1
|
Zhang N, Shen S, Yang M, He S, Liu C, Li H, Lu T, Liu H, Hu Q, Tang W, Chen Y. Design, Synthesis, and Biological Evaluation of a Novel NIK Inhibitor with Anti-Inflammatory and Hepatoprotective Effects for Sepsis Treatment. J Med Chem 2024; 67:5617-5641. [PMID: 38563549 DOI: 10.1021/acs.jmedchem.3c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
NIK plays a crucial role in the noncanonical NF-κB signaling pathway associated with diverse inflammatory and autoimmune diseases. Our study presents compound 54, a novel NIK inhibitor, designed through a structure-based scaffold-hopping approach from the previously identified B022. Compound 54 demonstrates remarkable selectivity and potency against NIK both in vitro and in vivo, effectively suppressing pro-inflammatory cytokines and nitric oxide production. In mouse models, compound 54 protected against LPS-induced systemic sepsis, reducing AST, ALT, and AKP liver injury markers. Additionally, it also attenuates sepsis-induced lung and kidney damage. Mechanistically, compound 54 blocks the noncanonical NF-κB signaling pathway by targeting NIK, preventing p100 to p52 processing. This work reveals a novel class of NIK inhibitors with significant potential for sepsis therapy.
Collapse
Affiliation(s)
- Nanxia Zhang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mengyu Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Sijie He
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
2
|
Haselager MV, Eldering E. The Therapeutic Potential of Targeting NIK in B Cell Malignancies. Front Immunol 2022; 13:930986. [PMID: 35911754 PMCID: PMC9326486 DOI: 10.3389/fimmu.2022.930986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is a key player in non-canonical NF-κB signaling, involved in several fundamental cellular processes, and is crucial for B cell function and development. In response to certain signals and ligands, such as CD40, BAFF and lymphotoxin-β activation, NIK protein stabilization and subsequent NF-κB activation is achieved. Overexpression or overactivation of NIK is associated with several malignancies, including activating mutations in multiple myeloma (MM) and gain-of-function in MALT lymphoma as a result of post-translational modifications. Consequently, drug discovery studies are devoted to pharmacologic modulation of NIK and development of specific novel small molecule inhibitors. However, disease-specific in vitro and in vivo studies investigating NIK inhibition are as of yet lacking, and clinical trials with NIK inhibitors remain to be initiated. In order to bridge the gap between bench and bedside, this review first briefly summarizes our current knowledge on NIK activation, functional activity and stability. Secondly, we compare current inhibitors targeting NIK based on efficacy and specificity, and provide a future perspective on the therapeutic potential of NIK inhibition in B cell malignancies.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- *Correspondence: Eric Eldering,
| |
Collapse
|
3
|
Linked-read whole-genome sequencing resolves common and private structural variants in multiple myeloma. Blood Adv 2022; 6:5009-5023. [PMID: 35675515 PMCID: PMC9631623 DOI: 10.1182/bloodadvances.2021006720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
Linked-read WGS can be performed without DNA purification and allows for resolution of the diverse structural variants found in MM. Linked-read WGS can, as a standalone assay, provide comprehensive genetics in myeloma and other diseases with complex genomes.
Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified >150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.
Collapse
|
4
|
Halkowycz P, Grimshaw CE, Keung W, Tanis P, Proffitt C, Peacock K, de Jong R, Sabat M, Banerjee U, Ermolieff J. Biochemical and Cellular Profile of NIK Inhibitors with Long Residence Times. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:676-683. [PMID: 33084478 DOI: 10.1177/2472555220964450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two different signaling pathways lead to the activation of the transcription factor NF-κB, initiating distinct biological responses: The canonical NF-κB pathway activation has been implicated in host immunity and inflammatory responses, whereas the noncanonical pathway activation has been involved in lymphoid organ development and B-cell maturation, as well as in the development of chronic inflammatory diseases and some hematologic cancers. The NF-κB-inducing kinase (NIK) is a cytoplasmic Ser/Thr kinase and is a key regulator of the noncanonical pathway. NIK activation results in the processing of the p100 subunit to p52, leading to the formation of the RelB/p52 complex and noncanonical pathway activation. Because of its role in the development of lymphoid malignancies, this kinase has always been considered as an attractive target for the treatment of certain types of cancers and immune diseases. We at Takeda have pursued a drug discovery program to identify small-molecule inhibitors against NIK. This report provides an overview of the data generated from our screening campaign using a small fragment library. Most importantly, we also provide a kinetic analysis of published compounds and chemical series developed at Takeda that are associated with a slow tight-binding mechanism and excellent cellular potency.
Collapse
Affiliation(s)
- Petro Halkowycz
- Medicinal Chemistry-In Vitro Pharmacology Gastrointestinal, Takeda Pharmaceutical, San Diego, CA, USA
| | | | | | - Paul Tanis
- Medicinal Chemistry CNS, Takeda Pharmaceutical, San Diego, CA, USA
| | - Chris Proffitt
- Gastrointestinal-Immunology, Takeda Pharmaceutical, San Diego, CA, USA
| | | | - Ron de Jong
- Ron de Jong Consulting, LLC, San Diego, CA, USA
| | - Mark Sabat
- Medicinal Chemistry-In Vitro Pharmacology Gastrointestinal, Takeda Pharmaceutical, San Diego, CA, USA
| | - Urmi Banerjee
- CNS-In Vitro Pharmacology, Takeda Pharmaceutical, San Diego, CA, USA
| | - Jacques Ermolieff
- Medicinal Chemistry-In Vitro Pharmacology Gastrointestinal, Takeda Pharmaceutical, San Diego, CA, USA
| |
Collapse
|
5
|
Cheng G, Mei XB, Yan YY, Chen J, Zhang B, Li J, Dong XW, Lin NM, Zhou YB. Identification of new NIK inhibitors by discriminatory analysis-based molecular docking and biological evaluation. Arch Pharm (Weinheim) 2019; 352:e1800374. [PMID: 31116887 DOI: 10.1002/ardp.201800374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
NF-κB inducing kinase (NIK) is a key regulator in the noncanonical nuclear factor κB cells (NF-κB) signaling pathway. Dysregulation of NIK is often related with autoimmune disorders and malignancies. However, the number of reported NIK inhibitors is scarce. Discriminatory analysis-based molecular docking was used to examine the accuracy of the binding conformation and to estimate the binding affinity, leading to the identification of several new NIK inhibitors with moderate IC50 (ranging from 48.9 to 103.4 μM). Among them, compound 5, the most potent one (IC50 48.9 ± 6.9 μM), also showed moderate antiproliferation activity against cancer SW1990 cells, with an IC50 value of 20.1 ± 6.0 μM. Further dynamic simulations were performed to provide more in-depth details on the binding conformation of compound 5 and the NIK protein, providing some structural clues for further optimization of compound 5 as a novel NIK inhibitor.
Collapse
Affiliation(s)
- Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiao-Bing Mei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - You-You Yan
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Bo Zhang
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jia Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Wu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Neng-Ming Lin
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
7
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
8
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
10
|
Katakam AK, Brightbill H, Franci C, Kung C, Nunez V, Jones C, Peng I, Jeet S, Wu LC, Mellman I, Delamarre L, Austin CD. Dendritic cells require NIK for CD40-dependent cross-priming of CD8+ T cells. Proc Natl Acad Sci U S A 2015; 112:14664-9. [PMID: 26561586 PMCID: PMC4664370 DOI: 10.1073/pnas.1520627112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB-inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c(+) cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8(+) T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8(+) DCs in vitro, namely antigen cross-presentation to CD8(+) T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4(+) T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.
Collapse
Affiliation(s)
- Anand K Katakam
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Hans Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Christian Franci
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Chung Kung
- Department of Mouse Genetics, Genentech Inc., South San Francisco, CA 94080
| | - Victor Nunez
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Charles Jones
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Ira Mellman
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080;
| | - Lélia Delamarre
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080;
| |
Collapse
|
11
|
Riehmer V, Gietzelt J, Beyer U, Hentschel B, Westphal M, Schackert G, Sabel MC, Radlwimmer B, Pietsch T, Reifenberger G, Weller M, Weber RG, Loeffler M. Genomic profiling reveals distinctive molecular relapse patterns in IDH1/2 wild-type glioblastoma. Genes Chromosomes Cancer 2014; 53:589-605. [PMID: 24706357 DOI: 10.1002/gcc.22169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/12/2014] [Indexed: 12/28/2022] Open
Abstract
Molecular changes associated with the progression of glioblastoma after standard radiochemotherapy remain poorly understood. We compared genomic profiles of 27 paired primary and recurrent IDH1/2 wild-type glioblastomas by genome-wide array-based comparative genomic hybridization. By bioinformatic analysis, primary and recurrent tumor profiles were normalized and segmented, chromosomal gains and losses identified taking the tumor cell content into account, and difference profiles deduced. Seven of 27 (26%) pairs lacked DNA copy number differences between primary and recurrent tumors (equal pairs). The recurrent tumors in 9/27 (33%) pairs contained all chromosomal imbalances of the primary tumors plus additional ones, suggesting a sequential acquisition of and/or selection for aberrations during progression (sequential pairs). In 11/27 (41%) pairs, the profiles of primary and recurrent tumors were divergent, i.e., the recurrent tumors contained additional aberrations but had lost others, suggesting a polyclonal composition of the primary tumors and considerable clonal evolution (discrepant pairs). Losses on 9p21.3 harboring the CDKN2A/B locus were significantly more common in primary tumors from sequential and discrepant (nonequal) pairs. Nonequal pairs showed ten regions of recurrent genomic differences between primary and recurrent tumors harboring 46 candidate genes associated with tumor recurrence. In particular, copy numbers of genes encoding apoptosis regulators were frequently changed at progression. In summary, approximately 25% of IDH1/2 wild-type glioblastoma pairs have stable genomic imbalances. In contrast, approximately 75% of IDH1/2 wild-type glioblastomas undergo further genomic aberrations and alter their clonal composition upon recurrence impacting their genomic profile, a process possibly facilitated by 9p21.3 loss in the primary tumor. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vera Riehmer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lu X, An H, Jin R, Zou M, Guo Y, Su PF, Liu D, Shyr Y, Yarbrough WG. PPM1A is a RelA phosphatase with tumor suppressor-like activity. Oncogene 2013; 33:2918-27. [PMID: 23812431 DOI: 10.1038/onc.2013.246] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 12/28/2022]
Abstract
Nuclear factor-κB (NF-κB) signaling contributes to human disease processes, notably inflammatory diseases and cancer. NF-κB has a role in tumorigenesis and tumor growth, as well as promotion of metastases. Mechanisms responsible for abnormal NF-κB activation are not fully elucidated; however, RelA phosphorylation, particularly at serine residues S536 and S276, is critical for RelA function. Kinases that phosphorylate RelA promote oncogenic behaviors, suggesting that phosphatases targeting RelA could have tumor-inhibiting activities; however, few RelA phosphatases have been identified. Here, we identified tumor inhibitory and RelA phosphatase activities of the protein phosphatase 2C (PP2C) phosphatase family member, PPM1A. We show that PPM1A directly dephosphorylated RelA at residues S536 and S276 and selectively inhibited NF-κB transcriptional activity, resulting in decreased expression of monocyte chemotactic protein-1/chemokine (C-C motif) ligand 2 and interleukin-6, cytokines implicated in cancer metastasis. PPM1A depletion enhanced NF-κB-dependent cell invasion, whereas PPM1A expression inhibited invasion. Analyses of human expression data revealed that metastatic prostate cancer deposits had lower PPM1A expression compared with primary tumors without distant metastases. A hematogenous metastasis mouse model revealed that PPM1A expression inhibited bony metastases of prostate cancer cells after vascular injection. In summary, our findings suggest that PPM1A is a RelA phosphatase that regulates NF-κB activity and that PPM1A has tumor suppressor-like activity. Our analyses also suggest that PPM1A inhibits prostate cancer metastases and as neither gene deletions nor inactivating mutations of PPM1A have been described, increasing PPM1A activity in tumors represents a potential therapeutic strategy to inhibit NF-κB signaling or bony metastases in human cancer.
Collapse
Affiliation(s)
- X Lu
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - H An
- 1] Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA [2] Division of Surgical Sciences, Vanderbilt University, Nashville, TN, USA
| | - R Jin
- 1] Vanderbilt Prostate Cancer Center, Vanderbilt University, Nashville, TN, USA [2] Department of Urology, Vanderbilt University, Nashville, TN, USA
| | - M Zou
- Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA
| | - Y Guo
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - P-F Su
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - D Liu
- Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA
| | - Y Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - W G Yarbrough
- 1] Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA [2] Department of Pathology, Yale University, New Haven, CT, USA [3] Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
13
|
Novel strategies for immunotherapy in multiple myeloma: previous experience and future directions. Clin Dev Immunol 2012; 2012:753407. [PMID: 22649466 PMCID: PMC3357929 DOI: 10.1155/2012/753407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a life-threatening haematological malignancy for which standard therapy is inadequate. Autologous stem cell transplantation is a relatively effective treatment, but residual malignant sites may cause relapse. Allogeneic transplantation may result in durable responses due to antitumour immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM.
Cellular immunotherapy using specific antigen-presenting cells (APCs), to overcome aspects of immune incompetence in MM patients, has received great attention, and numerous clinical trials have evaluated the potential for dendritic cell (DC) vaccines as a novel immunotherapeutic approach. This paper will summarize the data investigating aspects of immunity concerning MM, immunotherapy for patients with MM, and strategies, on the way, to target the plasma cell more selectively. We also include the MM antigens and their specific antibodies that are of potential use for MM humoral immunotherapy, because they have demonstrated the most promising preclinical results.
Collapse
|
14
|
Murray SE, Polesso F, Rowe AM, Basak S, Koguchi Y, Toren KG, Hoffmann A, Parker DC. NF-κB–inducing kinase plays an essential T cell–intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. J Clin Invest 2011; 121:4775-86. [PMID: 22045568 PMCID: PMC3223068 DOI: 10.1172/jci44943] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/21/2011] [Indexed: 11/17/2022] Open
Abstract
NF-κB–inducing kinase (NIK) is an essential upstream kinase in noncanonical NF-κB signaling. NIK-dependent NF-κB activation downstream of several TNF receptor family members mediates lymphoid organ development and B cell homeostasis. Peripheral T cell populations are normal in the absence of NIK, but the role of NIK during in vivo T cell responses to antigen has been obscured by other developmental defects in NIK-deficient mice. Here, we have identified a T cell–intrinsic requirement for NIK in graft-versus-host disease (GVHD), wherein NIK-deficient mouse T cells transferred into MHC class II mismatched recipients failed to cause GVHD. Although NIK was not necessary for antigen receptor signaling, it was absolutely required for costimulation through the TNF receptor family member OX40 (also known as CD134). When we conditionally overexpressed NIK in T cells, mice suffered rapid and fatal autoimmunity characterized by hyperactive effector T cells and poorly suppressive Foxp3(+) Tregs. Together, these data illuminate a critical T cell–intrinsic role for NIK during immune responses and suggest that its tight regulation is critical for avoiding autoimmunity.
Collapse
Affiliation(s)
- Susan E Murray
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Verhelst K, Carpentier I, Beyaert R. Regulation of TNF-induced NF-κB activation by different cytoplasmic ubiquitination events. Cytokine Growth Factor Rev 2011; 22:277-86. [DOI: 10.1016/j.cytogfr.2011.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|