Wu Y, Li B. Effect of β-amyloid (25-35) on mitochondrial function and expression of mitochondrial permeability transition pore proteins in rat hippocampal neurons. J Cell Biochem 2011; 112:1450-7. [DOI: 10.1002/jcb.23062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 2011; 117:209-20. [PMID: 21250997 DOI: 10.1111/j.1471-4159.2011.07189.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4-10 years) and Group B (adults, ages 14-39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p<0.05), of complex I in the frontal cortex (p<0.05), and of complexes II (p<0.01), III (p<0.01), and V (p<0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood.
Collapse
Affiliation(s)
- Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cancer and neurodegeneration are often thought of as disease mechanisms at opposite ends of a spectrum; one due to enhanced resistance to cell death and the other due to premature cell death. There is now accumulating evidence to link these two disparate processes. An increasing number of genetic studies add weight to epidemiological evidence suggesting that sufferers of a neurodegenerative disorder have a reduced incidence for most cancers, but an increased risk for other cancers. Many of the genes associated with either cancer and/or neurodegeneration play a central role in cell cycle control, DNA repair, and kinase signalling. However, the links between these two families of diseases remain to be proven. In this review, we discuss recent and sometimes as yet incomplete genetic discoveries that highlight the overlap of molecular pathways implicated in cancer and neurodegeneration.
Collapse
|
35
|
Deas E, Wood NW, Plun-Favreau H. Mitophagy and Parkinson's disease: the PINK1-parkin link. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:623-33. [PMID: 20736035 PMCID: PMC3925795 DOI: 10.1016/j.bbamcr.2010.08.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 12/12/2022]
Abstract
The study of rare, inherited mutations underlying familial forms of Parkinson's disease has provided insight into the molecular mechanisms of disease pathogenesis. Mutations in these genes have been functionally linked to several key molecular pathways implicated in other neurodegenerative disorders, including mitochondrial dysfunction, protein accumulation and the autophagic-lysosomal pathway. In particular, the mitochondrial kinase PINK1 and the cytosolic E3 ubiquitin ligase parkin act in a common pathway to regulate mitochondrial function. In this review we discuss the recent evidence suggesting that the PINK1/parkin pathway also plays a critical role in the autophagic removal of damaged mitochondria–mitophagy. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Emma Deas
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.
| | | | | |
Collapse
|
36
|
Modeling mitochondrial encephalomyopathy in Drosophila. Neurobiol Dis 2010; 40:40-5. [PMID: 20472065 DOI: 10.1016/j.nbd.2010.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial encephalomyopathies are disturbingly complex and devastating diseases, reflecting the underlying importance of the affected organelle. Therapeutic approaches for these diseases remain limited due to a poor understanding of disease pathogenesis resulting largely from a lack of tractable model systems in which to study these diseases. This is especially so for disease conditions resulting from mutations directly affecting the mitochondrial genome. Recent studies using Drosophila to develop genetic models with endogenous mitochondrial mutations suggest the fruit fly will contribute significantly to our understanding of mitochondrial disease pathogenesis and the development of novel therapeutic avenues.
Collapse
|