1
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Altun Z, Ceyhan M, Yuan H, Kızmazoğlu D, Aktaş S, Olgun N. Low Expression of CASP8 Could be a Prognostic Biomarker in Neuroblastoma Patients. J Child Neurol 2024; 39:386-394. [PMID: 39234689 DOI: 10.1177/08830738241273431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The aim of study was to investigate whether CASP8 (CASPASE8) could be a biomarker for prognosis in neuroblastoma. The prognostic value of CASP8 was determined by analyzing CASP8 methylation status and gene expressions in the tumor tissues of 37 neuroblastoma patients. Bisulfite and quantitative multiplex-methylation-specific polymerase chain reaction (PCR) were used to identify the methylation status. CASP8 messenger ribonucleic acid (RNA) expression levels were determined using reverse transcriptase-quantitative PCR. CASP8 expression levels associated with prognostic value were also analyzed using the TARGET NBL (141 cases) database through PDX for Childhood Cancer Therapeutics (PCAT) and SEQC (498 cases) via the R2 platform. CASP8 methylation status was associated with risk groups, MYCN amplification, and 17q gain status. CASP8 expression was found to be statistically different between high- and low-risk neuroblastoma groups. Low expression of CASP8 was associated with MYCN amplification status. Low expression of CASP8 has shown statistically significant prognostic value through TARGET NBL and SEQC-498 data sets. CASP8 messenger RNA expressions and methylation status were associated with the MYCN amplified high-risk group in neuroblastoma. CASP8 messenger RNA expressions may be considered as a clinical prognostic marker in neuroblastoma.
Collapse
Affiliation(s)
- Zekiye Altun
- Department of Basic Oncology, Dokuz Eylül University Institute of Oncology, Izmir, Turkey
| | - Metin Ceyhan
- Department of Basic Oncology, Dokuz Eylül University Institute of Oncology, Izmir, Turkey
| | - Hongling Yuan
- Department of Basic Oncology, Dokuz Eylül University Institute of Oncology, Izmir, Turkey
| | - Deniz Kızmazoğlu
- Department of Pediatric Oncology, Dokuz Eylül University Institute of Oncology, Izmir, Turkey
| | - Safiye Aktaş
- Department of Basic Oncology, Dokuz Eylül University Institute of Oncology, Izmir, Turkey
| | - Nur Olgun
- Department of Pediatric Oncology, Dokuz Eylül University Institute of Oncology, Izmir, Turkey
| |
Collapse
|
3
|
Association of RASSF1A, DCR2, and CASP8 Methylation with Survival in Neuroblastoma: A Pooled Analysis Using Reconstructed Individual Patient Data. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7390473. [PMID: 33381579 PMCID: PMC7755470 DOI: 10.1155/2020/7390473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 12/15/2022]
Abstract
Neuroblastoma (NB) is a heterogeneous tumor affecting children. It shows a wide spectrum of clinical outcomes; therefore, development of risk stratification is critical to provide optimum treatment. Since epigenetic alterations such as DNA methylation have emerged as an important feature of both development and progression in NB, in this study, we aimed to quantify the effect of methylation of three distinct genes (RASSF1A, DCR2, and CASP8) on overall survival in NB patients. We performed a systematic review using PubMed, Embase, and Cochrane libraries. Individual patient data was retrieved from extracted Kaplan–Meier curves. Data from studies was then merged, and analysis was done on the full data set. Seven studies met the inclusion criteria. Methylation of the three genes had worse overall survival than the unmethylated arms. Five-year survival for the methylated arm of RASSF1A, DCR2, and CASP8 was 63.19% (95% CI 56.55-70.60), 57.78% (95% CI 47.63-70.08), and 56.39% (95% CI 49.53-64.19), respectively, while for the unmethylated arm, it was 93.10% (95% CI 87.40–99.1), 84.84% (95% CI 80.04-89.92), and 83.68% (95% CI 80.28-87.22), respectively. In conclusion, our results indicate that in NB patients, RASSF1A, DCR2, and CASP8 methylation is associated with poor prognosis. Large prospective studies will be necessary to confirm definitive correlation between methylation of these genes and survival taking into account all other known risk factors. (PROSPERO registration number CRD42017082264).
Collapse
|
4
|
Xu L, Huo X, Liu Y, Zhang Y, Qin Q, Xu X. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. CHEMOSPHERE 2020; 246:125829. [PMID: 31927382 DOI: 10.1016/j.chemosphere.2020.125829] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
Experimental studies have uncovered chemical exposure-induced ototoxicity, but population-based hearing risk assessment especially for early-life exposure to heavy metals and relevant biological mechanism remains unclear. We aimed to measure lead (Pb) and cadmium (Cd) levels, blood DNA methylations of Rb1, CASP8 and MeCP2 and hearing in 116 preschool children 3- to 7-years of age from an e-waste and a reference area, and to evaluate the association of exposures with hearing loss potentially affected by epigenetic modifications. A higher median Pb level but not Cd was found in the exposed group than the reference group. Average hearing thresholds in either ear of the exposed children were higher. Higher promoter methylation levels at cg02978827 and position +14, and lower at position +4 of Rb1 were found in the exposed group. Pb was positively correlated with chewing pencil habit while negatively correlated with washing hands before dinner. Slightly negative trends of promoter methylations in Rb1 and CASP8, while a strong positive trend of MeCP2 promoter methylation, were found along with increasing Pb and Cd levels. Logistic analyses showed the adjusted OR of Pb for hearing loss in the left ear and both ears was 1.46 (95% CI: 1.12, 1.91) and 1.40 (95% CI: 1.06, 1.84), respectively. Our results show an elevated Pb level, altered promoter DNA methylations and hearing ability in children of e-waste areas, suggesting that epigenetic changes of specific genes involves in the development of the auditory system during early exposure to environmental chemicals.
Collapse
Affiliation(s)
- Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yu Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China; Department of Cell Biolog Park y and Genetics, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
5
|
Southgate HED, Chen L, Curtin NJ, Tweddle DA. Targeting the DNA Damage Response for the Treatment of High Risk Neuroblastoma. Front Oncol 2020; 10:371. [PMID: 32309213 PMCID: PMC7145987 DOI: 10.3389/fonc.2020.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Despite intensive multimodal therapy, the survival rate for high risk neuroblastoma (HR-NB) remains <50%. Most cases initially respond to treatment but almost half will subsequently relapse with aggressive treatment resistant disease. Novel treatments exploiting the molecular pathology of NB and/or overcoming resistance to current genotoxic therapies are needed before survival rates can significantly improve. DNA damage response (DDR) defects are frequently observed in HR-NB including allelic deletion and loss of function mutations in key DDR genes, oncogene induced replication stress and cell cycle checkpoint dysfunction. Exploiting defects in the DDR has been a successful treatment strategy in some adult cancers. Here we review the genetic features of HR-NB which lead to DDR defects and the emerging molecular targeting agents to exploit them.
Collapse
Affiliation(s)
- Harriet E D Southgate
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindi Chen
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola J Curtin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deborah A Tweddle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Chu Q, Zhu Y, Cao T, Zhang Y, Chang Z, Liu Y, Lu J, Zhang Y. Studies on the Neuroprotection of Osthole on Glutamate-Induced Apoptotic Cells and an Alzheimer's Disease Mouse Model via Modulation Oxidative Stress. Appl Biochem Biotechnol 2019; 190:634-644. [PMID: 31407160 DOI: 10.1007/s12010-019-03101-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023]
Abstract
In the present study, the neuroprotection of osthole (OST) was confirmed. In L-glutamic acid (L-Glu)-damaged HT22 cells, a 3-h pre-incubation with OST-enhanced cell viability suppressed the apoptosis rate; inhibited the activities of caspase-3, caspase-8, and caspase-9; reduced the over-accumulation of intracellular reactive oxygen species; restored the dissipated mitochondrial membrane potential; and regulated the expression levels of B cell lymphoma-2 (Bcl-2), Bax, cleaved poly (ADP-ribose) polymerase (PARP), NF-E2p45-related factor 2 (Nrf2), and its downstream proteins. In amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, an 8-week OST administration improved the pathological behaviors related to memory and cognition, and reduced the expression levels of 4-hydroxynonenal, the deposition of β-amyloid peptides and neuronal fiber tangles formed by the high phosphor-Tau in the brain. OST enhanced the expression levels of Nrf2 and its downstream proteins including superoxide dismutase-1 (SOD-1) and heme oxygenase-1 (HO-1). The present data confirmed the protection of OST against AD-like symptoms via modulating oxidative stress, especially Nrf2 signaling.
Collapse
Affiliation(s)
- Qiubo Chu
- Department of Neurology, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tianjiao Cao
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yi Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Zecheng Chang
- School of Public Health, Jilin University, Changchun, 130012, Jilin, China
| | - Yan Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yizhi Zhang
- Department of Neurology, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China.
| |
Collapse
|
7
|
Teng Y, Dong YC, Liu Z, Zou Y, Xie H, Zhao Y, Su J, Cao F, Jin H, Ren H. DNA methylation-mediated caspase-8 downregulation is associated with anti-apoptotic activity and human malignant glioma grade. Int J Mol Med 2017; 39:725-733. [DOI: 10.3892/ijmm.2017.2881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
|
8
|
Graf RP, Keller N, Barbero S, Stupack D. Caspase-8 as a regulator of tumor cell motility. Curr Mol Med 2014; 14:246-54. [PMID: 24467204 PMCID: PMC4106798 DOI: 10.2174/1566524014666140128111951] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 01/31/2023]
Abstract
The caspases are a family of ubiquitously expressed cysteine proteases best known for their roles in programmed cell death. However, caspases play a number of other roles in vertebrates. In the case of caspase-8, loss of expression is an embryonic lethal phenotype, and caspase-8 plays roles in suppressing cellular necrosis, promoting differentiation and immune signaling, regulating autophagy, and promoting cellular migration. Apoptosis and migration require localization of caspase-8 in the periphery of the cells, where caspase-8 acts as part of distinct biosensory complexes that either promote migration in appropriate cellular microenvironments, or cell death in inappropriate settings. In the cellular periphery, caspase-8 interacts with components of the focal adhesion complex in a tyrosine-kinase dependent manner, promoting both cell migration in vitro and metastasis in vivo. Mechanistically, caspase-8 interacts with components of both focal adhesions and early endosomes, enhancing focal adhesion turnover and promoting rapid integrin recycling to the cell surface. Clinically, this suggests that the expression of caspase-8 may not always be a positive prognostic sign, and that the role of caspase-8 in cancer progression is likely context-dependent.
Collapse
Affiliation(s)
| | | | | | - D Stupack
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 0803, 3855 Health Sciences Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells. Mol Oncol 2013; 7:763-75. [PMID: 23590818 DOI: 10.1016/j.molonc.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/17/2023] Open
Abstract
Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas.
Collapse
|
10
|
Verissimo CS, Molenaar JJ, Fitzsimons CP, Vreugdenhil E. Neuroblastoma therapy: what is in the pipeline? Endocr Relat Cancer 2011; 18:R213-31. [PMID: 21971288 DOI: 10.1530/erc-11-0251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the expansion of knowledge about neuroblastoma (NB) in recent years, the therapeutic outcome for children with a high-risk NB has not significantly improved. Therefore, more effective therapies are needed. This might be achieved by aiming future efforts at recently proposed but not yet developed targets for NB therapy. In this review, we discuss the recently proposed molecular targets that are in clinical trials and, in particular, those that are not yet explored in the clinic. We focus on the selection of these molecular targets for which promising in vitro and in vivo results have been obtained by silencing/inhibiting them. In addition, these selected targets are involved at least in one of the NB tumorigenic processes: proliferation, anti-apoptosis, angiogenesis and/or metastasis. In particular, we will review a recently proposed target, the microtubule-associated proteins (MAPs) encoded by doublecortin-like kinase gene (DCLK1). DCLK1-derived MAPs are crucial for proliferation and survival of neuroblasts and are highly expressed not only in NB but also in other tumours such as gliomas. Additionally, we will discuss neuropeptide Y, its Y2 receptor and cathepsin L as examples of targets to decrease angiogenesis and metastasis of NB. Furthermore, we will review the micro-RNAs that have been proposed as therapeutic targets for NB. Detailed investigation of these not yet developed targets as well as exploration of multi-target approaches might be the key to a more effective NB therapy, i.e. increasing specificity, reducing toxicity and avoiding long-term side effects.
Collapse
Affiliation(s)
- Carla S Verissimo
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Gorlaeus Laboratories, The Netherlands
| | | | | | | |
Collapse
|
11
|
Chen D, Yang K, Zhang G, Mei J, Xiang L. Screen and analysis of key disease genes for precancerous lesions of oral buccal mucosa induced by DMBA in golden hamsters. Oncol Lett 2010; 2:265-271. [PMID: 22866075 DOI: 10.3892/ol.2010.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/10/2010] [Indexed: 11/06/2022] Open
Abstract
7,12-Dimethylbenz(a)-anthracene (DMBA)-induced oral buccal mucosa squamous cell carcinoma in Syrian golden hamsters was used to establish precancerous lesions. Agilent rat whole-genome microarray and biological information analysis were used to screen for genes related to key diseases during the transformation of normal buccal mucosa to precancerous lesions in golden hamsters. DMBA acetone solution (0.5%) was used to establish a model of precancerous lesions in oral buccal mucosa in golden hamsters. The results showed that a total of 1331 genes were differentially expressed, including 1278 known, 53 unknown, 747 up-regulated and 584 down-regulated genes. Analysis revealed a total of 14 gene interaction pathways that significantly associated with the 1278 known differentially expressed genes (P<0.05). In conclusion, the occurrence of precancerous lesions in the oral buccal mucosa of golden hamsters was caused by a number of genetic changes that resulted in changes to their respective pathways. Key candidate genes for the formation of precancerous lesions in oral buccal mucosa included Cyp2b13, Orc1L, casp8, CCL5, CXCL12, CCL20, Serping1, P518/Qrfp, F5, TFPI, Vcam1, Fn1, Angpt2, Lcp2, Cxadr, Lyn, Hck, Btk, RGD1564385/fes, Vav1 and IL5ra.
Collapse
Affiliation(s)
- Dan Chen
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Sartelet H, Ohta S, Barrette S, Rougemont AL, Brevet M, Regairaz M, Harvey I, Bernard C, Fabre M, Gaboury L, Oligny LL, Bosq J, Valteau-Couanet D, Vassal G. High level of apoptosis and low AKT activation in mass screening as opposed to standard neuroblastoma. Histopathology 2010; 56:607-16. [PMID: 20459571 DOI: 10.1111/j.1365-2559.2010.03522.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS Neuroblastoma is a paediatric solid tumour with a poor outcome except in children <1 year old. Based on catecholamine urinary excretion, mass screening (MS) programmes have been organized but failed to decrease the mortality of this tumour. To test the hypotheses of a spontaneous maturation/differentiation or regression, the levels of poly (ADP-ribose) polymerase (PARP)-1, an early apoptosis marker, of PhosphoAKT, a major apoptosis inhibitor, and of maturation/differentiation were compared in standard and in MS neuroblastomas. METHODS AND RESULTS We performed a case-control study of 55 primary tumours and 21 metastases of MS neuroblastomas. Matched controls were standard unscreened neuroblastomas and were paired according to age, stage, and MYCN amplification. The tumours were included in tissue microarrays. Immunohistochemical staining was performed using antibodies against, AKT, phosphoAKT, TRKB and PARP-1. The expression of PARP-1 and that of phosphoAKT were significantly higher in standard than in MS neuroblastomas independently of age and stage of the tumour. PhosphoAKT and PARP-1 expression was significantly correlated in both tumours. CONCLUSIONS These data suggest that the better prognosis of patients with MS neuroblastomas compared with classical neuroblastomas was secondary to spontaneous tumour regression mediated by higher levels of apoptosis associated with low activation of AKT.
Collapse
Affiliation(s)
- Hervé Sartelet
- Department of Pathology, CHU Sainte Justine Montreal, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Raguénez G, Mühlethaler-Mottet A, Meier R, Duros C, Bénard J, Gross N. Fenretinide-induced caspase-8 activation and apoptosis in an established model of metastatic neuroblastoma. BMC Cancer 2009; 9:97. [PMID: 19331667 PMCID: PMC2670318 DOI: 10.1186/1471-2407-9-97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 03/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance of high-risk metastatic neuroblastoma (HR-NB) to high dose chemotherapy (HD-CT) raises a major therapeutic challenge in pediatric oncology. Patients are treated by maintenance CT. For some patients, an adjuvant retinoid therapy is proposed, such as the synthetic retinoid fenretinide (4-HPR), an apoptotic inducer. Recent studies demonstrated that NB metastasis process is enhanced by the loss of caspase-8 involved in the Integrin-Mediated Death (IMD) process. As the role of caspase-8 appears to be critical in preventing metastasis, we aimed at studying the effect of 4-HPR on caspase-8 expression in metastatic neuroblasts. METHODS We used the human IGR-N-91 MYCN-amplified NB experimental model, able to disseminate in vivo from the primary nude mouse tumor xenograft (PTX) into myocardium (Myoc) and bone marrow (BM) of the animal. NB cell lines, i.e., IGR-N-91 and SH-EP, were treated with various doses of Fenretinide (4-HPR), then cytotoxicity was analyzed by MTS proliferation assay, apoptosis by the propidium staining method, gene or protein expressions by RT-PCR and immunoblotting and caspases activity by colorimetric protease assays. RESULTS The IGR-N-91 parental cells do not express detectable caspase-8. However the PTX cells established from the primary tumor in the mouse, are caspase-8 positive. In contrast, metastatic BM and Myoc cells show a clear down-regulation of the caspase-8 expression. In parallel, the caspases -3, -9, -10, Bcl-2, or Bax expressions were unchanged. Our data show that in BM, compared to PTX cells, 4-HPR up-regulates caspase-8 expression that parallels a higher sensitivity to apoptotic cell death. Stable caspase-8-silenced SH-EP cells appear more resistant to 4-HPR-induced cell death compared to control SH-EP cells. Moreover, 4-HPR synergizes with drugs since apoptosis is restored in VP16- or TRAIL-resistant-BM cells. These results demonstrate that 4-HPR in up-regulating caspase-8 expression, restores and induces apoptotic cell death in metastatic neuroblasts through caspase-8 activation. CONCLUSION This study provides basic clues for using fenretinide in clinical treatment of HR-NB patients. Moreover, since 4-HPR induces cell death in caspase-8 negative NB, it also challenges the concept of including 4-HPR in the induction of CT of these patients.
Collapse
Affiliation(s)
- Gilda Raguénez
- Centre National de Recherche Scientifique, Unité Mixte de Recherche 8126, Institut Fédératif de Recherche 54, Institut Gustave Roussy, Villejuif, France.
| | | | | | | | | | | |
Collapse
|
14
|
Alabran JL, Cheuk A, Liby K, Sporn M, Khan J, Letterio J, Leskov KS. Human neuroblastoma cells rapidly enter cell cycle arrest and apoptosis following exposure to C-28 derivatives of the synthetic triterpenoid CDDO. Cancer Biol Ther 2008; 7:709-17. [PMID: 18277094 DOI: 10.4161/cbt.7.5.5713] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Synthetic triterpenoids, such as 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and its derivatives, are an extremely potent class of new anti-cancer therapeutic agents, characterized by high anti-tumor potency and low toxicity to normal tissues. This report is the first to investigate the effects of C-28 derivatives of CDDO on 22 pediatric solid tumor cell lines, including neuroblastoma, rhabdomyosarcoma, osteosarcoma, and Ewing's sarcoma. We determined IC(50)s in the range of 5-170 nM for inhibition of colony formation and DNA synthesis, and 110-630 nM for metabolic cell death and decrease in cell number, using the C-28 CDDO analogs, CDDO methyl ester (CDDO-Me), CDDO imidazolide (CDDO-Im), CDDO ethyl amide (CDDO-EA), CDDO trifluoroethyl amide (CDDO-TFEA), and CDDO diethylamide (CDDO-DE). After treatment of human neuroblastoma cells with CDDO-Me, cell cycle studies show depletion of the S-phase, while apoptosis studies show conformational activation and mitochondrial translocation of Bax protein, as well as activation of caspases -3 and -8. These data demonstrate the potential utility of CDDO analogs as promising novel therapeutic agents for high-risk pediatric solid tumors.
Collapse
Affiliation(s)
- Jennifer L Alabran
- Department of Pediatrics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|