1
|
Pandey P, Lakhanpal S, Mahmood D, Kang HN, Kim B, Kang S, Choi J, Choi M, Pandey S, Bhat M, Sharma S, Khan F, Park MN, Kim B. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front Pharmacol 2025; 15:1513422. [PMID: 39834817 PMCID: PMC11743680 DOI: 10.3389/fphar.2024.1513422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Nuclear factor-κB (NF-κB) cell signaling pathway is essential for the progression and development of numerous human disorders, including cancer. NF-κB signaling pathway regulates a wide range of physiological processes, such as cell survival, growth, and migration. Deregulated NF-kB signaling resulted in unregulated cell proliferation, viability, movement, and invasion, thus promoting tumor development. Recent findings have increasingly shown that plant derived phytochemicals that inhibit NF-κB signaling have the potential to be employed in cancer therapeutics. Flavonoids are a group of polyphenolic natural compounds present in various plants and their fruits, vegetables, and leaves. These compounds have numerous medicinal properties owing to their antioxidant, anti-inflammatory, antiviral, and antitumor characteristics. The main mechanism by which these flavonoids exhibit their anticancer potential is via potent antioxidative and immunomodulatory actions. Current research reports have demonstrated that these flavonoids exhibited their anticancer effects via suppressing the NF-κB signaling. Based on these facts, we have comprehensively outlined the cancer promoting role of NF-κB pathway in various processes including tumor progression, drug resistance, angiogenesis and metastasis. In addition to these, we also summarize the anticancer potential of flavonoids by specifically targeting the NF-κB pathway in various types of cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Byunggyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Gado DA, Abdalla MA, Ehlers MM, McGaw LJ. Pharmacological properties and radical scavenging potential of 5-demethyl sinensetin obtained from Loxostylis alata. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 156:385-391. [DOI: 10.1016/j.sajb.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Wu Y, Li Q, Lv LL, Chen JX, Ying HF, Ruan M, Zhu WH, Xu JY, Zhang CY, Zhang KY, Guo YB, Zhu WR, Zheng L. Nobiletin inhibits breast cancer cell migration and invasion by suppressing the IL-6-induced ERK-STAT and JNK-c-JUN pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154610. [PMID: 36584607 DOI: 10.1016/j.phymed.2022.154610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Breast cancer is one of the most common cancers in women, affecting more than 2 million women worldwide annually. However, effective treatments for breast cancer are limited. Nobiletin is a flavonoid present in the dried mature pericarp of mandarin orange (Citrus reticulata Blanco), which is used to prepare Citri Renetulatae Pericarpium and can inhibit tumour growth and progression according to modern pharmacological studies. However, whether nobiletin exhibits an antimetastatic role in breast cancer and its potential mechanism need to be further investigated. PURPOSE This study aims to evaluate the inhibitory effect of nobiletin on breast cancer and to elucidate potential mechanisms against invasion and migration. METHODS Cell viability was determined by cell counting kit-8 and colony formation assays. Wound healing and Boyden chamber assays detected cancer cell migration and invasion capabilities. Immunoblotting and qPCR were applied to determine the protein and mRNA expression levels of extracellular signal-regulated kinases (ERK) and the c-Jun N-terminal kinase (JNK) signalling pathways. Molecular docking was used to assess the degree of nobiletin binding to phosphatidylinositol 3-kinase (PI3K). Xenografts and liver metastases were constructed in BALB/c nude mice to evaluate the anticancer effect of nobiletin in vivo. H&E staining and immunohistochemistry were used to detect proliferation and the expression of related proteins. RESULTS Nobiletin induced cell death in a concentration- and time-dependent manner and possessed anti-invasion and anti-migration effects on MCF-7 and T47D cells by suppressing the interleukin-6-induced ERK and JNK signalling pathways. In addition, nobiletin docked with the binding site of PI3K, and the binding score was -8.0 kcal/mol. Furthermore, the inhibition of breast cancer growth and metastasis by nobiletin was demonstrated by constructing xenografts and liver metastases in vivo. CONCLUSION Nobiletin inhibited liver metastasis of breast cancer by downregulating the ERK-STAT and JNK-c-JUN pathways, and its safety and efficacy were verified, indicating the potential of nobiletin as an anticancer agent.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Hai-Feng Ying
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Ming Ruan
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Wen-Hua Zhu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Jia-Yue Xu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chen-Yiyu Zhang
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Kai-Yuan Zhang
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Yuan-Biao Guo
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Wei-Rong Zhu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
4
|
Chen Q, Gu Y, Tan C, Sundararajan B, Li Z, Wang D, Zhou Z. Comparative effects of five polymethoxyflavones purified from Citrus tangerina on inflammation and cancer. Front Nutr 2022; 9:963662. [PMID: 36159482 PMCID: PMC9493082 DOI: 10.3389/fnut.2022.963662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Although the Citrus tangerina cultivar “Dahongpao” (CTD) has been established as a rich source of polymethoxyflavones (PMFs) with anti-inflammatory and anti-cancer properties, their individual effects on cellular signaling remain to be elucidated. In this study, five major PMFs from the peel of CTD were isolated, including sinensetin, tetramethyl-O-scutellarin (5,6,7,4′-tetramethoxyflavone), nobiletin (5,6,7,8,3′, 4′-hexamethoxyflavone), tangeretin (5,6,7,8,4′-pentamethoxyflavone), and 5-demethylnobiletin (5-OH-6,7,8,3′,4′-pentamethoxyflavone). These PMFs were found to significantly (p < 0.05) inhibit the production of NO and biomarkers of chronic inflammation (TNF-α and IL-6). Additionally, they effectively suppressed mRNA biomarkers of acute inflammation (Cox-2 and iNOS), and to varying degrees promoted the activation of anti-inflammatory cytokines (IL-4, IL-13, TNF-β, and IL-10). Among the five PMFs, tangeretin was found to have a considerable anti-proliferative effect on tumor cell lines (PC-3 and DU145) and synergistically enhanced the cytotoxicity of mitoxantrone, partially via activation of the PTEN/AKT pathway. The findings of this study provide valuable insights into the activity of different PMF monomers and advance the understanding of the roles of PMFs in promoting apoptotic and anti-cancer effects.
Collapse
Affiliation(s)
- Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yue Gu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chun Tan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Balasubramani Sundararajan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhenqing Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- *Correspondence: Dan Wang
| | - Zhiqin Zhou
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
- Zhiqin Zhou
| |
Collapse
|
5
|
Chen YY, Liang JJ, Wang DL, Chen JB, Cao JP, Wang Y, Sun CD. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:6309-6329. [PMID: 35089821 DOI: 10.1080/10408398.2022.2030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a leading cause of death, second only to heart disease, cancer has always been one of the burning topics in medical research. When targeting multiple signal pathways in tumorigenesis chemoprevention, using natural or synthetic anti-cancer drugs is a vital strategy to reduce cancer damage. However, toxic effects, multidrug resistance (MDR) as well as cancer stem cells (CSCs) all prominently limited the clinical application of conventional anticancer drugs. With low side effects, strong biological activity, unique mechanism, and wide range of targets, natural products derived from plants are considered significant sources for new drug development. Nobiletin is one of the most attractive compounds, a unique flavonoid primarily isolated from the peel of citrus fruits. Numerous studies in vitro and in vivo have suggested that nobiletin and its derivatives possess the eminent potential to become effective cancer chemoprevention agents through various cellular and molecular levels. This article aims to comprehensively review the anticancer efficacy and specific mechanisms of nobiletin, enhancing our understanding of its chemoprevention properties and providing the latest research findings. At the end of this review, we also give some discussion and future perspectives regarding the challenges and opportunities in nobiletin efficient exploitation.
Collapse
Affiliation(s)
- Yun-Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Deng-Liang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Mechanistic Insights of Anti-Immune Evasion by Nobiletin through Regulating miR-197/STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer (NSCLC) Cells. Int J Mol Sci 2021; 22:ijms22189843. [PMID: 34576006 PMCID: PMC8468939 DOI: 10.3390/ijms22189843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.
Collapse
|
7
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
8
|
The Application of Citrus folium in Breast Cancer and the Mechanism of Its Main Component Nobiletin: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2847466. [PMID: 34257674 PMCID: PMC8260297 DOI: 10.1155/2021/2847466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023]
Abstract
Citrus folium and its main ingredient nobiletin (NOB) have received widespread attention in recent years due to their antitumor effects. The antitumor effect of Citrus folium is related to the traditional use, mainly in its Chinese medicinal properties of soothing the liver and promoting qi, resolving phlegm, and dispelling stagnation. Some studies have proved that Citrus folium and NOB are more effective for triple-negative breast cancer (TNBC), which is related to the syndrome of stagnation of liver qi. From the perspective of modern biomedical research, NOB has anticancer effects. Its potential molecular mechanisms include inhibition of the cell cycle, induction of apoptosis, and inhibition of angiogenesis, invasion, and migration. Citrus folium and NOB can also reduce the side effects of chemotherapy drugs and reverse multidrug resistance (MDR). However, more research studies are needed to clarify the underlying mechanisms. The modern evidence of Citrus folium and NOB in breast cancer treatment has a strong connection with the traditional concepts and laws of applying Citrus folium in Chinese medicine (CM). As a low-toxic anticancer drug candidate, NOB and its structural changes, Citrus folium, and compound prescriptions will attract scientists to use advanced technologies such as genomics, proteomics, and metabolomics to study its potential anticancer effects and mechanisms. On the contrary, there are relatively few studies on the anticancer effects of Citrus folium and NOB in vivo. The clinical application of Citrus folium and NOB as new cancer treatment drugs requires in vivo verification and further anticancer mechanism research. This review aims to provide reference for the treatment of breast cancer by Chinese medicine.
Collapse
|
9
|
Chuang YC, Hsieh MC, Lin CC, Lo YS, Ho HY, Hsieh MJ, Lin JT. Pinosylvin inhibits migration and invasion of nasopharyngeal carcinoma cancer cells via regulation of epithelial‑mesenchymal transition and inhibition of MMP‑2. Oncol Rep 2021; 46:143. [PMID: 34080661 PMCID: PMC8165580 DOI: 10.3892/or.2021.8094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor located in the nasopharynx with highly invasive and metastatic properties. Metastasis is a primary cause of mortality in patients with NPC. The terpenoid polyphenol pinosylvin is a known functional compound of the Pinus species that exhibits anti‑inflammatory effects; however, the effect of pinosylvin on human NPC cell migration and invasion is unclear. The present study aimed to investigate the functional role of pinosylvin in NPC cells (NPC‑039, NPC‑BM and RPMI 2650). Gap closure and Transwell assay indicated that pinosylvin at increasing concentrations inhibited migration and invasion of NPC‑039 and NPC‑BM cells. In addition to inhibiting the enzyme activity of MMP‑2, pinosylvin also decreased the protein expression levels of MMP‑2 and MMP‑9. Pinosylvin decreased the expression of vimentin and N‑cadherin and significantly increased the expression of zonula occludens‑1 and E‑cadherin in NPC cells. Additionally, pinosylvin suppressed the invasion and migration ability of NPC‑039 and NPC‑BM cells by mediating the p38, ERK1/2 and JNK1/2 pathways. The present results revealed that pinosylvin inhibited migration and invasion in NPC cells.
Collapse
Affiliation(s)
- Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Jen-Tsun Lin
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
10
|
Ren X, Ma Y, Wang X, Xu X, Wu P, Liu W, Zhang K, Goodin S, Li D, Zheng X. Nobiletin Inhibits Cell Growth, Migration and Invasion, and Enhances the Anti-Cancer Effect of Gemcitabine on Pancreatic Cancer Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Natural products are very promising adjuvants with a variety of biological activities. Nobiletin, a citrus polymethoxyflavone, has been shown to exert an anticancer effect in various cell lines. In this study, we investigated the effects of nobiletin on cell viability, sphere formation, migration and invasion of pancreatic cancer cells, and the underlying mechanisms. Our results demonstrate that nobiletin significantly inhibited PANC-1 cell migration and invasion, and these effects were associated with downregulation of MMP-2. We also found that nobiletin, in a low concentration, exhibited a strong inhibitory effect on sphere formation. The potential molecular mechanisms were related to significant downregulation of p-mTOR and p-STAT3. Furthermore, we found that nobiletin combined with gemcitabine synergistically inhibited PANC-1 cell viability and sphere formation. The underlying mechanisms of the synergistic inhibition on growth were associated with decreases in p-STAT3 expression. Overall, our results suggest that nobiletin may be a promising candidate for pancreatic cancer adjuvant treatment.
Collapse
Affiliation(s)
- Xiang Ren
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, Guangdong Province, China
| | - Yuran Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, Guangdong Province, China
| | - Xiao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, Guangdong Province, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, Guangdong Province, China
- International Healthcare Innovation Institute, Jiangmen, Guangdong Province, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, Guangdong Province, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, Guangdong Province, China
- International Healthcare Innovation Institute, Jiangmen, Guangdong Province, China
| | - Kun Zhang
- International Healthcare Innovation Institute, Jiangmen, Guangdong Province, China
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA
| | - Dongli Li
- International Healthcare Innovation Institute, Jiangmen, Guangdong Province, China
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA
| | - Xi Zheng
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| |
Collapse
|
11
|
Huang CC, Wang PH, Lu YT, Yang JS, Yang SF, Ho YT, Lin CW, Hsin CH. Morusin Suppresses Cancer Cell Invasion and MMP-2 Expression through ERK Signaling in Human Nasopharyngeal Carcinoma. Molecules 2020; 25:molecules25204851. [PMID: 33096744 PMCID: PMC7587949 DOI: 10.3390/molecules25204851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
The most important cause of treatment failure of nasopharyngeal carcinoma (NPC) patients is metastasis, including regional lymph nodes or distant metastasis, resulting in a poor prognosis and challenges for treatment. In the present study, we investigated the in vitro anti- tumoral properties of morusin on human nasopharyngeal carcinoma HONE-1, NPC-39, and NPC-BM cells. Our study revealed that morusin suppressed the migration and invasion abilities of the three NPC cells. Gelatin zymography assay and Western blotting demonstrated that the enzyme activity and the level of matrix metalloproteinases-2 (MMP-2) protein were downregulated by the treatment of morusin. Mitogen-activated protein kinase proteins were examined to identify the signaling pathway, which showed that phosphorylation of ERK1/2 was inhibited after the treatment of morusin. In summary, our data showed that morusin inhibited the migration and invasion of NPC cells by suppressing the expression of MMP-2 by downregulating the ERK1/2 signaling pathway, suggesting that morusin may be a potential candidate for chemoprevention or adjuvant therapy of NPC.
Collapse
Affiliation(s)
- Cheng-Chen Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yen-Ting Lu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi 600, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (C.-W.L.); (C.-H.H.); Tel.: +886-4-2473-9595 (ext. 34253) (C.-W.L.)
| | - Chung-Han Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence: (C.-W.L.); (C.-H.H.); Tel.: +886-4-2473-9595 (ext. 34253) (C.-W.L.)
| |
Collapse
|
12
|
Traditional Herbal Medicine Mediated Regulations during Head and Neck Carcinogenesis. Biomolecules 2020; 10:biom10091321. [PMID: 32942674 PMCID: PMC7565208 DOI: 10.3390/biom10091321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 01/31/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. It is well recognized that environmental challenges such as smoking, viral infection and alcohol consumption are key factors underlying HNSCC pathogenesis. Other than major clinical interventions (e.g., surgical resection, chemical and radiotherapy) that have been routinely practiced over years, adjuvant anticancer agents from Traditional Herbal Medicine (THM) are proposed, either alone or together with conventional therapies, to be experimentally effective for improving treatment efficacy in different cancers including HNSCCs. At a cellular and molecular basis, THM extracts could modulate different malignant indices via distinct signaling pathways and provide better control in HNSCC malignancy and its clinical complications such as radiotherapy-induced xerostomia/oral mucositis. In this article, we aim to systemically review the impacts of THM in regulating HNSCC tumorous identities and its potential perspective for clinical use.
Collapse
|
13
|
Ni G, Wang K, Zhou Y, Wu X, Wang J, Shang H, Wang L, Li X. Citri reticulatae Pericarpium attenuates Ang II-induced pathological cardiac hypertrophy via upregulating peroxisome proliferator-activated receptors gamma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1064. [PMID: 33145283 PMCID: PMC7575934 DOI: 10.21037/atm-20-2118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Pathological cardiac hypertrophy is a major risk factor for cardiovascular diseases, including heart failure. However, limited pharmacological therapies are available for reversing the maladaptive process and restoring cardiac function. Citri reticulatae Pericarpium (CRP) has been used in traditional Chinese medicine prescriptions for clinical treatment. Previous studies have shown that CRP and its ingredients have beneficial effects on the cardiovascular system. However, whether CRP has a protective effect against pathological cardiac hypertrophy remains unknown. Methods Primary neonatal rat cardiomyocytes (NRCMs) were treated with angiotensin II (Ang II) to induce pathological hypertrophy in vitro. Immunofluorescent staining and quantitative real-time PCR (qRT-PCR) were used to determine the cell size and the expression of hypertrophic gene markers (Anp and Bnp), respectively. Male C57BL/6 mice were subjected to the investigation of cardiac hypertrophy induced by Ang II (2.5 mg/kg/d for 4 weeks). CRP (0.5 g/kg/d for 4 weeks) was administrated to treat mice with or without peroxisome proliferator-activated receptors gamma (PPARγ) inhibitor T0070907 (1 mg/kg/d for 4 weeks treatment) infused with Ang II. Cardiac hypertrophy (hematoxylin-eosin staining and qRT-PCR), fibrosis (Masson’s Trichrome staining, qRT-PCR, and western blot), and cardiac function (echocardiography) were examined in these mice. Western blot was used to determine the protein level of PPARγ and PGC-1α both in NRCMs and in mice. Results We found that CRP could prevent Ang II-induced pathological cardiac hypertrophy evidenced by improving cardiac function, decreasing hypertrophic growth and reducing cardiac fibrosis. Also, we demonstrated that PPARγ was upregulated by CRP both in NRCMs and in hearts. Moreover, PPARγ inhibitor could abolish the inhibitory effects of CRP on Ang II-induced pathological cardiac hypertrophy. Conclusions CRP attenuates Ang II-induced pathological cardiac hypertrophy by activating PPARγ.
Collapse
Affiliation(s)
- Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Chen JM, Chen PY, Lin CC, Hsieh MC, Lin JT. Antimetastatic Effects of Sesamin on Human Head and Neck Squamous Cell Carcinoma through Regulation of Matrix Metalloproteinase-2. Molecules 2020; 25:molecules25092248. [PMID: 32397656 PMCID: PMC7249112 DOI: 10.3390/molecules25092248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Sesamin is a lignin present in sesame oil from the bark of Zanthoxylum spp. Sesamin reportedly has anticarcinogenic potential and exerts anti-inflammatory effects on several tumors. Hypothesis/Purpose: However, the effect of sesamin on metastatic progression in human head and neck squamous carcinoma (HNSCC) remains unknown in vitro and in vivo; hence, we investigated the effect of sesamin on HNSCC cells in vitro. Methods and Results: Sesamin-treated human oral cancer cell lines FaDu, HSC-3, and Ca9-22 were subjected to a wound-healing assay. Furthermore, Western blotting was performed to assess the effect of sesamin on the expression levels of matrix metalloproteinase (MMP)-2 and proteins of the MAPK signaling pathway, including p-ERK1/2, P-p38, and p-JNK1/2. In addition, we investigated the association between MMP-2 expression and the MAPK pathway in sesamin-treated oral cancer cells. Sesamin inhibited cell migration and invasion in FaDu, Ca9-22, and HSC-3 cells and suppressed MMP-2 at noncytotoxic concentrations (0 to 40 μM). Furthermore, sesamin significantly reduced p38 MAPK and JNK phosphorylation in a dose-dependent manner in FaDu and HSC-3 cells. Conclusions: These results indicate that sesamin suppresses the migration and invasion of HNSCC cells by regulating MMP-2 and is thus a potential antimetastatic agent for treating HNSCC.
Collapse
Affiliation(s)
- Jian-Ming Chen
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Pei-Yin Chen
- Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan;
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (M.-C.H.); (J.-T.L.); Tel.: +886-4-7238595 (J.-T.L.); Fax: +886-4-7232942 (J.-T.L.)
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence: (M.-C.H.); (J.-T.L.); Tel.: +886-4-7238595 (J.-T.L.); Fax: +886-4-7232942 (J.-T.L.)
| |
Collapse
|
15
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|
16
|
The Effects of 5,6,7,8,3',4'-Hexamethoxyflavone on Apoptosis of Cultured Human Choriocarcinoma Trophoblast Cells. Molecules 2020; 25:molecules25040946. [PMID: 32093273 PMCID: PMC7070474 DOI: 10.3390/molecules25040946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/14/2023] Open
Abstract
5,6,7,8,3,4′-Hexamethoxyflavone, also called nobiletin (NOB), widely found in the citrus peel, is one of the main byproducts in citrus processing. NOB is considered safe, but its safety for women during pregnancy is unknown. Therefore, the effect of NOB on apoptosis in human choriocarcinoma trophoblast cells (BeWo cells) was evaluated. Cells were divided into four groups and cultured with different concentrations of NOB (0, 10, 33, and 100 μM) for 12, 24, 36, and 48 h respectively. Cell viability was detected by CCK-8 assay, cell morphology was detected by a Cell Imaging Multi-Mode Reader, and cell cycle and apoptosis were detected by flow cytometry. Cleaved PARP level, the expressions of B cell lymphoma 2 (BCL2) family proteins, and p53 pathway proteins were detected by Western blot. The results showed that after 48 h of cell culture, the cell viability was decreased significantly, but apoptosis was significantly increased. Compared to the cells without NOB treatment, the cells treated with NOB at 10 or 33 μΜ showed no significant differences in the number of suspended cells or late apoptosis rate, except the increase of cell viability. Treatment of NOB at the concentration of 100 μM improved cell viability, attenuated apoptosis, decreased suspended cells, and did not alter the G1 phase arrest, compared with the non-NOB-treated group after 48 h of culturing. The 100 μΜ NOB treatment increased the levels of BCL2 and BCLXL, and decreased p53 accumulation in BeWo cells at 48 h, but had no effect on the expression of BAX, BAK, BAD, p21, and G1 phase arrest. These findings provide evidence that NOB (10, 33, and 100 μΜ) was safe for BeWo cells. NOB at the concentration of 100 μΜ could attenuate apoptosis in BeWo cells, which might be helpful to prevent pregnancy-related diseases caused by apoptosis.
Collapse
|
17
|
Chen MK, Liu YT, Lin JT, Lin CC, Chuang YC, Lo YS, Hsi YT, Hsieh MJ. Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed Pharmacother 2019; 117:109160. [PMID: 31387166 DOI: 10.1016/j.biopha.2019.109160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pinosylvin possesses several biological properties, including anti-inflammatory, antitumor, and antioxidant characteristics. However, the effects of pinosylvin on the migration and invasion of human oral cancer cells and the underlying mechanisms remain unclear. HYPOTHESIS/PURPOSE In this research, we investigated the outcome of different concentrations of pinosylvin (0-80 μM) on the metastatic and invasive abilities of SAS, SCC-9, and HSC-3 cells. METHODS AND RESULTS Western blotting assay and Gelatin zymography assay indicated that pinosylvin inhibited the enzymatic activity of matrix metalloproteinase-2 (MMP-2) and reduced its protein level but increased the expression of tissue inhibitor of metalloproteinase-2 (TIMP-2). Additionally, the wound healing assay and Transwell method showed that pinosylvin reduced the migration of SAS, SCC-9 and HSC-3 oral cancer cells. Besides, pinosylvin decreased the phosphorylation of ERK1/2 protein experssion in both SAS and SCC-9 cells. CONCLUSION These results indicate that pinosylvin is a potential anticancer agent for preventing oral cancer metastasis.
Collapse
Affiliation(s)
- Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yen-Tze Liu
- Department of Family Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Holistic Wellness, Mingdao University, Changhua 52345, Taiwan
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ting Hsi
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Holistic Wellness, Mingdao University, Changhua 52345, Taiwan; Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
18
|
A critical review on anti-angiogenic property of phytochemicals. J Nutr Biochem 2019; 71:1-15. [PMID: 31174052 DOI: 10.1016/j.jnutbio.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
Angiogenesis, a process involved in neovascularization, has been found to be associated with several metabolic diseases like cancer, retinopathy etc. Thus, currently, the focus on anti-angiogenic therapy for treatment and prevention of diseases has gained significant attention. Currently available Food and Drug Administration (FDA) approved drugs are targeting either vascular endothelial growth factor or it's receptor, but in the long term, these approaches were shown to cause several side effects and the chances of developing resistance to these drugs is also high. Therefore, identification of safe and cost-effective anti-angiogenic molecules is highly imperative. Over the past decades, dietary based natural compounds have been studied for their anti-angiogenic potential which provided avenues in improving the angiogenesis based therapy. In this review, major emphasis is given to the molecular mechanism behind anti-angiogenic effect of natural compounds from dietary sources.
Collapse
|
19
|
Ho HC, Huang CC, Lu YT, Yeh CM, Ho YT, Yang SF, Hsin CH, Lin CW. Epigallocatechin-3-gallate inhibits migration of human nasopharyngeal carcinoma cells by repressing MMP-2 expression. J Cell Physiol 2019; 234:20915-20924. [PMID: 31012106 DOI: 10.1002/jcp.28696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022]
Abstract
Metastasis of the cancer cells to the regional lymph nodes parts of the body remains an important cause of treatment failure in nasopharyngeal carcinoma (NPC) patients. Epigallocatechin-3-gallate (EGCG), the most important ingredient in the green tea, has been reported to possess antioxidant and anticancer activities. However, the effects of EGCG on NPC cell metastasis are still unclear. In the present study, we examined the in vitro antimetastatic properties of EGCG on human NPC cells, NPC-39, HONE-1 and NPC-BM. The results revealed that EGCG considerably inhibited the migration abilities of three NPC cells. The matrix metalloproteinases-2 (MMP-2) activity and expression were also significantly inhibited by EGCG treatment. Furthermore, EGCG suppressed the phosphorylation of the Src signaling pathway. Moreover, blocking the Src pathway also inhibits MMP-2 expression and migration in the NPC cells. In conclusion, this study revealed that EGCG could inhibit the metastatic activity of human NPC cells by downregulating the protein expression of MMP-2 through modulation of the Src signaling pathway, suggesting that EGCG may be a potential candidate for chemoprevention of NPC.
Collapse
Affiliation(s)
- Hsu-Chueh Ho
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chen Huang
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-Ting Lu
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Han Hsin
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Zheng GD, Hu PJ, Chao YX, Zhou Y, Yang XJ, Chen BZ, Yu XY, Cai Y. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr 2019; 7:1104-1112. [PMID: 30918653 PMCID: PMC6418462 DOI: 10.1002/fsn3.953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nobiletin, a major polymethoxyflavones (PMFs) from citri reticulatae pericarpium (CRP), can inhibit several forms of cancer proliferation. However, the effects of nobiletin on nasopharyngeal carcinoma (NPC) C666-1 cells remain largely unknown. MATERIALS AND METHODS Cell counting kit 8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the apoptosis rate. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were applied to determine the expression of mRNA and protein, respectively. RESULTS We showed that the proliferation rate of C666-1 cells was inhibited and the apoptosis rate was raised after treating with nobiletin. Moreover, nobiletin inhibited the expression of poly(ADP-ribose)polymerase-2 (PARP-2), and the tumor suppression effect of nobiletin on C666-1 is associated with PARP-2-dependent pathway. CONCLUSION We demonstrated for the first time that nobiletin inhibited the growth of C666-1 cells, which may be relative to its regulation on PARP-2/SIRT1/AMPK signaling pathway. Our result implied that nobiletin may serve as a strategy to treat nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Guo Dong Zheng
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ping Jun Hu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Xin Chao
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Zhou
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Xiu Juan Yang
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Bai Zhong Chen
- Guangdong Xinbaotang Biological Technology Co, LtdJiangmenChina
| | - Xi Yong Yu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| |
Collapse
|
21
|
Tung YC, Chou YC, Hung WL, Cheng AC, Yu RC, Ho CT, Pan MH. Polymethoxyflavones: Chemistry and Molecular Mechanisms for Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00170-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Zhao C, Wang F, Lian Y, Xiao H, Zheng J. Biosynthesis of citrus flavonoids and their health effects. Crit Rev Food Sci Nutr 2018; 60:566-583. [DOI: 10.1080/10408398.2018.1544885] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Lian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Gallardo F, Mariamé B, Gence R, Tilkin-Mariamé AF. Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2805-2814. [PMID: 30233143 PMCID: PMC6135081 DOI: 10.2147/dddt.s172538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose The Epstein-Barr virus (EBV)-associated cancer nasopharyngeal carcinoma (NPC) is rare in Europe and North America but is a real public health problem in some regions of the world, such as southern Asia, North Africa, and for Inuit populations. Due to the anatomy and location of the nasopharynx, surgery is rarely used to treat primary NPC cancers. Treatment by radiotherapy, combined or not with chemotherapy, are efficient for primary tumors but often do not protect against fatal relapses or metastases. Methods Search for new therapeutic molecules through high content screening lead to the identification of Ivermectin (IVM) as a promising drug. IVM is a US Food and Drug Administration-approved macrocyclic lactone widely used as anthelmintic and insecticidal agent that has also shown protective effects against cancers. Results We show here that IVM has cytotoxic activity in vitro against NPC cells, in which it reduces MAPKs pathway activation through the inhibition PAK-1 activity. Moreover, all macrocyclic lactones tested and a PAK1 inhibitor are cytotoxic in vitro for EBV-positive and EBV-negative NPC tumor cells. We have also shown that IVM intraperitoneal repeated injections, at US Food and Drug Administration-approved doses, have no significant toxicity and decrease NPC subcutaneous tumors development in nude mice. Conclusion Macrocyclic lactones appear as promising molecules against NPC targeting PAK-1 with no detectable adverse effect.
Collapse
Affiliation(s)
- Franck Gallardo
- NeoVirTech, SAS, Institut for Advanced Technology in Life Science (ITAV), Toulouse, France,
| | | | - Remi Gence
- INSERM UMR 1037, CRCT, University of Toulouse, Toulouse, France
| | | |
Collapse
|
24
|
Sp N, Kang DY, Kim DH, Park JH, Lee HG, Kim HJ, Darvin P, Park YM, Yang YM. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis. Nutrients 2018; 10:nu10060772. [PMID: 29914089 PMCID: PMC6024609 DOI: 10.3390/nu10060772] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36) is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1), and then interacting with transforming growth factor beta 1 (TGFβ1). CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin's anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3) rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS) element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), suggesting that nobiletin also acts through the CD36/ (STAT3)/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Doh Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Inha University College of Medicine, 27 Inhang-Ro, Jung Gu, Incheon 400-103, Korea.
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Korea.
| | - Hye Jee Kim
- King's College London GKT School of Medical Education, London SE1 1UL, UK.
| | - Pramod Darvin
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825 Doha, Qatar.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
25
|
Lin Q, Wang H, Lin X, Zhang W, Huang S, Zheng Y. PTPN12 Affects Nasopharyngeal Carcinoma Cell Proliferation and Migration Through Regulating EGFR. Cancer Biother Radiopharm 2018; 33:60-64. [PMID: 29634414 DOI: 10.1089/cbr.2017.2254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Nasopharyngeal carcinoma (NPC) shows the leading morbidity in otorhinolaryngological malignant tumor. It is a common malignancy in China with obvious reginal distribution. NPC is a polygenic disease that is affected by numerous factors. Protein tyrosine phosphatase nonreceptor type 12 (PTPN12) regulates multiple tumor proliferation and development, including breast cancer and colon cancer. However, the role of PTPN12 in NPC occurrence and development has not been elucidated. PATIENTS AND METHODS NPC cell line CNE2 was cultured in vitro and divided into three groups, including control, empty plasmid, and PTPN12 groups. PTPN12 mRNA and protein expressions were tested by real-time polymerase chain reaction and Western blot. CNE2 cell proliferation was detected by MTT assay. Cell migration was determined by wound healing assay. Cell apoptosis was evaluated by caspase 3 activity detection. Epidermal growth factor receptor (EGFR) expression was assessed by Western blot. RESULTS PTPN12 plasmid transfection increased PTPN12 mRNA and protein expressions, suppressed cell proliferation and migration, reduced EGFR level, and enhanced caspase 3 activity compared with control and empty plasmid groups (p < 0.05). CONCLUSIONS PTPN12 regulates NPC proliferation and migration through negative regulating EGFR. It could be treated as a molecular target for NPC diagnosis and prognosis analysis.
Collapse
Affiliation(s)
- Qinghai Lin
- Department of Otolaryngology, First Affiliated Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - Huige Wang
- Department of Otolaryngology, First Affiliated Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - Xinqiang Lin
- Department of Otolaryngology, First Affiliated Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - Wenrui Zhang
- Department of Otolaryngology, First Affiliated Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - Shuhua Huang
- Department of Otolaryngology, First Affiliated Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - Yandan Zheng
- Department of Otolaryngology, First Affiliated Hospital of Shantou University Medical College , Shantou, Guangdong, China
| |
Collapse
|
26
|
Cheng HL, Hsieh MJ, Yang JS, Lin CW, Lue KH, Lu KH, Yang SF. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression. Oncotarget 2018; 7:35208-23. [PMID: 27144433 PMCID: PMC5085222 DOI: 10.18632/oncotarget.9106] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ko-Haung Lue
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ko-Hsiu Lu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
27
|
Gao Z, Gao W, Zeng SL, Li P, Liu EH. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
28
|
Yeh CM, Lin CW, Yang JS, Yang WE, Su SC, Yang SF. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation. Oncotarget 2017; 7:21952-67. [PMID: 26980735 PMCID: PMC5008336 DOI: 10.18632/oncotarget.8009] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation.
Collapse
Affiliation(s)
- Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
29
|
Hsin CH, Huang CC, Chen PN, Hsieh YS, Yang SF, Ho YT, Lin CW. Rubus idaeusInhibits Migration and Invasion of Human Nasopharyngeal Carcinoma Cells by Suppression of MMP-2 through Modulation of the ERK1/2 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1557-1572. [DOI: 10.1142/s0192415x17500847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is characterized by a high incidence of metastasis in the neck lymph nodes, resulting in a poor prognosis and posing challenges for treatment. In this study, we investigated the in vitro antimetastatic properties of Rubus idaeus extract (RIE) on human nasopharyngeal carcinoma cells. HONE-1, NPC-39 and NPC-BM cells were subjected to RIE treatment, and effects on the migration and invasion of tumor cells were analyzed. The results showed that RIE suppressed the migration and invasion of NPC cells. Gelatin zymography assay, Western blotting and real-time PCR showed that matrix metalloproteinases-2 (MMP-2) enzyme activity, protein expression and mRNA levels were down-regulated by RIE treatment. To identify the signaling pathway, mitogen-activated protein kinase proteins were examined, which showed that phosphorylation of ERK1/2 was inhibited after the treatment of RIE. In summary, our data showed that RIE inhibited the migration and invasion of NPC cells by suppressing the expression of MMP-2 by down-regulating the ERK1/2 signaling pathway, suggesting that Rubus idaeus may serve as chemotherapeutic and chemopreventive agent for NPC.
Collapse
Affiliation(s)
- Chung-Han Hsin
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chen Huang
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Borah N, Gunawardana S, Torres H, McDonnell S, Van Slambrouck S. 5,6,7,3',4',5'-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle. Int J Oncol 2017; 51:1685-1693. [PMID: 29039514 PMCID: PMC5673012 DOI: 10.3892/ijo.2017.4157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
Natural components continue to be an important source for the discovery and development of novel anticancer agents. Polymethoxyflavones are a class of flavonoids found in citrus fruits and medicinal plants used in traditional medicine. In the present study, the anticancer activity of the well-known nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) was compared against its less studied structural isomer 5,6,7,3′,4′,5′-hexamethoxyflavone. These compounds were evaluated on the Hs578T triple-negative breast cancer cell line and its more migratory subclone Hs578Ts(i)8. 5,6,7,3′,4′,5′-hexamethoxyflavone was found to be less toxic than nobiletin, while a similar growth inhibitory effect was observed after 72 h. Additionally, 5,6,7,3′,4′,5′-hexamethoxyflavone arrested the cell cycle in the G2/M phase, while no effect was observed on apoptosis or the migratory behavior of these cells. Furthermore, mechanistic studies revealed that the growth inhibition was concomitant with reduced phosphorylation levels of signaling molecules in the MAPK and Akt pathways as well as cell cycle regulators, involved in regulating cell proliferation, survival and cell cycle. In summary, the present study is the first to report on the anticancer activities of 5,6,7,3′,4′,5′-hexamethoxyflavone and to provide evidence that this flavone could have a greater potential than nobiletin for prevention or treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Natasha Borah
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Shimara Gunawardana
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Haydee Torres
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Susan McDonnell
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield Dublin 4, Ireland
| | - Severine Van Slambrouck
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
31
|
Shi Q, Jiang Z, Yang J, Cheng Y, Pang Y, Zheng N, Chen J, Chen W, Jia L. A Flavonoid Glycoside Compound from Murraya paniculata (L.) Interrupts Metastatic Characteristics of A549 Cells by Regulating STAT3/NF-κB/COX-2 and EGFR Signaling Pathways. AAPS JOURNAL 2017; 19:1779-1790. [PMID: 28842850 DOI: 10.1208/s12248-017-0134-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
Metastasis remains the leading cause of death from lung carcinoma. It is urgent to find safe and efficient pre-metastasis preventive agents for cancer survivors. We isolated a flavonoid glycoside, hexamethoxy flavanone-o-[rhamnopyranosyl-(1 → 4)-rhamnopyranoside (HMFRR), from the traditional Chinese medicine (TCM) Murraya paniculata (L.) that can effectively inhibit the adhesion, migration, and invasion of lung adenocarcinoma A549 cells in vitro. Molecular and cellular studies demonstrated that HMFRR significantly downregulated the expressions of cell adhesion-related and invasion-related molecules such as integrin β1, EGFR, COX-2, MMP-2, and MMP-9 proteins. Additionally, HMFRR effectively downregulated the expressions of epithelial-mesenchymal transition (EMT) markers (N-cadherin and vimentin) and upregulated that of E-cadherin. Moreover, these inhibitions were mediated by interrupting STAT3/NF-κB/COX-2 and EGFR/PI3K/AKT signaling pathways. Furthermore, HMFRR counteracted the expressions of cell adhesion molecules (ICAM-1, VCAM-1, and E-selectin) stimulated by interleukin-1β in human pulmonary microvascular endothelial cells (HPMECs). As a result, HMFRR interrupted the adhesion of A549 cells to HPMECs. Collectively, these results indicate that HMFRR may become a good candidate for cancer metastatic chemopreventive agents by interrupting the STAT3/NF-κB/COX-2 and EGFR signaling pathways.
Collapse
Affiliation(s)
- Qing Shi
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Zhou Jiang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Jingyi Yang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yunlong Cheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yaqiong Pang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Ning Zheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Jiahang Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Wenge Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China. .,Cancer Metastasis Alert and Prevention Center, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
32
|
Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK, Song KD, Park YM, Yang YM. Nobiletin Inhibits Angiogenesis by Regulating Src/FAK/STAT3-Mediated Signaling through PXN in ER⁺ Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18050935. [PMID: 28468300 PMCID: PMC5454848 DOI: 10.3390/ijms18050935] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor angiogenesis is one of the major hallmarks of tumor progression. Nobiletin is a natural flavonoid isolated from citrus peel that has anti-angiogenic activity. Steroid receptor coactivator (Src) is an intracellular tyrosine kinase so that focal adhesion kinase (FAK) binds to Src to play a role in tumor angiogenesis. Signal transducer and activator of transcription 3 (STAT3) is a marker for tumor angiogenesis which interacts with Src. Paxillin (PXN) acts as a downstream target for both FAK and STAT3. The main goal of this study was to assess inhibition of tumor angiogenesis by nobiletin in estrogen receptor positive (ER+) breast cancer cells via Src, FAK, and STAT3-mediated signaling through PXN. Treatment with nobiletin in MCF-7 and T47D breast cancer cells inhibited angiogenesis markers, based on western blotting and RT-PCR. Validation of in vitro angiogenesis in the human umbilical vein endothelial cells (HUVEC) endothelial cell line proved the anti-angiogenic activity of nobiletin. Electrophoretic mobility shift assay and the ChIP assay showed that nobiletin inhibits STAT3/DNA binding activity and STAT3 binding to a novel binding site of the PXN gene promoter. We also investigated the migration and invasive ability of nobiletin in ER+ cells. Nobiletin inhibited tumor angiogenesis by regulating Src, FAK, and STAT3 signaling through PXN in ER+ breast cancer cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Wan Seop Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
33
|
Dehydroandrographolide inhibits oral cancer cell migration and invasion through NF-κB-, AP-1-, and SP-1-modulated matrix metalloproteinase-2 inhibition. Biochem Pharmacol 2017; 130:10-20. [PMID: 28131848 DOI: 10.1016/j.bcp.2017.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Oral cancer is a type of head and neck cancer that is characterized by cancerous tissue growth in the oral cavity. Andrographolide and dehydroandrographolide (DA) are the two principal components of Andrographis paniculata (Burm.f.) Nees and are the main contributors to its therapeutic properties. However, the pharmacological activities of DA remain unclear. EXPERIMENTAL APPROACH In this study, we used wound closure assay and Boyden chamber assay to determine the effects of DA on oral cancer cell migration and invasion. KEY RESULTS DA treatment significantly inhibited the migration and invasion abilities of SCC9 cells in vitro. Gelatin zymography and Western blotting results revealed that DA inhibited MMP-2 activity and reduced its protein levels. DA inhibited the phosphorylation of ERK1/2, p38, and JNK 1/2 in SCC9 cells. According to the mRNA levels detected using real-time PCR, DA inhibited MMP-2 expression in SCC9 cells. This inhibitory effect was associated with the upregulation of the TIMP-2 and downregulation of NF-κB, AP-1, and SP-1 expression. In addition, DA suppressed carcinoma-associated epithelial-mesenchymal transition in SCC9 cells. Finally, DA administration effectively suppressed MMP-2 expression and tumor metastases in the oral carcinoma xenograft mouse model in vivo. CONCLUSIONS & IMPLICATIONS DA inhibits the invasion of human oral cancer cells and is a potential chemopreventive agent against oral cancer metastasis.
Collapse
|
34
|
Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives? Nutrients 2016; 8:E698. [PMID: 27827912 PMCID: PMC5133085 DOI: 10.3390/nu8110698] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Giovanni E Lombardo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro I-88100, Italy.
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina I-98125, Italy.
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina I-98125, Italy.
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Pozzuoli I-80078, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| |
Collapse
|
35
|
The Multifunctional Effects of Nobiletin and Its Metabolites In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2918796. [PMID: 27761146 PMCID: PMC5059563 DOI: 10.1155/2016/2918796] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022]
Abstract
Nobiletin (NOB) chemically known as 5,6,7,8,3′,4′-hexamethoxyflavone is a dietary polymethoxylated flavonoid found in Citrus fruits. Recent evidences show that NOB is a multifunctional pharmaceutical agent. The various pharmacological activities of NOB include neuroprotection, cardiovascular protection, antimetabolic disorder, anticancer, anti-inflammation, and antioxidation. These events may be underpinned by modulation of signaling cascades, including PKA/ERK/MEK/CREB, NF-κB, MAPK, Ca2+/CaMKII, PI3K/Akt1/2, HIF-1α, and TGFβ signaling pathways. The metabolites may exhibit stronger beneficial effects than NOB on diseases pathogenesis. The biological activities of NOB have been clarified on many systems. This review aims to discuss the pharmacological effects of NOB with specific mechanisms of actions. NOB may become a promising candidate for potential drug development. However, further investigations of NOB on specific intracellular targets and clinical trials are still needed, especially for in vivo medical applications.
Collapse
|
36
|
Da C, Liu Y, Zhan Y, Liu K, Wang R. Nobiletin inhibits epithelial-mesenchymal transition of human non-small cell lung cancer cells by antagonizing the TGF-β1/Smad3 signaling pathway. Oncol Rep 2016; 35:2767-74. [PMID: 26986176 DOI: 10.3892/or.2016.4661] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical cellular process in cancer metastasis, during which epithelial polarized cells become motile mesenchymal cells. Since transforming growth factor-β (TGF-β) is a potent inducer of EMT, blocking of TGF-β/Smad signaling has become a promising cancer therapy. Nobiletin, a polymethoxy flavonoid from Citrus depressa, has been shown to be valuable for cancer treatment, yet the mechanism remains unclear. In the present study, lung adenocarcinoma A549 and H1299 cells were used to evaluate the effect of nobiletin on EMT induced by TGF-β1. Nobiletin successfully inhibited TGF-β1-induced EMT, migration, invasion and adhesion in vitro, accompanied by attenuation of MMP-2, MMP-9, p-Src, p-FAK, p-paxillin, Snail, Slug, Twist and ZEB1 expression. Nobiletin inhibited the transcriptional activity of Smads without changing the phosphorylation status or translocation of Smads induced by TGF-β1. Moreover, Smad3 is requisite in TGF-β1-stimulated EMT. Smad3 overexpression meaningfully impaired the ability of nobiletin to reverse TGF-β1-induced EMT. In vivo, nobiletin prohibited the growth of metastatic nodules in the lungs of nude mice. Moreover, nobiletin inhibited tumor growth and reversed EMT in mice bearing A549-Luc xenografts, as revealed by IVIS imaging and immunohistochemical analysis. Collectively, the data suggest that nobiletin prevents EMT by inactivating TGF-β1/Smad3 signaling.
Collapse
Affiliation(s)
- Chunli Da
- Department of Intensive Care, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Yuting Liu
- Department of Anesthesiology, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Yiyi Zhan
- Department of Chemotherapy for Lung Cancer, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Kai Liu
- Department of Radiotherapy for the Head and Neck, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Ruozheng Wang
- Department of Radiotherapy for the Head and Neck, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
37
|
Lien LM, Wang MJ, Chen RJ, Chiu HC, Wu JL, Shen MY, Chou DS, Sheu JR, Lin KH, Lu WJ. Nobiletin, a Polymethoxylated Flavone, Inhibits Glioma Cell Growth and Migration via Arresting Cell Cycle and Suppressing MAPK and Akt Pathways. Phytother Res 2015; 30:214-21. [PMID: 26560814 DOI: 10.1002/ptr.5517] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Nobiletin, a bioactive polymethoxylated flavone (5,6,7,8,3(') ,4(') -hexamethoxyflavone), is abundant in citrus fruit peel. Although nobiletin exhibits antitumor activity against various cancer cells, the effect of nobiletin on glioma cells remains unclear. The aim of this study was to determine the effects of nobiletin on the human U87 and Hs683 glioma cell lines. Treating glioma cells with nobiletin (20-100 µm) reduced cell viability and arrested the cell cycle in the G0/G1 phase, as detected using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide (PI) staining, respectively; however, nobiletin did not induce cell apoptosis according to PI-annexin V double staining. Data from western blotting showed that nobiletin significantly attenuated the expression of cyclin D1, cyclin-dependent kinase 2, cyclin-dependent kinase 4, and E2 promoter-binding factor 1 (E2F1) and the phosphorylation of Akt/protein kinase B and mitogen-activated protein kinases, including p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Our data also showed that nobiletin inhibited glioma cell migration, as detected by both functional wound healing and transwell migration assays. Altogether, the present results suggest that nobiletin inhibits mitogen-activated protein kinase and Akt/protein kinase B pathways and downregulates positive regulators of the cell cycle, leading to subsequent suppression of glioma cell proliferation and migration. Our findings evidence that nobiletin may have potential for treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Li-Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ray-Jade Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hou-Chang Chiu
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Jia-Lun Wu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Yi Shen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Duen-Suey Chou
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Wan-Jung Lu
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|