1
|
Song G, Sun Z, Chu M, Zhang Z, Chen J, Wang Z, Zhu X. FBXO28 promotes cell proliferation, migration and invasion via upregulation of the TGF-beta1/SMAD2/3 signaling pathway in ovarian cancer. BMC Cancer 2024; 24:122. [PMID: 38267923 PMCID: PMC10807113 DOI: 10.1186/s12885-024-11893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Ovarian cancer is one of the most common gynecological malignancies due to the lack of early symptoms, early diagnosis and limited screening. Therefore, it is necessary to understand the molecular mechanism underlying the occurrence and progression of ovarian cancer and to identify a basic biomarker for the early diagnosis and clinical treatment of ovarian cancer. METHODS The association between FBXO28 and ovarian cancer prognosis was analyzed using Kaplan‒Meier survival analysis. The difference in FBXO28 mRNA expression between normal ovarian tissues and ovarian tumor tissues was obtained from The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) cohorts. The expression levels of the FBXO28 protein in ovarian cancer tissues and normal ovarian tissues were measured via immunohistochemical staining. Western blotting was used to determine the level of FBXO28 expression in ovarian cancer cells. The CCK-8, the colony formation, Transwell migration and invasion assays were performed to evaluate cell proliferation and motility. RESULTS We found that a higher expression level of FBXO28 was associated with poor prognosis in ovarian cancer patients. Analysis of the TCGA and GTEx cohorts showed that the FBXO28 mRNA level was lower in normal ovarian tissue samples than in ovarian cancer tissue samples. Compared with that in normal ovarian tissues or cell lines, the expression of FBXO28 was greater in ovarian tumor tissues or tumor cells. The upregulation of FBXO28 promoted the viability, proliferation, migration and invasion of ovarian cancer cells. Finally, we demonstrated that FBXO28 activated the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer. CONCLUSIONS In conclusion, FBXO28 enhanced oncogenic function via upregulation of the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer.
Collapse
Affiliation(s)
- Gendi Song
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Man Chu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zihan Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiajia Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiwei Wang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Chiang CC, Lin GL, Yang SY, Tu CW, Huang WL, Wei CF, Wang FC, Lin PJ, Huang WH, Chuang YM, Lee YT, Yeh CC, Chan M, Hsu YC. PCDHB15 as a potential tumor suppressor and epigenetic biomarker for breast cancer. Oncol Lett 2022; 23:117. [PMID: 35261631 PMCID: PMC8855166 DOI: 10.3892/ol.2022.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is among the most frequently diagnosed cancer types and the leading cause of cancer-related death in women. The mortality rate of patients with breast cancer is currently increasing, perhaps due to a lack of early screening tools. In the present study, using The Cancer Genome Atlas (TCGA) breast cancer dataset (n=883), it was determined that methylation of the protocadherin β15 (PCDHB15) promoter was higher in breast cancer samples than that in normal tissues. A negative association between promoter methylation and expression of PCDHB15 was observed in the TCGA dataset and breast cancer cell lines. In TCGA cohort, lower PCDHB15 expression was associated with shorter relapse-free survival times. Treatment with the DNA methyltransferase inhibitor restored PCDHB15 expression in a breast cancer cell line; however, overexpression of PCDHB15 was shown to suppress colony formation. PCDHB15 methylation detected in circulating cell-free DNA (cfDNA) isolated from serum samples was higher in patients with breast cancer (40.8%) compared with that in patients with benign tumors (22.4%). PCDHB15 methylation was not correlated with any clinical parameters. Taken together, PCDHB15 is a potential tumor suppressor in cases of breast cancer, which can be epigenetically silenced via promoter methylation. PCDHB15 methylation using cfDNA is a novel minimally invasive epigenetic biomarker for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Ching-Chung Chiang
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Shu-Yi Yang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Wen-Long Huang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Chun-Feng Wei
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Feng-Chi Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Pin-Ju Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ting Lee
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Michael Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Chen Hsu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| |
Collapse
|
3
|
Li X, Gao X, Yuan J, Wang F, Xu X, Wang C, Liu H, Guan W, Zhang J, Xu G. The miR-33a-5p/CROT axis mediates ovarian cancer cell behaviors and chemoresistance via the regulation of the TGF-β signal pathway. Front Endocrinol (Lausanne) 2022; 13:950345. [PMID: 36120434 PMCID: PMC9478117 DOI: 10.3389/fendo.2022.950345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Due to the lack of symptoms and detection biomarkers at the early stage, most patients with ovarian cancer (OC) are diagnosed at an advanced stage and often face chemoresistance and relapse. Hence, defining detection biomarkers and mechanisms of chemoresistance is imperative. A previous report of a cDNA microarray analysis shows a potential association of carnitine O-octanoyltransferase (CROT) with taxane resistance but the biological function of CROT in OC remains unknown. The current study explored the function and regulatory mechanism of CROT on cellular behavior and paclitaxel (PTX)-resistance in OC. We found that CROT was downregulated in OC tissues and PTX-resistant cells. Furthermore, CROT expression was negatively correlated with the prognosis of OC patients. Overexpression of CROT inhibited the OC cell proliferation, migration, invasion, and colony formation, arrested the cell cycle at the G2/M phase, and promoted cell apoptosis. In addition, miR-33a-5p bound directly to the 3'UTR of CROT to negatively regulate the expression of CROT and promoted OC cell growth. Finally, overexpression of CROT decreased the phosphorylation of Smad2, whereas knockdown of CROT increased the nuclear translocation of Smad2 and Smad4, two transducer proteins of TGF-β signaling, indicating that CROT is a tumor suppressor which mediates OC cell behaviors through the TGF-β signaling pathway. Thus, targeting the miR-33a-5p/CROT axis may have clinical potential for the treatment of patients with OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuzhu Gao
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fancheng Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jihong Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Guoxiong Xu,
| |
Collapse
|
4
|
Liu C, Zhang L, Liu Y, Zhao Q, Pan Y, Zhang Y. Value of Pyruvate Carboxylase in Thyroid Fine-Needle Aspiration Wash-Out Fluid for Predicting Papillary Thyroid Cancer Lymph Node Metastasis. Front Oncol 2021; 11:643416. [PMID: 34136384 PMCID: PMC8202284 DOI: 10.3389/fonc.2021.643416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 01/21/2023] Open
Abstract
The incidence of papillary thyroid carcinoma (PTC) is increasing. Lymph node metastatic status of PTC is a major factor for decision marking of surgery and surgical extend, however, no reliable tool exists for prediction of PTC nodal metastasis, for example, ultrasound cannot qualitatively diagnose and effectively detect central lymph node metastasis (CLNM). Therefore, the development of a new diagnostic biomarker is crucial for CLNM. Metabolic dysregulation is an important factor associated with malignancy and metastasis of tumors. Pyruvate carboxylase (PC) is a major anaplerotic enzyme that catalyzes the carboxylation of pyruvate to form oxaloacetate, which has been suggested to be involved in the tumorigenesis of several cancers, including PTC. This study aimed to explore the role of PC expression in thyroid fine-needle aspiration (FNA) wash-out fluid for predicting CLNM in PTC, and to explore how PC is involved in PTC development. The expression levels of PC in PTC tissues and normal thyroid tissues were first compared based on bioinformatics analysis of public databases, including the Gene Expression Profiling (GEPIA), Oncomine and Gene Expression Omnibus (GEO) databases. Then, the PC mRNA and protein expression levels were measured by RT-PCR and Immunohistochemistry (IHC) in surgical tissues from a total of 42 patients with surgically confirmed PTC, and compared in patients with and without CLNM. Further, to assess PC expression in diagnostic biopsies, a total of 71 thyroid nodule patients with ultrasound-guided FNA wash-out fluid samples and cytological diagnosis were prospectively enrolled in the study. Then, we analyzed the mechanism of PC-mediated PTC progression in vitro. This study showed that PC expression was higher in PTC tissues and thyroid FNA wash-out fluid samples from patients with CLNM than those from patients without CLNM, and that PC-induced PTC metastasis may occur through the TGF-β/Smad-regulated epithelial-mesenchymal transition (EMT) pathway.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
6
|
Mifepristone Treatment Promotes Testicular Leydig Cell Tumor Progression in Transgenic Mice. Cancers (Basel) 2020; 12:cancers12113263. [PMID: 33158280 PMCID: PMC7694279 DOI: 10.3390/cancers12113263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Recently, the antiprogestin activity of selective progesterone receptor (PR) modulator mifepristone (MF) has proven unsuccessful as a potential anti-cancer agent in various clinical trials. Herein, we analyzed the effects of MF treatment on Leydig cell tumor (LCT) progression in a transgenic mouse model (inhibin-α promoter-driven SV40 T-antigen), as well as on the proliferation of two Leydig tumor cell lines. MF significantly stimulated the proliferation of LCT in vitro. Similarly, a 1-mo MF or P4 treatment stimulated LCT tumor growth in vivo. Only the abundant membrane Pgrmc1 expression was found in LCTs, but no other classical Pgr or nonclassical membrane PRs. Functional analysis showed that PGRMC1 is required for MF and P4 to stimulate the proliferation and invasiveness of LCTs. Our findings provide novel information that the use of MF as an anti-cancer agent should be considered with caution due to its potential PGRMC1 tumor-promoting pathway activation in cancers. Abstract The selective progesterone receptor modulator mifepristone (MF) may act as a potent antiproliferative agent in different steroid-dependent cancers due to its strong antagonistic effect on the nuclear progesterone receptor (PGR). Hereby, we analyzed the effects of MF treatment on Leydig cell tumor (LCT) progression in a transgenic mouse model (inhibin-α promoter-driven SV40 T-antigen), as well as on LCT (BLTK-1 and mLTC-1) cell proliferation. MF significantly stimulated the proliferation of LCT in vitro. Similarly, a 1-mo MF or P4 treatment stimulated LCT tumor growth in vivo. Traceable/absent classical Pgr or nonclassical membrane PRs α, β, γ and Pgrmc2, but abundant membrane Pgrmc1 expression, was found in LCTs. MF did not activate glucocorticoid or androgen receptors in LCTs. Functional analysis showed that PGRMC1 is required for MF and P4 to stimulate the proliferation and invasiveness of LCTs. Accordingly, MF and P4 induced PGRMC1 translocation into the nucleus and thereby stimulated the release of TGFβ1 in LCT cells. MF and P4 treatments upregulated Tgfbr1, Tgfbr2, and Alk1 expression and stimulated TGFβ1 release in LCT cells. Our findings provide novel mechanistic insights into the action of MF as a membrane PR agonist that promotes LCT growth through PGRMC1 and the alternative TGFβ1 signaling pathway.
Collapse
|
7
|
Prognostic Values of Transforming Growth Factor-Beta Subtypes in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2170606. [PMID: 32351985 PMCID: PMC7174935 DOI: 10.1155/2020/2170606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022]
Abstract
Purpose To explore the potential role of the transforming growth factor-beta (TGF-β) subtypes in the prognosis of ovarian cancer patients. Materials and Methods. The prognostic roles of individual TGF-β subtypes in women with ovarian cancer were retrieved from the Kaplan-Meier plotter (KM plotter) database. In addition, the Oncomine database and immunohistochemistry were used to observe the mRNA and protein expression of TGF-β subtypes between human ovarian carcinoma and normal ovarian samples, respectively. Results TGF-β1 and TGF-β4 were totally uncorrelated with survival outcomes in women with ovarian cancer. Increased TGF-β2 and TGF-β3 mRNA expression was markedly related to unfavorable prognosis, especially in women with serous, poorly differentiated, and late-stage ovarian carcinoma. High expression levels of TGF-β2 were related to worse progression-free survival (PFS) while TGF-β3 was linked to unfavorable overall survival (OS) and PFS in women with TP53-mutated ovarian cancer. TGF-β2 was associated with poor OS and PFS from treatment with chemotherapy with platins, Taxol, or a platin+Taxol. However, overexpression of TGF-β3 was associated with poor OS from the use of platins and poor PFS of Taxol or a platin+Taxol in women with ovarian carcinoma. Furthermore, the expression of TGF-β2 mRNA and protein was higher but only TGF-β3 mRNA expression was higher in cancerous tissues than in normal ovarian samples. Conclusion Higher expression of TGF-β2 functioned as a significant predictor of poor prognosis in women with ovarian cancer, especially those with TP53 mutations or who were undergoing chemotherapy with platins, Taxol, or a platin+Taxol.
Collapse
|
8
|
Martini P, Chiogna M, Calura E, Romualdi C. MOSClip: multi-omic and survival pathway analysis for the identification of survival associated gene and modules. Nucleic Acids Res 2019; 47:e80. [PMID: 31049575 PMCID: PMC6698707 DOI: 10.1093/nar/gkz324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 01/09/2023] Open
Abstract
Survival analyses of gene expression data has been a useful and widely used approach in clinical applications. But, in complex diseases, such as cancer, the identification of survival-associated cell processes - rather than single genes - provides more informative results because the efficacy of survival prediction increases when multiple prognostic features are combined to enlarge the possibility of having druggable targets. Moreover, genome-wide screening in molecular medicine has rapidly grown, providing not only gene expression but also multi-omic measurements such as DNA mutations, methylation, expression, and copy number data. In cancer, virtually all these aberrations can contribute in synergy to pathological processes, and their measurements can improve a patient’s outcome and help in diagnosis and treatment decisions. Here, we present MOSClip, an R package implementing a new topological pathway analysis tool able to integrate multi-omic data and look for survival-associated gene modules. MOSClip tests the survival association of dimensionality-reduced multi-omic data using multivariate models, providing graphical devices for management, browsing and interpretation of results. Using simulated data we evaluated MOSClip performance in terms of false positives and false negatives in different settings, while the TCGA ovarian cancer dataset is used as a case study to highlight MOSClip’s potential.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Via U.Bassi 58B, 35121 Padova, Italy
| | - Monica Chiogna
- Department of Statistical Sciences 'Paolo Fortunati', University of Bologna, via delle Belle Arti 41, 40126 Bologna, Italy
| | - Enrica Calura
- Department of Biology, University of Padova, Via U.Bassi 58B, 35121 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via U.Bassi 58B, 35121 Padova, Italy
| |
Collapse
|
9
|
Zhao G, Wang Q, Wu Z, Tian X, Yan H, Wang B, Dong P, Watari H, Pfeffer LM, Guo Y, Li W, Yue J. Ovarian Primary and Metastatic Tumors Suppressed by Survivin Knockout or a Novel Survivin Inhibitor. Mol Cancer Ther 2019; 18:2233-2245. [PMID: 31515295 DOI: 10.1158/1535-7163.mct-19-0118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Survivin, a member of the inhibitor of apoptosis family, is upregulated in multiple cancers including ovarian cancer, but is rarely detectable in normal tissues. We previously reported that survivin promoted epithelial-to-mesenchymal transition (EMT) in ovarian cancer cells, suggesting that survivin may contribute to ovarian tumor metastasis and chemoresistance. In this study, we tested whether knockout or pharmacologic inhibition of survivin overcomes chemoresistance and suppresses tumor metastasis. The genetic loss of survivin suppressed tumor metastasis in an orthotopic ovarian cancer mouse model. To pharmacologically test the role of survivin on ovarian tumor metastasis, we treated chemo-resistant ovarian cancer cells with a selective survivin inhibitor, MX106, and found that MX106 effectively overcame chemoresistance in vitro MX106 inhibited cell migration and invasion by attenuating the TGFβ pathway and inhibiting EMT in ovarian cancer cells. To evaluate the efficacy of MX106 in inhibiting ovarian tumor metastasis, we treated an orthotopic ovarian cancer mouse model with MX106, and found that MX106 efficiently inhibited primary tumor growth in ovaries and metastasis in multiple peritoneal organs as compared with vehicle-treated control mice. Our data demonstrate that inhibition of survivin using either genetic knockout or a novel inhibitor MX106 suppresses primary ovarian tumor growth and metastasis, supporting that targeting survivin could be an effective therapeutic approach in ovarian cancer.
Collapse
Affiliation(s)
- Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xinchun Tian
- Iowa State University of Science and Technology, Iowa
| | - Huan Yan
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Baojin Wang
- The Third Affiliated Hospital, Zhengzhou University, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yuqi Guo
- People's Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee. .,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
10
|
Molecular mechanisms underlying mifepristone's agonistic action on ovarian cancer progression. EBioMedicine 2019; 47:170-183. [PMID: 31466918 PMCID: PMC6796594 DOI: 10.1016/j.ebiom.2019.08.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Recent clinical trials on ovarian cancer with mifepristone (MF) have failed, despite in vitro findings on its strong progesterone (P4) antagonist function. Methods Ovarian cancer human and murine cell lines, cultured high-grade human primary epithelial ovarian cancer (HG-hOEC) cells and their explants; as well as in vivo transgenic mice possessing ovarian cancer were used to assess the molecular mechanism underlying mifepristone (MF) agonistic actions in ovarian cancer progression. Findings Herein, we show that ovarian cancer cells express traceable/no nuclear P4 receptor (PGR), but abundantly P4 receptor membrane component 1 (PGRMC1). MF significantly stimulated ovarian cancer cell migration, proliferation and growth in vivo, and the translocation of PGRMC1 into the nucleus of cancer cells; the effects inhibited by PGRMC1 inhibitor. The beneficial antitumor effect of high-doses MF could not be achieved in human cancer tissue, and the low tissue concentrations achieved with the therapeutic doses only promoted the growth of ovarian cancers. Interpretation Our results indicate that treatment of ovarian cancer with MF and P4 may induce similar adverse agonistic effects in the absence of classical nuclear PGRs in ovarian cancer. The blockage of PGRMC1 activity may provide a novel treatment strategy for ovarian cancer. Fund This work was supported by grants from the National Science Centre, Poland (2013/09/N/NZ5/01831 to DP-T; 2012/05/B/NZ5/01867 to MC), Academy of Finland (254366 to NAR), Moikoinen Cancer Research Foundation (to NAR) and EU PARP Cluster grant (UDA-POIG.05.01.00-005/12-00/NCREMFP to SW).
Collapse
|
11
|
A Unique Pattern of Mesothelial-Mesenchymal Transition Induced in the Normal Peritoneal Mesothelium by High-Grade Serous Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11050662. [PMID: 31086083 PMCID: PMC6562987 DOI: 10.3390/cancers11050662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/05/2023] Open
Abstract
The study was designed to establish whether high aggressiveness of high-grade serous ovarian cancer cells (HGSOCs), which display rapid growth, advanced stage at diagnosis and the highest mortality among all epithelial ovarian cancer histotypes, may be linked with a specific pattern of mesothelial-mesenchymal transition (MMT) elicited by these cells in normal peritoneal mesothelial cells (PMCs). Experiments were performed on primary PMCs, stable and primary ovarian cancer cells, tumors from patients with ovarian cancer, and laboratory animals. Results of in vitro and in vivo tests showed that MMT triggered by HGSOCs (primary cells and OVCAR-3 line) is far more pronounced than the process evoked by cells representing less aggressive ovarian cancer histotypes (A2780, SKOV-3). Mechanistically, HGSOCs induce MMT via Smad 2/3, ILK, TGF-β1, HGF, and IGF-1, whereas A2780 and SKOV-3 cells via exclusively Smad 2/3 and HGF. The conditioned medium from PMCs undergoing MMT promoted the progression of cancer cells and the effects exerted by the cells triggered to undergo MMT by the HGSOCs were significantly stronger than those related to the activity of their less aggressive counterparts. Our findings indicate that MMT in PMCs provoked by HGSOCs is stronger, proceeds via different mechanisms and has more procancerous characteristics than MMT provoked by less aggressive cancer histotypes, which may at least partly explain high aggressiveness of HGSOCs.
Collapse
|
12
|
Tian X, Guan W, Zhang L, Sun W, Zhou D, Lin Q, Ren W, Nadeem L, Xu G. Physical interaction of STAT1 isoforms with TGF-β receptors leads to functional crosstalk between two signaling pathways in epithelial ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:103. [PMID: 29751820 PMCID: PMC5948853 DOI: 10.1186/s13046-018-0773-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/25/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND The signal transducer and activator of transcription (STAT) and transforming growth factor-β (TGF-β) signaling pathways play important roles in epithelial ovarian cancer (EOC). However, the mechanism of crosstalk between two pathways is not completely understood. METHODS The expression of STAT1 protein was detected by tissue microarray and immunoblotting (IB). The interaction of STAT1 isoforms with TGF-β receptors was confirmed by immunoprecipitation and IB. The effect of TGF-β signaling on STAT1 activation was examined in EOC and non-tumorous HOSEpiC cells treated with TGF-β1 in the presence or absence of the inhibitor of TGF-β type I receptor. The gain-of-function and loss-of-function approaches were applied for detecting the role of STAT1 on EOC cell behaviours. RESULTS The high level of STAT1 was observed in patients with high-grade serous EOC. STAT1 expression was higher in ovarian cancer cells than noncancerous cells. TGF-β1 activated the STAT1 pathway by inducing the phosphorylation of STAT1α on S727 residue. The full-length STAT1α and the truncated STAT1β directly interacted with TGF-β receptors (ALK1/ALK5 and TβRII), which was mediated by TGF-β1. STAT1α and STAT1β blocked the activation of the TGF-β1 signaling pathway in EOC cells by reducing Smad2 phosphorylation. STAT1 overexpression induced EOC cell proliferation, migration, and invasion; whereas its inhibition enhanced TGF-β1-induced phospho-Smad2 and suppressed EOC cell proliferation, migration, and invasion. CONCLUSIONS Our data unveil a novel insight into the molecular mechanism of crosstalk between the STAT1 and TGF-β signaling pathways, which affected the cancer cell behavior. Suppression of STAT1 may be a potential therapeutic strategy for targeting ovarian cancer.
Collapse
Affiliation(s)
- Xiaoling Tian
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Wencai Guan
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenwen Sun
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Daibing Zhou
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qunbo Lin
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Pyridoxine 5'-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer. Cell Death Dis 2017; 8:3214. [PMID: 29238081 PMCID: PMC5870590 DOI: 10.1038/s41419-017-0050-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Pyridoxine 5'-phosphate oxidase (PNPO) is an enzyme that converts pyridoxine 5'-phosphate into pyridoxal 5'-phosphate (PLP), an active form of vitamin B6 implicated in several types of cancer. However, the role of PNPO and its regulatory mechanism in epithelial ovarian cancer (EOC) are unknown. In the present study, PNPO expression in human ovarian tumour tissue and its association with the clinicopathological features of patients with EOC were examined. Further, the biological function of PNPO in EOC cells and in xenograft was evaluated. We demonstrated for the first time that PNPO was overexpressed in human EOC. Knockdown of PNPO induced EOC cell apoptosis, arrested cell cycle at G2/M phase, decreased cell proliferation, migration and invasion. Xenografts of PNPO-shRNA-expressing cells into the nude mouse attenuated tumour growth. PNPO at mRNA and protein levels in EOC cells was decreased after transforming growth factor-β1 (TGF-β1) treatment. The inhibitory effect of TGF-β1 on PNPO expression was abolished in the presence of SB-431542, a TGF-β type I receptor kinase inhibitor. Moreover, we found that TGF-β1-mediated PNPO expression was at least in part through the upregulation of miR-143-3p. These data indicate a mechanism underlying PNPO regulation by the TGF-β signalling pathway. Furthermore, PLP administration reduced PNPO expression and decreased EOC cell proliferation, suggesting a feedback loop between PLP and PNPO. Thus, our findings reveal that PNPO can serve as a novel tissue biomarker of EOC and may be a potential target for therapeutic intervention.
Collapse
|
14
|
Zhao G, Wang Q, Gu Q, Qiang W, Wei JJ, Dong P, Watari H, Li W, Yue J. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells. Oncotarget 2017; 8:94666-94680. [PMID: 29212257 PMCID: PMC5706903 DOI: 10.18632/oncotarget.21863] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
BIRC5 encodes the protein survivin, a member of the inhibitor of apoptosis family. Survivin is highly expressed in a variety of cancers but has very low expression in the corresponding normal tissues, and its expression is often associated with tumor metastasis and chemoresistance. We report that survivin was highly expressed in ovarian cancer and strongly correlated with patient overall poor survival. For the first time, we provide experimental evidence that survivin is involved in epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 gene editing led to the inhibition of EMT by upregulating epithelial cell marker, cytokeratin 7 and downregulating mesenchymal markers: snail2, β-catenin, and vimentin in both ovarian cancer SKOV3 and OVCAR3 cells. Consistent with this molecular approach, pharmacological treatment of ovarian cancer cells using a small molecule survivin inhibitor, YM155 also inhibited EMT in these ovarian cancer cell lines. Overexpression of BIRC5 promoted EMT in SKOV3 cells. Using molecular or pharmacological approaches, we found that cell proliferation, migration, and invasion were significantly inhibited following BIRC5 disruption in both cell lines. Inhibition of BIRC5 expression also sensitized cell responses to paclitaxel treatment. Moreover, loss of BIRC5 expression attenuated TGFβ signaling in both SKOV3 and OVCAR3 cells. Collectively, our studies demonstrated that disruption of BIRC5 expression inhibited EMT by attenuating the TGFβ pathway in ovarian cancer cells.
Collapse
Affiliation(s)
- Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, USA
| | - Qingqing Gu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Wenan Qiang
- Department of Pathology, Department of Obstetrics and Gynecology, Northwestern University School of Medicine, Chicago, USA.,Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, USA
| | - Jian-Jun Wei
- Department of Pathology, Department of Obstetrics and Gynecology, Northwestern University School of Medicine, Chicago, USA
| | - Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
15
|
Gutgold N, Davidson B, Catane LJ, Holth A, Hellesylt E, Tropé CG, Dørum A, Reich R. TGFβ splicing and canonical pathway activation in high-grade serous carcinoma. Virchows Arch 2017; 470:665-678. [PMID: 28432432 DOI: 10.1007/s00428-017-2127-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
The present study analyzed the expression and clinical role of the transforming growth factor-β (TGFβ) pathway in high-grade serous carcinoma (HGSC), with focus on malignant effusions. TGFβ1-3 and TGFβRI-III mRNA expression by qRT-PCR was analyzed in 70 HGSC effusions and 55 solid specimens (28 ovarian, 27 abdominal metastases). Protein expression of Smad2 and Smad3 and their phosphorylated forms by Western blotting was analyzed in 73 specimens (42 effusions, 13 ovarian carcinomas, 18 solid metastases). Expression was analyzed for association with anatomic site and clinical parameters, including survival. TGFβRI and TGFβRII mRNA was overexpressed in effusions and solid metastases, particularly the former, compared to that in the ovarian tumors (p < 0.001 to p = 0.05), with anatomic site-dependent expression of splice variants. Conversely, Smad2, p-Smad2, and p-Smad3 were overexpressed in solid specimens (ovarian and peritoneal) compared to those in effusions (p < 0.001 for all). In univariate survival analysis, higher TGFβRI variant 1 and TGFβRIII mRNA levels were associated with a trend for shorter overall survival in patients with post-chemotherapy effusions (p = 0.066 and p = 0.087, respectively), and the latter was an independent prognostic marker in Cox multivariate analysis (p = 0.041). Smad3 protein expression was associated with a trend for shorter overall survival in univariate survival analysis (p = 0.052). TGFβ receptor splice variant expression is anatomic site-dependent in HGSC. Elevated levels of TGFβ signaling pathway mRNAs are seen in metastatic HGSC, but are not accompanied by increased Smad expression and activation in HGSC effusions, evidence of failure to activate canonical TGFβ signaling. Assessment of the prognostic role of this pathway in HGSC effusions merits further research.
Collapse
Affiliation(s)
- Neriya Gutgold
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway. .,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
| | - Liora Jacobs Catane
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Arild Holth
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Ellen Hellesylt
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Claes G Tropé
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Anne Dørum
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310, Oslo, Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel. .,David R. Bloom Center for Pharmacy and the Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Zhao J, Klausen C, Xiong S, Cheng JC, Chang HM, Leung PC. Growth differentiation factor 8 induces SKOV3 ovarian cancer cell migration and E-cadherin down-regulation. Cell Signal 2016; 28:1615-22. [DOI: 10.1016/j.cellsig.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023]
|
17
|
Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer. Sci Rep 2016; 6:31690. [PMID: 27528092 PMCID: PMC4985659 DOI: 10.1038/srep31690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/25/2016] [Indexed: 12/29/2022] Open
Abstract
While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.
Collapse
|
18
|
Zhong D, He G, Zhao S, Li J, Lang Y, Ye W, Li Y, Jiang C, Li X. LRG1 modulates invasion and migration of glioma cell lines through TGF-β signaling pathway. Acta Histochem 2015; 117:551-8. [PMID: 26049667 DOI: 10.1016/j.acthis.2015.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Studies have shown that the abnormal expression of leucine-rich α2 glycoprotein 1 (LRG1) is associated with multiple malignancies, yet its role in glioma pathology remains to be elucidated. In this study, we investigated the role of LRG1 in regulating proliferation, migration and invasion of glioma cells by establishing glioma cell strains with constitutively silenced or elevated LRG1 expression. LRG1 overexpression and silenced cell lines demonstrated modulation of glioma cellular proliferation, migration and invasion through MTT, cell scratching and Transwell assays. Furthermore, overexpression of LRG1 led to augmented activation of transforming growth factor-β (TGF-β) signaling pathway as well as downregulation of E-cadherin and resultant enhanced invasiveness, which was reversed by TGF-β signaling pathway inhibitor SB431542. In summary, our findings suggest that LRG1 promotes invasion and migration of glioma cells through TGF-β signaling pathway.
Collapse
|
19
|
Human ortholog of Drosophila Melted impedes SMAD2 release from TGF-β receptor I to inhibit TGF-β signaling. Proc Natl Acad Sci U S A 2015; 112:E3000-9. [PMID: 26039994 DOI: 10.1073/pnas.1504671112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Drosophila melted encodes a pleckstrin homology (PH) domain-containing protein that enables normal tissue growth, metabolism, and photoreceptor differentiation by modulating Forkhead box O (FOXO), target of rapamycin, and Hippo signaling pathways. Ventricular zone expressed PH domain-containing 1 (VEPH1) is the mammalian ortholog of melted, and although it exhibits tissue-restricted expression during mouse development and is potentially amplified in several human cancers, little is known of its function. Here we explore the impact of VEPH1 expression in ovarian cancer cells by gene-expression profiling. In cells with elevated VEPH1 expression, transcriptional programs associated with metabolism and FOXO and Hippo signaling were affected, analogous to what has been reported for Melted. We also observed altered regulation of multiple transforming growth factor-β (TGF-β) target genes. Global profiling revealed that elevated VEPH1 expression suppressed TGF-β-induced transcriptional responses. This inhibitory effect was verified on selected TGF-β target genes and by reporter gene assays in multiple cell lines. We further demonstrated that VEPH1 interacts with TGF-β receptor I (TβRI) and inhibits nuclear accumulation of activated Sma- and Mad-related protein 2 (SMAD2). We identified two TβRI-interacting regions (TIRs) with opposing effects on TGF-β signaling. TIR1, located at the N terminus, inhibits canonical TGF-β signaling and promotes SMAD2 retention at TβRI, similar to full-length VEPH1. In contrast, TIR2, located at the C-terminal region encompassing the PH domain, decreases SMAD2 retention at TβRI and enhances TGF-β signaling. Our studies indicate that VEPH1 inhibits TGF-β signaling by impeding the release of activated SMAD2 from TβRI and may modulate TGF-β signaling during development and cancer initiation or progression.
Collapse
|
20
|
Wu PC, Lu JW, Yang JY, Lin IH, Ou DL, Lin YH, Chou KH, Huang WF, Wang WP, Huang YL, Hsu C, Lin LI, Lin YM, Shen CKJ, Tzeng TY. H3K9 histone methyltransferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis. Cancer Res 2014; 74:7333-43. [PMID: 25477335 DOI: 10.1158/0008-5472.can-13-3572] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant histone methylation is a frequent event during tumor development and progression. KMT1E (also known as SETDB1) is a histone H3K9 methyltransferase that contributes to epigenetic silencing of both oncogenes and tumor suppressor genes in cancer cells. In this report, we demonstrate that KMT1E acts as a metastasis suppressor that is strongly downregulated in highly metastatic lung cancer cells. Restoring KMT1E expression in this setting suppressed filopodia formation, migration, and invasive behavior. Conversely, loss of KMT1E in lung cancer cells with limited metastatic potential promoted migration in vitro and restored metastatic prowess in vivo. Mechanistic investigations indicated that KMT1E cooperates with the TGFβ-regulated complex SMAD2/3 to repress metastasis through ANXA2. Together, our findings defined an essential role for the KMT1E/SMAD2/3 repressor complex in TGFβ-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Pei-Chun Wu
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Jeng-Wei Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - I-Hsuan Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Hsiang Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Kuan-Hsien Chou
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wen-Feng Huang
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wan-Ping Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Yih-Leh Huang
- Department of Medical Research, Buddhist Dalin Tzu Chi Hospital, Chiayi, Taiwan, Republic of China
| | - Chiun Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China. Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
| | - C-K James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
21
|
Calura E, Martini P, Sales G, Beltrame L, Chiorino G, D'Incalci M, Marchini S, Romualdi C. Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA expression profiles. Nucleic Acids Res 2014; 42:e96. [PMID: 24803669 PMCID: PMC4066781 DOI: 10.1093/nar/gku354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The production rate of gene expression data is nothing less than astounding. However, with the benefit of hindsight we can assert that, since we completely ignored the non-coding part of the transcriptome, we spent the last decade to study cell mechanisms having few data in our hands. In this scenario, microRNAs, which are key post-trascriptional regulators, deserve special attention. Given the state of knowledge about their biogenesis, mechanisms of action and the numerous experimentally validated target genes, miRNAs are also gradually appearing in the formal pathway representations such as KEGG and Reactome maps. However, the number of miRNAs annotated in pathway maps are very few and pathway analyses exploiting this new regulatory layer are still lacking. To fill these gaps, we present ‘micrographite’ a new pipeline to perform topological pathway analysis integrating gene and miRNA expression profiles. Here, micrographite is used to study and dissect the epithelial ovarian cancer gene and miRNA transcriptome defining and validating a new regulatory circuit related to ovarian cancer histotype specificity.
Collapse
Affiliation(s)
- Enrica Calura
- Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20145 Milan, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, via Malta 3, 13900 Biella, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20145 Milan, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20145 Milan, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
22
|
Riester M, Wei W, Waldron L, Culhane AC, Trippa L, Oliva E, Kim SH, Michor F, Huttenhower C, Parmigiani G, Birrer MJ. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst 2014; 106:dju048. [PMID: 24700803 DOI: 10.1093/jnci/dju048] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ovarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools would help with the clinical management of these patients. METHODS We developed and validated two gene expression signatures, the first for predicting survival in advanced-stage, serous ovarian cancer and the second for predicting debulking status. We integrated 13 publicly available datasets totaling 1525 subjects. We trained prediction models using a meta-analysis variation on the compound covariable method, tested models by a "leave-one-dataset-out" procedure, and validated models in additional independent datasets. Selected genes from the debulking signature were validated by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in two further independent cohorts of 179 and 78 patients, respectively. All statistical tests were two-sided. RESULTS The survival signature stratified patients into high- and low-risk groups (hazard ratio = 2.19; 95% confidence interval [CI] = 1.84 to 2.61) statistically significantly better than the TCGA signature (P = .04). POSTN, CXCL14, FAP, NUAK1, PTCH1, and TGFBR2 were validated by qRT-PCR (P < .05) and POSTN, CXCL14, and phosphorylated Smad2/3 were validated by immunohistochemistry (P < .001) as independent predictors of debulking status. The sum of immunohistochemistry intensities for these three proteins provided a tool that classified 92.8% of samples correctly in high- and low-risk groups for suboptimal debulking (area under the curve = 0.89; 95% CI = 0.84 to 0.93). CONCLUSIONS Our survival signature provides the most accurate and validated prognostic model for early- and advanced-stage high-grade, serous ovarian cancer. The debulking signature accurately predicts the outcome of cytoreductive surgery, potentially allowing for stratification of patients for primary vs secondary cytoreduction.
Collapse
Affiliation(s)
- Markus Riester
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Wei Wei
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Levi Waldron
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Aedin C Culhane
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Lorenzo Trippa
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Esther Oliva
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Sung-Hoon Kim
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Franziska Michor
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Curtis Huttenhower
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Giovanni Parmigiani
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Michael J Birrer
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK).
| |
Collapse
|
23
|
Riester M, Wei W, Waldron L, Culhane AC, Trippa L, Oliva E, Kim SH, Michor F, Huttenhower C, Parmigiani G, Birrer MJ. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst 2014. [PMID: 24700803 DOI: 10.1093/jnci/dju048.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ovarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools would help with the clinical management of these patients. METHODS We developed and validated two gene expression signatures, the first for predicting survival in advanced-stage, serous ovarian cancer and the second for predicting debulking status. We integrated 13 publicly available datasets totaling 1525 subjects. We trained prediction models using a meta-analysis variation on the compound covariable method, tested models by a "leave-one-dataset-out" procedure, and validated models in additional independent datasets. Selected genes from the debulking signature were validated by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in two further independent cohorts of 179 and 78 patients, respectively. All statistical tests were two-sided. RESULTS The survival signature stratified patients into high- and low-risk groups (hazard ratio = 2.19; 95% confidence interval [CI] = 1.84 to 2.61) statistically significantly better than the TCGA signature (P = .04). POSTN, CXCL14, FAP, NUAK1, PTCH1, and TGFBR2 were validated by qRT-PCR (P < .05) and POSTN, CXCL14, and phosphorylated Smad2/3 were validated by immunohistochemistry (P < .001) as independent predictors of debulking status. The sum of immunohistochemistry intensities for these three proteins provided a tool that classified 92.8% of samples correctly in high- and low-risk groups for suboptimal debulking (area under the curve = 0.89; 95% CI = 0.84 to 0.93). CONCLUSIONS Our survival signature provides the most accurate and validated prognostic model for early- and advanced-stage high-grade, serous ovarian cancer. The debulking signature accurately predicts the outcome of cytoreductive surgery, potentially allowing for stratification of patients for primary vs secondary cytoreduction.
Collapse
Affiliation(s)
- Markus Riester
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Wei Wei
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Levi Waldron
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Aedin C Culhane
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Lorenzo Trippa
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Esther Oliva
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Sung-Hoon Kim
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Franziska Michor
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Curtis Huttenhower
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Giovanni Parmigiani
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
| | - Michael J Birrer
- Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK).
| |
Collapse
|
24
|
Liu B, Han SM, Tang XY, Han L, Li CZ. Overexpressed FOXC2 in ovarian cancer enhances the epithelial-to-mesenchymal transition and invasion of ovarian cancer cells. Oncol Rep 2014; 31:2545-54. [PMID: 24700112 DOI: 10.3892/or.2014.3119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/27/2014] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is a highly invasive and metastatic disease with poor prognosis, particularly if this disease is diagnosed at an advanced stage, which is often the case. Researchers have argued that ovarian cancer cells that have undergone epithelial‑to‑mesenchymal transition (EMT) acquire aggressive malignant properties; however, the relevant molecular mechanisms in this setting are poorly understood. In cancer cases, the transcription factor forkhead box protein C2 (FOXC2) has been detected, but the function of this factor in ovarian cancer tumorigenesis remains unclear. In the present study, FOXC2 was overexpressed in invasive ovarian cancer cell lines and tissues. The invasive potential of ovarian cancer cells was significantly increased by ectopic FOXC2 expression but it was significantly decreased by RNA interference targeting FOXC2. E‑cadherin and vimentin expression levels were modulated by FOXC2. These results indicated that FOXC2 was required for the maintenance of the mesenchymal phenotype after TGF‑β1 induced EMT in human ovarian cancer cells. Thus, FOXC2 or its associated gene expression program may provide an effective target for anti-EMT-based therapies. These therapies can then be performed to treat invasive ovarian tumor.
Collapse
Affiliation(s)
- Bo Liu
- Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Shu-Mei Han
- Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Xiao-Yong Tang
- Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Li Han
- Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Chang-Zhong Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
25
|
Lai NS, Chou JL, Chen GCW, Liu SQ, Lu MC, Chan MWY. Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis. Mol Biol Rep 2014; 41:3773-80. [PMID: 24532142 DOI: 10.1007/s11033-014-3242-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 02/06/2014] [Indexed: 12/17/2022]
Abstract
In this study, we aim to determine the relationship between methylation level of an inflammatory-related gene, SOCS-1 in serum samples of patients with ankylosing spondylitis (AS) and their degree of inflammation as well as serum cytokine level. Quantitative real time methylation specific PCR was performed to examine the promoter methylation of SOCS-1 in serum samples of 43 HLA-B27+ AS patients and 6 B27+ healthy controls. Degree of inflammation was accessed by spondylopathy, sacroiliitis as well as acute phase reactant, erythrocyte sedimentation rate and C-reactive protein (CRP). Serum IL-6 and TNF-α level was determined by ELISA assay. SOCS-1 methylation can only be found in serums samples from patients but not normal control. Methylation of SOCS-1 significantly associated with severity of patient's spondylopathy (P < 0.005), sacroiliitis (P < 0.005) and acute phase reactant CRP (P = 0.0278). AS patients also exhibited higher serum IL-6 (P < 0.001) and TNF-α level (P < 0.001). Importantly, patients with high serum IL-6 or TNF-α level demonstrated a significantly higher SOCS-1 methylation (P < 0.001). In conclusion, this proof-of-principle study suggested that methylation of SOCS-1 can be detected in serum of HLA-B27+ AS patients but not in B27+ controls. The pathogenic potential of SOCS-1 methylation in AS deserves further investigation.
Collapse
Affiliation(s)
- Ning-Sheng Lai
- Department of Allergy, Immunology and Rheumatology, Buddhist Dalin Tzu Chi General Hospital, Dalin, Chia-Yi, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
26
|
Ataie-Kachoie P, Badar S, Morris DL, Pourgholami MH. Minocycline targets the NF-κB Nexus through suppression of TGF-β1-TAK1-IκB signaling in ovarian cancer. Mol Cancer Res 2013; 11:1279-91. [PMID: 23858099 DOI: 10.1158/1541-7786.mcr-13-0239] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Substantial evidence supports the critical role of NF-κB in ovarian cancer. Minocycline, a tetracycline, has been shown to exhibit beneficial effects in this malignancy through regulation of a cohort of genes that overlap significantly with the NF-κB transcriptome. Here, it was examined whether or not the molecular mechanism could be attributed to modulation of NF-κB signaling using a combination of in vitro and in vivo models. Minocycline suppressed constitutive NF-κB activation in OVCAR-3 and SKOV-3 ovarian carcinoma cells and was correlated with attenuation of IκBα kinase (IKK) activation, IκBα phosphorylation and degradation, and p65 phosphorylation and nuclear translocation. The inhibition of IKK was found to be associated with suppression of TGF-β-activated-kinase-1 (TAK1) activation and its dissociation from TAK1-binding-protein-1 (TAB1), an indispensable functional mediator between TGF-β and TAK1. Further studies demonstrated that minocycline downregulated TGF-β1 expression. Enforced TGF-β1 expression induced NF-κB activity, and minocycline rescued this effect. Consistent with this finding, TGF-β1 knockdown suppressed NF-κB activation and abrogated the inhibitory effect of minocycline on this transcription factor. These results suggest that the minocycline-induced suppression of NF-κB activity is mediated, in part, through inhibition of TGF-β1. Furthermore, the influence of minocycline on NF-κB pathway activation was examined in female nude mice harboring intraperitoneal OVCAR-3 tumors. Both acute and chronic administration of minocycline led to suppression of p65 phosphorylation and nuclear translocation accompanied by downregulation of NF-κB activity and endogenous protein levels of its target gene products. These data reveal the therapeutic potential of minocycline as an agent targeting the pro-oncogenic TGF-β-NF-κB axis in ovarian cancer. IMPLICATIONS This preclinical study lends support to the notion that ovarian cancer management would benefit from administration of minocycline.
Collapse
Affiliation(s)
- Parvin Ataie-Kachoie
- Professor and Head of Department of Surgery, Level 3 Pitney Building, St. George Hospital, Gray St., Kogarah, Sydney, NSW 2217, Australia.
| | | | | | | |
Collapse
|
27
|
Keita M, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle 2013; 12:972-86. [PMID: 23442798 DOI: 10.4161/cc.23963] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G 1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cheng JC, Auersperg N, Leung PCK. TGF-beta induces serous borderline ovarian tumor cell invasion by activating EMT but triggers apoptosis in low-grade serous ovarian carcinoma cells. PLoS One 2012; 7:e42436. [PMID: 22905131 PMCID: PMC3419689 DOI: 10.1371/journal.pone.0042436] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/09/2012] [Indexed: 12/02/2022] Open
Abstract
Apoptosis in ovarian surface epithelial (OSE) cells is induced by transforming growth factor-beta (TGF-β). However, high-grade serous ovarian carcinomas (HGC) are refractory to the inhibitory functions of TGF-β; their invasiveness is up-regulated by TGF-β through epithelial-mesenchymal transition (EMT) activation. Serous borderline ovarian tumors (SBOT) have been recognized as distinct entities that give rise to invasive low-grade serous carcinomas (LGC), which have a relatively poor prognosis and are unrelated to HGC. While it is not fully understood how TGF-β plays disparate roles in OSE cells and its malignant derivative HGC, its role in SBOT and LGC remains unknown. Here we demonstrate the effects of TGF-β on cultured SBOT3.1 and LGC-derived MPSC1 cells, which express TGF-β type I and type II receptors. TGF-β treatment induced the invasiveness of SBOT3.1 cells but reduced the invasiveness of MPSC1 cells. The analysis of apoptosis, which was assessed by cleaved caspase-3 and trypan blue exclusion assay, revealed TGF-β-induced apoptosis in MPSC1, but not SBOT3.1 cells. The pro-apoptotic effect of TGF-β on LGC cells was confirmed in another immortalized LGC cell line ILGC. TGF-β treatment led to the activation of Smad3 but not Smad2. The specific TβRI inhibitor SB431542 and TβRI siRNA abolished the SBOT3.1 invasion induced by TGF-β, and it prevented TGF-β-induced apoptosis in MPSC1 cells. In SBOT3.1 cells, TGF-β down-regulated E-cadherin and concurrently up-regulated N-cadherin. TGF-β up-regulated the expression of the transcriptional repressors of E-cadherin, Snail, Slug, Twist and ZEB1. In contrast, co-treatment with SB431542 and TβRI depletion by siRNA abolished the effects of TGF-β on the relative cadherin expression levels and that of Snail, Slug, Twist and ZEB1 as well. This study demonstrates dual TGF-β functions: the induction of SBOT cell invasion by EMT activation and apoptosis promotion in LGC cells.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nelly Auersperg
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C. K. Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
29
|
Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012; 40:9379-91. [PMID: 22879375 PMCID: PMC3479191 DOI: 10.1093/nar/gks725] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent technology has made it possible to simultaneously perform multi-platform genomic profiling (e.g. DNA methylation (DM) and gene expression (GE)) of biological samples, resulting in so-called ‘multi-dimensional genomic data’. Such data provide unique opportunities to study the coordination between regulatory mechanisms on multiple levels. However, integrative analysis of multi-dimensional genomics data for the discovery of combinatorial patterns is currently lacking. Here, we adopt a joint matrix factorization technique to address this challenge. This method projects multiple types of genomic data onto a common coordinate system, in which heterogeneous variables weighted highly in the same projected direction form a multi-dimensional module (md-module). Genomic variables in such modules are characterized by significant correlations and likely functional associations. We applied this method to the DM, GE, and microRNA expression data of 385 ovarian cancer samples from the The Cancer Genome Atlas project. These md-modules revealed perturbed pathways that would have been overlooked with only a single type of data, uncovered associations between different layers of cellular activities and allowed the identification of clinically distinct patient subgroups. Our study provides an useful protocol for uncovering hidden patterns and their biological implications in multi-dimensional ‘omic’ data.
Collapse
Affiliation(s)
- Shihua Zhang
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
30
|
HE LICAI, GAO FENGHOU, XU HANZHANG, ZHAO SHAN, MA CHUNMIN, LI JUNE, ZHANG SHU, WU YINGLI. Ikaros inhibits proliferation and, through upregulation of Slug, increases metastatic ability of ovarian serous adenocarcinoma cells. Oncol Rep 2012; 28:1399-405. [DOI: 10.3892/or.2012.1946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/13/2012] [Indexed: 11/05/2022] Open
|
31
|
Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 2011; 31:2062-74. [PMID: 21874049 PMCID: PMC3330264 DOI: 10.1038/onc.2011.383] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epithelial-mesenchymal (EMT) and mesenchymal-epithelial (MET) transitions occur in the development of human tumorigenesis and are part of the natural history of the process to adapt to the changing microenvironment. In this setting, the miR-200 family is recognized as a master regulator of the epithelial phenotype by targeting ZEB1 and ZEB2, two important transcriptional repressors of the cell adherence (E-cadherin) and polarity (CRB3 and LGL2) genes. Recently, the putative DNA methylation associated inactivation of various miR-200 members has been described in cancer. Herein, we show that the miR-200ba429 and miR-200c141 transcripts undergo a dynamic epigenetic regulation linked to EMT or MET phenotypes in tumor progression. The 5'-CpG islands of both miR-200 loci were found unmethylated and coupled to the expression of the corresponding miRNAs in human cancer cell lines with epithelial features, such as low levels of ZEB1/ZEB2 and high expression of E-cadherin, CRB3 and LGL2, while CpG island hypermethylation-associated silencing was observed in transformed cells with mesenchymal characteristics. The recovery of miR-200ba429 and miR-200c141 expression by stable transfection in the hypermethylated cells restored the epithelial markers and inhibited migration in cell culture and tumoral growth and metastasis formation in nude mice. We also discovered, using both cell culture and animal models, that the miR-200 epigenetic silencing is not an static and fixed process but it can be shifted to hypermethylated or unmethylated 5'-CpG island status corresponding to the EMT and MET phenotypes, respectively. In fact, careful laser microdissection in human primary colorectal tumorigenesis unveiled that in normal colon mucosa crypts (epithelia) and stroma (mesenchyma) already are unmethylated and methylated at these loci, respectively; and that the colorectal tumors undergo selective miR-200 hypermethylation of their epithelial component. These findings indicate that the epigenetic silencing plasticity of the miR-200 family contributes to the evolving and adapting phenotypes of human tumors.
Collapse
|
32
|
Yeh KT, Chen TH, Yang HW, Chou JL, Chen LY, Yeh CM, Chen YH, Lin RI, Su HY, Chen GCW, Deatherage DE, Huang YW, Yan PS, Lin HJ, Nephew KP, Huang THM, Lai HC, Chan MWY. Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1 in ovarian cancer. Epigenetics 2011; 6:727-39. [PMID: 21540640 DOI: 10.4161/epi.6.6.15856] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant TGFβ signaling pathway may alter the expression of down-stream targets and promotes ovarian carcinogenesis. However, the mechanism of this impairment is not fully understood. Our previous study has identified RunX1T1 as a putative SMAD4 target in an immortalized ovarian surface epithelial cell line, IOSE. In this study, we report that transcription of RunX1T1 was confirmed to be positively regulated by SMAD4 in IOSE cells and epigenetically silenced in a panel of ovarian cancer cell lines by promoter hypermethylation and histone methylation at H3 lysine 9. SMAD4 depletion increased repressive histone modifications of RunX1T1 promoter without affecting promoter methylation in IOSE cells. Epigenetic treatment can restore RunX1T1 expression by reversing its epigenetic status in MCP3 ovarian cancer cells. When transiently treated with a demethylating agent, the expression of RunX1T1 was partially restored in MCP3 cells, but gradual re-silencing through promoter re-methylation was observed after the treatment. Interestingly, SMAD4 knockdown accelerated this re-silencing process, suggesting that normal TGF-beta signaling is essential for the maintenance of RunX1T1 expression. In vivo analysis confirmed that hypermethylation of RunX1T1 was detected in 35.7% (34/95) of ovarian tumors with high clinical stages (P=0.035) and in 83% (5/6) of primary ovarian cancer-initiating cells. Additionally, concurrent methylation of RunX1T1 and another SMAD4 target, FBXO32 which was previously found to be hypermethylated in ovarian cancer was observed in this same sample cohort (P< 0.05). Restoration of RunX1T1 inhibited cancer cell growth. Taken together, dysregulated TGFβ/SMAD4 signaling may lead to epigenetic silencing of a putative tumor suppressor, RunX1T1, during ovarian carcinogenesis.
Collapse
Affiliation(s)
- Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|