1
|
Asiimwe IG, Blockman M, Cavallari LH, Cohen K, Cupido C, Dandara C, Davis BH, Jacobson B, Johnson JA, Lamorde M, Limdi NA, Morgan J, Mouton JP, Muyambo S, Nakagaayi D, Ndadza A, Okello E, Perera MA, Schapkaitz E, Sekaggya-Wiltshire C, Semakula JR, Tatz G, Waitt C, Yang G, Zhang EJ, Jorgensen AL, Pirmohamed M. Meta-analysis of genome-wide association studies of stable warfarin dose in patients of African ancestry. Blood Adv 2024; 8:5248-5261. [PMID: 39163621 PMCID: PMC11493193 DOI: 10.1182/bloodadvances.2024014227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
ABSTRACT Warfarin dose requirements are highly variable because of clinical and genetic factors. Although genetic variants influencing warfarin dose have been identified in European and East Asian populations, more work is needed to identify African-specific genetic variants to help optimize warfarin dosing. We performed genome-wide association studies (GWASs) in 4 African cohorts from Uganda, South Africa, and Zimbabwe, totaling 989 warfarin-treated participants who reached stable dose and had international normalized ratios within therapeutic ranges. We also included 2 African American cohorts recruited by the International Warfarin Pharmacogenetics Consortium (n = 316) and the University of Alabama at Birmingham (n = 199). After the GWAS, we performed standard error-weighted meta-analyses and then conducted stepwise conditional analyses to account for known loci in chromosomes 10 and 16. The genome-wide significance threshold was set at P < 5 × 10-8. The meta-analysis, comprising 1504 participants, identified 242 significant SNPs across 3 genomic loci, with 99.6% of these located within known loci on chromosomes 10 (top SNP: rs58800757, P = 4.27 × 10-13) and 16 (top SNP: rs9925964, P = 9.97 × 10-16). Adjustment for the VKORC1 SNP -1639G>A revealed an additional locus on chromosome 2 (top SNPs rs116057875/rs115254730/rs115240773, P = 3.64 × 10-8), implicating the MALL gene, that could indirectly influence warfarin response through interactions with caveolin-1. In conclusion, we reaffirmed the importance of CYP2C9 and VKORC1 in influencing warfarin dose requirements, and identified a new locus (MALL), that still requires direct evidence of biological plausibility.
Collapse
Affiliation(s)
- Innocent G. Asiimwe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marc Blockman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Clint Cupido
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Victoria Hospital Internal Medicine Research Initiative, Victoria Hospital Wynberg, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Pharmacogenomics and Drug Metabolism Research Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brittney H. Davis
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL
| | - Barry Jacobson
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie A. Johnson
- Division of Pharmaceutics and Pharmacology, Center for Clinical and Translational Science, College of Medicine, The Ohio State University, Columbus, OH
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Nita A. Limdi
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL
| | - Jennie Morgan
- Metro Health Services, Western Cape Department of Health and Wellness, Cape Town, South Africa
- Division of Family Medicine, Department of Family, Community and Emergency Care, University of Cape Town, Cape Town, South Africa
| | - Johannes P. Mouton
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sarudzai Muyambo
- Department of Biological Sciences and Ecology, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Doreen Nakagaayi
- Department of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Arinao Ndadza
- Division of Human Genetics, Department of Pathology, Pharmacogenomics and Drug Metabolism Research Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emmy Okello
- Department of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Northwestern University, Chicago, IL
| | - Elise Schapkaitz
- Department of Molecular Medicine and Hematology, Charlotte Maxeke Johannesburg Academic Hospital National Health Laboratory System Complex and University of Witwatersrand, Johannesburg, South Africa
| | | | - Jerome R. Semakula
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gayle Tatz
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Northwestern University, Chicago, IL
- Genetics Group, Center for Applied Bioinfomatics, St. Jude Children's Research Hospital, Memphis, TN
| | - Eunice J. Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrea L. Jorgensen
- Department of Health Data Science, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Xie Y, Wu M, Li Y, Zhao Y, Chen S, Yan E, Huang Z, Xie M, Yuan K, Qin C, Zhang X. Low caveolin-1 levels and symptomatic intracranial haemorrhage risk in large-vessel occlusive stroke patients after endovascular thrombectomy. Eur J Neurol 2024; 31:e16342. [PMID: 38757755 PMCID: PMC11235756 DOI: 10.1111/ene.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND PURPOSE Caveolin-1 (Cav-1) is reported to mediate blood-brain barrier integrity after ischaemic stroke. Our purpose was to assess the role of circulating Cav-1 levels in predicting symptomatic intracranial haemorrhage (sICH) amongst ischaemic stroke patients after endovascular thrombectomy (EVT). METHODS Patients with large-vessel occlusive stroke after EVT from two stroke centres were prospectively included. Serum Cav-1 level was tested after admission. sICH was diagnosed according to the Heidelberg Bleeding Classification. RESULTS Of 325 patients (mean age 68.6 years; 207 men) included, 47 (14.5%) were diagnosed with sICH. Compared with patients without sICH, those with sICH had a lower concentration of Cav-1. After adjusting for potential confounders, multivariate regression analysis demonstrated that the increased Cav-1 level was associated with a lower sICH risk (odds ratio 0.055; 95% confidence interval 0.005-0.669; p = 0.038). Similar results were obtained when Cav-1 levels were analysed as a categorical variable. Using a logistic regression model with restricted cubic splines, a linear and negative association of Cav-1 concentration was found with sICH risk (p = 0.001 for linearity). Furthermore, the performance of the conventional risk factors model in predicting sICH was substantially improved after addition of the Cav-1 levels (integrated discrimination index 2.7%, p = 0.002; net reclassification improvement 39.7%, p = 0.007). CONCLUSIONS Our data demonstrate that decreased Cav-1 levels are related to sICH after EVT. Incorporation of Cav-1 into clinical decision-making may help to identify patients at a high risk of sICH and warrants further consideration.
Collapse
Affiliation(s)
- Yi Xie
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Min Wu
- Department of NeurologyJinling Hospital, Nanjing Medical UniversityNanjingChina
| | - Yun Li
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Ying Zhao
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Shuaiyu Chen
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - E. Yan
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Zhihang Huang
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Mengdi Xie
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Kang Yuan
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Chunhua Qin
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaohao Zhang
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Jaime Garcia D, Chagnot A, Wardlaw JM, Montagne A. A Scoping Review on Biomarkers of Endothelial Dysfunction in Small Vessel Disease: Molecular Insights from Human Studies. Int J Mol Sci 2023; 24:13114. [PMID: 37685924 PMCID: PMC10488088 DOI: 10.3390/ijms241713114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Small vessel disease (SVD) is a highly prevalent disorder of the brain's microvessels and a common cause of dementia as well as ischaemic and haemorrhagic strokes. Though much about the underlying pathophysiology of SVD remains poorly understood, a wealth of recently published evidence strongly suggests a key role of microvessel endothelial dysfunction and a compromised blood-brain barrier (BBB) in the development and progression of the disease. Understanding the causes and downstream consequences associated with endothelial dysfunction in this pathological context could aid in the development of effective diagnostic and prognostic tools and provide promising avenues for potential therapeutic interventions. In this scoping review, we aim to summarise the findings from clinical studies examining the role of the molecular mechanisms underlying endothelial dysfunction in SVD, focussing on biochemical markers of endothelial dysfunction detectable in biofluids, including cell adhesion molecules, BBB transporters, cytokines/chemokines, inflammatory markers, coagulation factors, growth factors, and markers involved in the nitric oxide cascade.
Collapse
Affiliation(s)
- Daniela Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Audrey Chagnot
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Axel Montagne
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| |
Collapse
|
5
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
6
|
Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, Chen Y, Shen X, Zheng Y, Zhao Y. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology 2023; 21:70. [PMID: 36855156 PMCID: PMC9976550 DOI: 10.1186/s12951-023-01828-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is a major adverse event after ischemic stroke (IS). Caveolin-1 (Cav-1), a scaffolding protein, played multiple roles in BBB permeability after IS, while the pros and cons of Cav-1 on BBB permeability remain controversial. Numerous studies revealed that extracellular vesicles (EVs), especially stem cells derived EVs, exerted therapeutic efficacy on IS; however, the mechanisms of BBB permeability needed to be clearly illustrated. Herein, we compared the protective efficacy on BBB integrity between bone marrow mesenchymal stem cells derived extracellular vesicles (BMSC-EVs) and EVs from brain endothelial cells (BEC-EVs) after acute IS and investigated whether the mechanism was associated with EVs antagonizing Cav-1-dependent tight junction proteins endocytosis. METHODS BMSC-EVs and BEC-EVs were isolated and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscope. Oxygen and glucose deprivation (OGD) treated b. End3 cells were utilized to evaluate brain endothelial cell leakage. CCK-8 and TRITC-dextran leakage assays were used to measure cell viability and transwell monolayer permeability. Permanent middle cerebral artery occlusion (pMCAo) model was established, and EVs were intravenously administered in rats. Animal neurological function tests were applied, and microvessels were isolated from the ischemic cortex. BBB leakage and tight junction proteins were analyzed by Evans Blue (EB) staining and western blotting, respectively. Co-IP assay and Cav-1 siRNA/pcDNA 3.1 vector transfection were employed to verify the endocytosis efficacy of Cav-1 on tight junction proteins. RESULTS Both kinds of EVs exerted similar efficacies in reducing the cerebral infarction volume and BBB leakage and enhancing the expressions of ZO-1 and Claudin-5 after 24 h pMCAo in rats. At the same time, BMSC-EVs were outstanding in ameliorating neurological function. Simultaneously, both EVs treatments suppressed the highly expressed Cav-1 in OGD-exposed b. End3 cells and ischemic cerebral microvessels, and this efficacy was more prominent after BMSC-EVs administration. Cav-1 knockdown reduced OGD-treated b. End3 cells monolayer permeability and recovered ZO-1 and Claudin-5 expressions, whereas Cav-1 overexpression aggravated permeability and enhanced the colocalization of Cav-1 with ZO-1 and Claudin-5. Furthermore, Cav-1 overexpression partly reversed the lower cell leakage by BMSC-EVs and BEC-EVs administrations in OGD-treated b. End3 cells. CONCLUSIONS Our results demonstrated that Cav-1 aggravated BBB permeability in acute ischemic stroke, and BMSC-EVs exerted similar antagonistic efficacy to BEC-EVs on Cav-1-dependent ZO-1 and Claudin-5 endocytosis. BMSC-EVs treatment was superior in Cav-1 suppression and neurological function amelioration.
Collapse
Affiliation(s)
- Yiyang Li
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Bowen Liu
- grid.268505.c0000 0000 8744 8924Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Zhao
- grid.259384.10000 0000 8945 4455Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Xingping Quan
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yan Han
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yaxin Cheng
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yanling Chen
- grid.417409.f0000 0001 0240 6969Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong China
| | - Xu Shen
- grid.410745.30000 0004 1765 1045Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zheng
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China. .,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
7
|
The prognostic value of caveolin-1 levels in ischemic stroke patients after mechanical thrombectomy. Neurol Sci 2023; 44:2081-2086. [PMID: 36746844 DOI: 10.1007/s10072-023-06606-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE The impact of serum caveolin-1 (Cav-1) on clinical outcomes in patients after mechanical thrombectomy (MT) is unclear. We aimed to investigate the association between serum cav-1 levels and the 3-month functional outcome. METHODS We prospectively enrolled and analyzed patients with an anterior circulation large vessel occlusion who underwent MT. Serum cav-1 concentrations were tested after admission. The primary outcome was a 90-day modified Rankin Scale score of 3-6. RESULTS Of the 237 recruited patients (mean age, 69.7 ± 12.1 years; 152 male), 131 (55.3%) experienced a 90-day poor outcome. After adjustment for demographic characteristics and other covariates, patients with higher serum Cav-1 levels had a reduced risk of poor outcome at 3 months (Per 1-standard deviation increase; odd ratios [OR], 0.59; 95% confidence interval [CI], 0.39 - 0.89, P = 0.013). Elevated Cav-1 concentrations (Per 1-standard deviation increase; OR, 0.59; 95% CI, 0.40 - 0.88, P = 0.011) were significantly associated with a favorable shift in modified Rankin Scale score distribution. Similar results were confirmed when the Cav-1 levels were analyzed as a categorical variable. Furthermore, the restricted cubic spline showed a linear association between Cav-1 levels and 90-day poor outcome (P = 0.032 for linearity). CONCLUSIONS Increased serum Cav-1 levels were associated with improved prognosis at 3 months in ischemic stroke patients after MT, suggesting that Cav-1 may be a potential prognostic biomarker for ischemic stroke after reperfusion therapy.
Collapse
|
8
|
Xia Y, Lu YW, Hao RJ, Yu GR. Catalpol relieved angiotensin II-induced blood-brain barrier destruction via inhibiting the TLR4 pathway in brain endothelial cells. PHARMACEUTICAL BIOLOGY 2022; 60:2210-2218. [PMID: 36369944 PMCID: PMC9665075 DOI: 10.1080/13880209.2022.2142801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Catalpol is a major bioactive constituent of Rehmannia glutinosa Libosch (Scrophulariaceae), a traditional Chinese medicine, which is widely used in multiple diseases, including hypertension. OBJECTIVES To explore whether catalpol protects against angiotensin II (Ang II)-triggered blood-brain barrier (BBB) leakage. MATERIALS AND METHODS The bEnd.3 cells and BBB models were pre-treated with or without catalpol (50, 200 and 500 μM) or TAK-242 (1 μM) for 2 h and then with Ang II (0.1 μM) or LPS (1 μg/mL) for 24 h. Cell viability was determined by the MTT assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), caveolin-1 (Cav-1) and p-eNOS/eNOS were tested by western blot. The BBB permeability was evaluated by the flux of bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) across monolayers. nuclear factor kappa-B (NF-κB) p65 nuclear translocation was explored by immunofluorescence staining. RESULTS Ang II (0.1 μM) decreased the cell viability to 86.52 ± 1.79%, elevated the levels of TLR4, MyD88, iNOS, TNF-α and Cav-1 respectively to 3.7-, 1.5-, 2.3-, 2.2- and 2.7-fold, reduced the level of p-eNOS/eNOS to 1.6-fold in bEnd.3 cells, and eventually increased BBB permeability. Catalpol dose-dependently reversed these changes at 50-500 μM. Meanwhile, catalpol (500 μM) inhibited the upregulated levels of TLR4 pathway-related proteins and NF-κB p65 nuclear translocation, decreased the enhanced transcytosis, and relieved the BBB disruption caused by both LPS (the TLR4 activator) and Ang II. The effects are same as TAK-242 (the TLR4 inhibitor). CONCLUSIONS Catalpol relieved the Ang II-induced BBB damage, which indicated catalpol has high potential for the treatment of hypertension-induced cerebral small vessel disease (cSVD).
Collapse
Affiliation(s)
- Yu Xia
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Wei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Juan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gu Ran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Yang W, Wu W, Zhao Y, Li Y, Zhang C, Zhang J, Chen C, Cui S. Caveolin-1 suppresses hippocampal neuron apoptosis via the regulation of HIF1α in hypoxia in naked mole-rats. Cell Biol Int 2022; 46:2060-2074. [PMID: 36054154 PMCID: PMC9826031 DOI: 10.1002/cbin.11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are highly social and subterranean rodents with large communal colonies in burrows containing low oxygen levels. The inhibition of severe hypoxic conditions is of particular interest to this study. To understand the mechanisms that facilitate neuronal preservation during hypoxia, we investigated the proteins regulating hypoxia tolerance in NMR hippocampal neurons. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, confers prosurvival signalling in the central nervous system. The present study aimed to investigate the role of Cav-1 in hypoxia-induced neuronal injury. Western blotting analysis and immunocytochemistry showed that Cav-1 expression was significantly upregulated in NMR hippocampal neurons under 8% O2 conditions for 8 h. Cav-1 alleviates apoptotic neuronal death from hypoxia. Downregulation of Cav-1 by lentiviral vectors suggested damage to NMR hippocampal neurons under hypoxic conditions in vitro and in vivo. Overexpression of Cav-1 by LV-Cav-1 enhanced hypoxic tolerance of NMR hippocampal neurons in vitro and in vivo. Mechanistically, the levels of hypoxia inducible factor-1α (HIF-1α) are also increased under hypoxic conditions. After inhibiting the binding of HIF-1α to hypoxia response elements in the DNA by echinomycin, Cav-1 levels were downregulated significantly. Furthermore, chromatin immunoprecipitation assays showed the direct role of HIF1α in regulating the expression levels of Cav-1 in NMR hippocampal neurons under hypoxic conditions. These findings suggest that Cav-1 plays a critical role in modulating the apoptosis of NMR hippocampal neurons and warrant further studies targeting Cav-1 to treat hypoxia-associated brain diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Wenqing Wu
- Department of Laboratory Animal CenterAcademy of Military Medical SciencesBeijingChina
| | - Ying Zhao
- Shanghai Laboratory Animal Research CenterShanghaiChina
| | - Yu Li
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chengcai Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chao Chen
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
10
|
Zhao Y, Zhu W, Wan T, Zhang X, Li Y, Huang Z, Xu P, Huang K, Ye R, Xie Y, Liu X. Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice. Nat Commun 2022; 13:6813. [PMID: 36357389 PMCID: PMC9649811 DOI: 10.1038/s41467-022-34293-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Oligovascular coupling contributes to white matter vascular homeostasis. However, little is known about the effects of oligovascular interaction on oligodendrocyte precursor cell (OPC) changes in chronic cerebral ischemia. Here, using a mouse of bilateral carotid artery stenosis, we show a gradual accumulation of OPCs on vasculature with impaired oligodendrogenesis. Mechanistically, chronic ischemia induces a substantial loss of endothelial caveolin-1 (Cav-1), leading to vascular secretion of heat shock protein 90α (HSP90α). Endothelial-specific over-expression of Cav-1 or genetic knockdown of vascular HSP90α restores normal vascular-OPC interaction, promotes oligodendrogenesis and attenuates ischemic myelin damage. miR-3074(-1)-3p is identified as a direct inducer of Cav-1 reduction in mice and humans. Endothelial uptake of nanoparticle-antagomir improves myelin damage and cognitive deficits dependent on Cav-1. In summary, our findings demonstrate that vascular abnormality may compromise oligodendrogenesis and myelin regeneration through endothelial Cav-1, which may provide an intercellular mechanism in ischemic demyelination.
Collapse
Affiliation(s)
- Ying Zhao
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Wusheng Zhu
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Ting Wan
- grid.233520.50000 0004 1761 4404Department of Neurology, Xijing Hospital, Air Force Medical University, Xi’an, Shanxi 710032 China
| | - Xiaohao Zhang
- grid.89957.3a0000 0000 9255 8984Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000 China
| | - Yunzi Li
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Zhenqian Huang
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Pengfei Xu
- grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036 Anhui China
| | - Kangmo Huang
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Ruidong Ye
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Yi Xie
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Xinfeng Liu
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China ,grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036 Anhui China
| |
Collapse
|
11
|
Abstract
Proteolysis-targeting chimeras are a new modality of chemical tools and potential therapeutics involving the induction of protein degradation. Cyclin-dependent kinase (CDK) protein, which is involved in cycles and transcription cycles, participates in regulation of the cell cycle, transcription and splicing. Proteolysis-targeting chimeras targeting CDKs show several advantages over traditional CDK small-molecule inhibitors in potency, selectivity and drug resistance. In addition, the discovery of molecule glues promotes the development of CDK degraders. Herein, the authors describe the existing CDK degraders and focus on the discussion of the structural characteristics and design of these degraders.
Collapse
|
12
|
Liu Z, Yang C, Wang X, Xiang Y. Blood-Based Biomarkers: A Forgotten Friend of Hyperacute Ischemic Stroke. Front Neurol 2021; 12:634717. [PMID: 34168606 PMCID: PMC8217611 DOI: 10.3389/fneur.2021.634717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Ischemic stroke (IS) is the second leading cause of death worldwide. Multimodal neuroimaging techniques that have significantly facilitated the diagnosis of hyperacute IS are not widely used in underdeveloped areas and community hospitals owing to drawbacks such as high cost and lack of trained operators. Moreover, these methods do not have sufficient resolution to detect changes in the brain at the cellular and molecular levels after IS onset. In contrast, blood-based biomarkers can reflect molecular and biochemical alterations in both normal and pathophysiologic processes including angiogenesis, metabolism, inflammation, oxidative stress, coagulation, thrombosis, glial activation, and neuronal and vascular injury, and can thus provide information complementary to findings from routine examinations and neuroimaging that is useful for diagnosis. In this review, we summarize the current state of knowledge on blood-based biomarkers of hyperacute IS including those associated with neuronal injury, glial activation, inflammation and oxidative stress, vascular injury and angiogenesis, coagulation and thrombosis, and metabolism as well as genetic and genomic biomarkers. Meanwhile, the blood sampling time of the biomarkers which are cited and summarized in the review is within 6 h after the onset of IS. Additionally, we also discuss the diagnostic and prognostic value of blood-based biomarkers in stroke patients, and future directions for their clinical application and development.
Collapse
Affiliation(s)
- Zhilan Liu
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China.,North Sichuan Medical College, Nanchong, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Xiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Dorschel KB, Wanebo JE. Genetic and Proteomic Contributions to the Pathophysiology of Moyamoya Angiopathy and Related Vascular Diseases. Appl Clin Genet 2021; 14:145-171. [PMID: 33776470 PMCID: PMC7987310 DOI: 10.2147/tacg.s252736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
RATIONALE This literature review describes the pathophysiological mechanisms of the current classes of proteins, cells, genes, and signaling pathways relevant to moyamoya angiopathy (MA), along with future research directions and implementation of current knowledge in clinical practice. OBJECTIVE This article is intended for physicians diagnosing, treating, and researching MA. METHODS AND RESULTS References were identified using a PubMed/Medline systematic computerized search of the medical literature from January 1, 1957, through August 4, 2020, conducted by the authors, using the key words and various combinations of the key words "moyamoya disease," "moyamoya syndrome," "biomarker," "proteome," "genetics," "stroke," "angiogenesis," "cerebral arteriopathy," "pathophysiology," and "etiology." Relevant articles and supplemental basic science articles published in English were included. Intimal hyperplasia, medial thinning, irregular elastic lamina, and creation of moyamoya vessels are the end pathologies of many distinct molecular and genetic processes. Currently, 8 primary classes of proteins are implicated in the pathophysiology of MA: gene-mutation products, enzymes, growth factors, transcription factors, adhesion molecules, inflammatory/coagulation peptides, immune-related factors, and novel biomarker candidate proteins. We anticipate that this article will need to be updated in 5 years. CONCLUSION It is increasingly apparent that MA encompasses a variety of distinct pathophysiologic conditions. Continued research into biomarkers, genetics, and signaling pathways associated with MA will improve and refine our understanding of moyamoya's complex pathophysiology. Future efforts will benefit from multicenter studies, family-based analyses, comparative trials, and close collaboration between the clinical setting and laboratory research.
Collapse
Affiliation(s)
- Kirsten B Dorschel
- Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, USA
| |
Collapse
|
14
|
Wang L, Zhao Y, Gang S, Geng T, Li M, Xu L, Zhang X, Liu L, Xie Y, Ye R, Liu X. Inhibition of miR-103-3p Preserves Neurovascular Integrity Through Caveolin-1 in Experimental Subarachnoid Hemorrhage. Neuroscience 2021; 461:91-101. [PMID: 33722672 DOI: 10.1016/j.neuroscience.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Caveolin-1 (Cav-1) is a constitutive structural protein of caveolae in the plasma membrane. It plays an important role in maintaining blood brain barrier (BBB) integrity. In this study, we identified that miR-103-3p, a hypoxia-responsive miRNA, could interact with Cav-1. In endothelial cells, miR-103-3p mimic diminished the expression of Cav-1 and tight junction proteins, which were rescued by the inhibition of miR-103-3p. We found a substantial increase of miR-103-3p and decease of Cav-1 in the rat subarachnoid hemorrhage (SAH) model. Pre-SAH intracerebroventricularly injection of miR-103-3p antagomir relieved Cav-1 loss, sequentially reduced BBB permeability and improved neurological function. Finally, we demonstrated that the salutary effects of miR-103-3p antagomir were abolished in Cav-1 knock-out mice, suggesting that Cav-1 was required for the miR-103-3p inhibition-induced neurovascular protection. Taken together, our findings suggest that the inhibition of miR-103-3p could exert neuroprotective effects through preservation of Cav-1 and BBB integrity, making miR-103-3p a novel therapeutic target for SAH.
Collapse
Affiliation(s)
- Liumin Wang
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shucheng Gang
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tongchao Geng
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingquan Li
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lili Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ling Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Sun F, Liu H, Fu HX, Li CB, Geng XJ, Zhang XX, Zhu J, Ma Z, Gao YJ, Dou ZJ. Predictive Factors of Hemorrhage After Thrombolysis in Patients With Acute Ischemic Stroke. Front Neurol 2020; 11:551157. [PMID: 33224083 PMCID: PMC7671058 DOI: 10.3389/fneur.2020.551157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Ischemic stroke has a poor prognosis and brings a ponderous burden on families and society. Hemorrhagic transformation (HT) after intravenous thrombolysis can increase the mortality of patients with ischemic stroke. Thus, finding new HT biomarkers to be applicable in clinical practice is of great importance. Methods: The related risk factors were recruited for analysis, including smoking, drinking, hyperlipidemia, diabetes, anamnesis, and pathological indicators. Moreover, the relationship between serum levels of caveolin-1, caveolin-2, and HT after rt-PA treatment were also studied. Results: We studied 306 patients with acute ischemic stroke treated with recombinant tissue type plasminogen activator (rt-PA) within 4.5 h of symptom onset. The results showed that Age ≥68 years, smoking, Atrial fibrillation, NIHSS score before thrombolysis ≥17, and systolic pressure 2 h after thrombolysis (mmHg) ≥149 increased the risks of HT after rt-PA administration. Remarkably, the concentration of caveolin-1 (ng/mL) ≤ 0.12 and caveolin-2 (ng/mL) ≤ 0.43 in serum increased the risks of HT after rt-PA administration. Conclusion: Knowledge on the risk factors associated with HT after rt-PA treatment may help develop treatment strategies and reduce the risk of HT. Caveolin-1 and caveolin-2 can be predictors of HT after rt-PA administration. These findings provide evidence for future further investigations aimed to validate these biomarkers.
Collapse
Affiliation(s)
- Fan Sun
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Heng Liu
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hui-Xiao Fu
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cheng-Bo Li
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xiao-Jing Geng
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xiao-Xuan Zhang
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jiang Zhu
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng Ma
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yan-Jun Gao
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zhi-Jie Dou
- Neurology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
16
|
Filchenko I, Blochet C, Buscemi L, Price M, Badaut J, Hirt L. Caveolin-1 Regulates Perivascular Aquaporin-4 Expression After Cerebral Ischemia. Front Cell Dev Biol 2020; 8:371. [PMID: 32523952 PMCID: PMC7261922 DOI: 10.3389/fcell.2020.00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
Edema is a hallmark of many brain disorders including stroke. During vasogenic edema, blood-brain barrier (BBB) permeability increases, contributing to the entry of plasma proteins followed by water. Caveolae and caveolin-1 (Cav-1) are involved in these BBB permeability changes. The expression of the aquaporin-4 (AQP4) water channel relates to brain swelling, however, its regulation is poorly understood. Here we tested whether Cav-1 regulates AQP4 expression in the perivascular region after brain ischemia in mice. We showed that Cav-1 knockout mice had enhanced hemispheric swelling and decreased perivascular AQP4 expression in perilesional and contralateral cortical regions compared to wild-type. Glial fibrillary acidic protein-positive astrocytes displayed less branching and ramification in Cav-1 knockout mice compared to wild-type animals. There was a positive correlation between the area of perivascular AQP4-immunolabelling and branch length of Glial fibrillary acidic protein-positive astrocytes in wild-type mice, not seen in Cav-1 knockout mice. In summary, we show for the first time that loss of Cav-1 results in decreased AQP4 expression and impaired perivascular AQP4 covering after cerebral ischemia associated with altered reactive astrocyte morphology and enhanced brain swelling. Therapeutic approaches targeting Cav-1 may provide new opportunities for improving stroke outcome.
Collapse
Affiliation(s)
- Irina Filchenko
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Camille Blochet
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Lara Buscemi
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Melanie Price
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lorenz Hirt
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Salvianolic acid A increases the accumulation of doxorubicin in brain tumors through Caveolae endocytosis. Neuropharmacology 2020; 167:107980. [PMID: 32014448 DOI: 10.1016/j.neuropharm.2020.107980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022]
Abstract
Brain glioma is one of the most common brain tumors in the central nervous system (CNS). The blood-brain tumor barrier (BTB) restricts the delivery of anti-tumor drugs into tumor tissue in the brain. Therefore, improving the transportation of antineoplastic drugs across the BTB is essential to ameliorate treatment of brain tumors. The present study was performed to explore the effect and mechanism of salvianolic acid A (Sal A) on transportation of doxorubicin (Dox) across the BTB in vivo and in vitro. By creating a brain C6 glioma model in rats, we demonstrated that Sal A significantly increased the level of Dox in brain tumor tissue as shown by liquid chromatograph mass spectrometry. Interestingly, we found that Sal A increased transendothelial electrical resistance (TEER) values of the BTB and decreased the permeability of FITC-Dextran (4kD) across the BTB in vitro. Furthermore, the expression of tight junction proteins (TJs) in glioma endothelial cells (GECs) and brain tumor microvessels were also increased, suggesting that Sal A enhanced delivery of Dox across the BTB independent of the paracellular pathway. Next, we detected that Sal A had an effect on transcellular transport of compounds across the BTB. The accumulation of FITC-labeled bovine serum albumin (FITC-BSA) was significantly increased in GECs after treatment with Sal A (10 μM) for 6h, which was inhibited after pre-treatment with methyl-β-cyclodextrin (MβCD) for 30 min. The increased delivery of Dox across the BTB was also reduced after treatment with MβCD. In addition, phosphorylation levels of protein kinase B (PKB) and tyrosine protein kinase-Src family (Src) were increased in the Sal A treatment group. Sal A up-regulated the expression level of the phosphorylation of Caveolin-1 (pCaveolin-1), and this effect was reversed by a PKB or Src inhibitor. Taken together, our study showed for the first time that Sal A facilitated the delivery of antitumor drugs into brain tumor tissues by targeting the PKB/Src/Caveolin-1 signaling pathway.
Collapse
|
18
|
Tian J, Popal MS, Huang R, Zhang M, Zhao X, Zhang M, Song X. Caveolin as a Novel Potential Therapeutic Target in Cardiac and Vascular Diseases: A Mini Review. Aging Dis 2020; 11:378-389. [PMID: 32257548 PMCID: PMC7069461 DOI: 10.14336/ad.2019.09603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022] Open
Abstract
Caveolin, a structural protein of caveolae, play roles in the regulation of endothelial function, cellular lipid homeostasis, and cardiac function by affecting the activity and biogenesis of nitric oxide, and by modulating signal transduction pathways that mediate inflammatory responses and oxidative stress. In this review, we present the role of caveolin in cardiac and vascular diseases and the relevant signaling pathways involved. Furthermore, we discuss a novel therapeutic perspective comprising crosstalk between caveolin and autophagy.
Collapse
Affiliation(s)
- Jinfan Tian
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mohammad Sharif Popal
- 2 Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - RongChong Huang
- 3 Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100010, China
| | - Min Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xin Zhao
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mingduo Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiantao Song
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
19
|
Blochet C, Buscemi L, Clément T, Gehri S, Badaut J, Hirt L. Involvement of caveolin-1 in neurovascular unit remodeling after stroke: Effects on neovascularization and astrogliosis. J Cereb Blood Flow Metab 2020; 40:163-176. [PMID: 30354902 PMCID: PMC6928561 DOI: 10.1177/0271678x18806893] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex cellular and molecular events occur in the neurovascular unit after stroke, such as blood-brain barrier (BBB) dysfunction and inflammation that contribute to neuronal death, neurological deterioration and mortality. Caveolin-1 (Cav-1) has distinct physiological functions such as caveolae formation associated with endocytosis and transcytosis as well as in signaling pathways. Cav-1 has been proposed to be involved in BBB dysfunction after brain injury; however, its precise role is poorly understood. The goal of this study was to characterize the expression and effect of Cav-1 deletion on outcome in the first week in a transient Middle Cerebral Artery Occlusion stroke model. We found increased Cav-1 expression in new blood vessels in the lesion and in reactive astrocytes in the peri-lesion areas. In Cav-1 KO mice, the lesion volume was larger and the behavioral outcome worse than in WT mice. Cav-1 KO mice exhibited reduced neovascularization and modified astrogliosis, without formation of a proper glial scar around the lesion at three days post injury, coinciding with aggravated outcomes. Altogether, these results point towards a potential protective role of endogenous Cav-1 in the first days after ischemia by promoting neovascularization, astrogliosis and scar formation.
Collapse
Affiliation(s)
- Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Lara Buscemi
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Tifenn Clément
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Sabrina Gehri
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Jérôme Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| |
Collapse
|
20
|
Chen CY, Liao PL, Tsai CH, Chan YJ, Cheng YW, Hwang LL, Lin KH, Yen TL, Li CH. Inhaled gold nanoparticles cause cerebral edema and upregulate endothelial aquaporin 1 expression, involving caveolin 1 dependent repression of extracellular regulated protein kinase activity. Part Fibre Toxicol 2019; 16:37. [PMID: 31619255 PMCID: PMC6796418 DOI: 10.1186/s12989-019-0324-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
Background Gold nanoparticles (Au-NPs) have extensive applications in electronics and biomedicine, resulting in increased exposure and prompting safety concerns for human health. After absorption, nanoparticles enter circulation and effect endothelial cells. We previously showed that exposure to Au-NPs (40–50 nm) collapsed endothelial tight junctions and increased their paracellular permeability. Inhaled nanoparticles have gained significant attention due to their biodistribution in the brain; however, little is known regarding their role in cerebral edema. The present study investigated the expression of aquaporin 1 (AQP1) in the cerebral endothelial cell line, bEnd.3, stimulated by Au-NPs. Results We found that treatment with Au-NPs induced AQP1 expression and increased endothelial permeability to water. Au-NP exposure rapidly boosted the phosphorylation levels of focal adhesion kinase (FAK) and AKT, increased the accumulation of caveolin 1 (Cav1), and reduced the activity of extracellular regulated protein kinases (ERK). The inhibition of AKT (GDC-0068) or FAK (PF-573228) not only rescued ERK activity but also prevented AQP1 induction, whereas Au-NP-mediated Cav1 accumulation remained unaltered. Neither these signaling molecules nor AQP1 expression responded to Au-NPs while Cav1 was silenced. Inhibition of ERK activity (U0126) remarkably enhanced Cav1 and AQP1 expression in bEnd.3 cells. These data demonstrate that Au-NP-mediated AQP1 induction is Cav1 dependent, but requires the repression on ERK activity. Mice receiving intranasally administered Au-NPs displayed cerebral edema, significantly augmented AQP1 protein levels; furthermore, mild focal lesions were observed in the cerebral parenchyma. Conclusions These data suggest that the subacute exposure of nanoparticles might induce cerebral edema, involving the Cav1 dependent accumulation on endothelial AQP1.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Liao
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hao Tsai
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei city, Taiwan
| | - Ting-Ling Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Chung JW, Kim DH, Oh MJ, Cho YH, Kim EH, Moon GJ, Ki CS, Cha J, Kim KH, Jeon P, Yeon JY, Kim GM, Kim JS, Hong SC, Bang OY. Cav-1 (Caveolin-1) and Arterial Remodeling in Adult Moyamoya Disease. Stroke 2019; 49:2597-2604. [PMID: 30355208 DOI: 10.1161/strokeaha.118.021888] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Moyamoya disease (MMD) is a unique cerebrovascular occlusive disease characterized by progressive stenosis and negative remodeling of the distal internal carotid artery (ICA). We hypothesized that cav-1 (caveolin-1)-a protein that controls the regulation of endothelial vesicular trafficking and signal transduction-is associated with negative remodeling in MMD. Methods- We prospectively recruited 77 consecutive patients with MMD diagnosed via conventional angiography. Seventeen patients with intracranial atherosclerotic stroke and no RNF213 mutation served as controls. The outer distal ICA diameters were examined using high-resolution magnetic resonance imaging. We evaluated whether the degree of negative remodeling in the patients with MMD was associated with RNF213 polymorphism, cav-1 levels, or various clinical and vascular risk factors. We also investigated whether the derived factor was associated with negative remodeling at the cellular level using the tube formation and apoptosis assays. Results- The serum cav-1 level was lower in the patients with MMD than in the controls (0.47±0.29 versus 0.86±0.68 ng/mL; P=0.034). The mean ICA diameter was 2.48±0.98 mm for the 126 affected distal ICAs in patients with MMD and 3.84±0.42 mm for the asymptomatic ICAs in the controls ( P<0.001). After adjusting for confounders, cav-1 levels (coefficient, 1.018; P<0.001) were independently associated with the distal ICA diameter in patients with MMD. In vitro analysis showed that cav-1 downregulation suppressed angiogenesis in the endothelial cells and induced apoptosis in the smooth muscle cells. Conclusions- Our findings suggest that cav-1 may play a major role in negative arterial remodeling in MMD.
Collapse
Affiliation(s)
- Jong-Won Chung
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Hee Kim
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea (D.H.K., O.Y.B.)
| | - Mi Jeong Oh
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Yeon Hee Cho
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Hee Kim
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Gyeong Joon Moon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea (G.J.M.)
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics (C.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Cha
- Department of Radiology, Yonsei University Medical Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.)
| | - Keon Ha Kim
- Department of Radiology (K.H.K., P.J.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pyoung Jeon
- Department of Radiology (K.H.K., P.J.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je Young Yeon
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong-Moon Kim
- Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Soo Kim
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Chyul Hong
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Oh Young Bang
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea (D.H.K., O.Y.B.)
| |
Collapse
|
22
|
Chen Z, Hu Q, Xie Q, Wu S, Pang Q, Liu M, Zhao Y, Tu F, Liu C, Chen X. Effects of Treadmill Exercise on Motor and Cognitive Function Recovery of MCAO Mice Through the Caveolin-1/VEGF Signaling Pathway in Ischemic Penumbra. Neurochem Res 2019; 44:930-946. [DOI: 10.1007/s11064-019-02728-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
|
23
|
Huang Q, Zhong W, Hu Z, Tang X. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J Neuroinflammation 2018; 15:348. [PMID: 30572925 PMCID: PMC6302517 DOI: 10.1186/s12974-018-1387-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke starts a series of pathophysiological processes that cause brain injury. Caveolin-1 (cav-1) is an integrated protein and locates at the caveolar membrane. It has been demonstrated that cav-1 can protect blood–brain barrier (BBB) integrity by inhibiting matrix metalloproteases (MMPs) which degrade tight junction proteins. This article reviews recent developments in understanding the mechanisms underlying BBB dysfunction, neuroinflammation, and oxidative stress after ischemic stroke, and focuses on how cav-1 modulates a series of activities after ischemic stroke. In general, cav-1 reduces BBB permeability mainly by downregulating MMP9, reduces neuroinflammation through influencing cytokines and inflammatory cells, promotes nerve regeneration and angiogenesis via cav-1/VEGF pathway, reduces apoptosis, and reduces the damage mediated by oxidative stress. In addition, we also summarize some experimental results that are contrary to the above and explore possible reasons for these differences.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
24
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Castellanos M, van Eendenburg C, Gubern C, Kádár E, Huguet G, Puig J, Sobrino T, Blasco G, Serena J, Sánchez JM. Low Levels of Caveolin-1 Predict Symptomatic Bleeding After Thrombolytic Therapy in Patients With Acute Ischemic Stroke. Stroke 2018; 49:1525-1527. [DOI: 10.1161/strokeaha.118.020683] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/19/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Mar Castellanos
- From the Department of Neurology, A Coruña University Hospital/Biomedical Research Institute (INIBIC), Spain (M.C.)
| | | | | | - Elisabet Kádár
- Department of Biology, University of Girona, Spain (E.K., G.H.)
| | - Gemma Huguet
- Department of Biology, University of Girona, Spain (E.K., G.H.)
| | - Josep Puig
- Diagnostic Imaging Institute Research Unit (J.P., G.B.), University Hospital Dr. Josep Trueta/Girona Biomedical Research Institute, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, University Hospital and Research Institute of Santiago de Compostela, Spain (T.S.)
| | - Gerard Blasco
- Diagnostic Imaging Institute Research Unit (J.P., G.B.), University Hospital Dr. Josep Trueta/Girona Biomedical Research Institute, Spain
| | | | | |
Collapse
|
26
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
27
|
Xie H, Lu WC. Inhibition of transient receptor potential vanilloid 4 decreases the expressions of caveolin-1 and caveolin-2 after focal cerebral ischemia and reperfusion in rats. Neuropathology 2018; 38:337-346. [PMID: 29665111 DOI: 10.1111/neup.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 03/18/2018] [Indexed: 01/26/2023]
Abstract
This study aimed to investigate the effects of transient receptor potential vanilloid 4 (TRPV4) inhibition on blood-brain barrier (BBB) integrity and the expressions of caveolae structural proteins caveolin-1 and caveolin-2 in rats with focal cerebral ischemia and reperfusion. BBB permeability was assessed by Evans blue extravasation. The mRNA and protein expressions of caveolin-1 and caveolin-2 were determined by RT-PCR, Western blot and immunohistochemistry assays. We found that BBB permeability significantly increased and reaches its peak at 72 h of reperfusion in cerebral ischemia-reperfusion rats and is able to be ameliorated by administration of HC-067047, an antagonist of TRPV4. Additionally, it shows a significant upregulation of caveolin-1 and caveolin-2 expression in cerebral microvessels of ischemic tissue. However, treatment with HC-067047 was shown to downregulate caveolin-1 and caveolin-2 expression during cerebral ischemia-reperfusion. This study demonstrates that inhibition of TRPV4 ameliorates BBB leakage induced by ischemia-reperfusion injury through the downregulation of caveolin-1 and caveolin-2.
Collapse
Affiliation(s)
- Hui Xie
- Department of Histology and Embryology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Pang Q, Zhang H, Chen Z, Wu Y, Bai M, Liu Y, Zhao Y, Tu F, Liu C, Chen X. Role of caveolin-1/vascular endothelial growth factor pathway in basic fibroblast growth factor-induced angiogenesis and neurogenesis after treadmill training following focal cerebral ischemia in rats. Brain Res 2017; 1663:9-19. [DOI: 10.1016/j.brainres.2017.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/26/2022]
|
29
|
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. ACTA ACUST UNITED AC 2016; 6:225-248. [PMID: 28265539 PMCID: PMC5326671 DOI: 10.15171/bi.2016.30] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
![]()
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes.
Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting.
Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs).
Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.
Collapse
Affiliation(s)
- Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Treadmill Exercise Promotes Neurogenesis in Ischemic Rat Brains via Caveolin-1/VEGF Signaling Pathways. Neurochem Res 2016; 42:389-397. [DOI: 10.1007/s11064-016-2081-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 11/25/2022]
|
31
|
Lower Serum Caveolin-1 Is Associated with Cerebral Microbleeds in Patients with Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9026787. [PMID: 27119011 PMCID: PMC4826928 DOI: 10.1155/2016/9026787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/02/2016] [Accepted: 03/13/2016] [Indexed: 11/18/2022]
Abstract
Caveolin-1 (Cav-1) plays pivotal roles in the endothelial damage following stroke. The present study aimed to investigate whether serum Cav-1 level is associated with the presence of cerebral small vessel disease (cSVD) in patients with acute ischemic stroke. To this end, 156 patients were consecutively enrolled. Cranial magnetic resonance imaging was analyzed to determine the surrogates of cSVD, including cerebral microbleeds (CMBs), silent lacunar infarcts (SLIs), and white matter hyperintensities (WMHs). After adjusting for potential confounders, patients with low Cav-1 level had a higher risk of CMBs than patients with high Cav-1 level (OR: 4.05, 95% CI: 1.77-9.30). However, there was no relationship between Cav-1 and the presence of SLIs or WMHs. When CMBs were stratified by location and number, a similar association was found in patients with deep or infratentorial CMBs (OR: 4.04, 95% CI: 1.59-10.25) and with multiple CMBs (OR: 3.18, 95% CI: 1.16-8.72). These results suggest lower serum Cav-1 levels may be associated with CMBs, especially those that are multiple and located in deep brain or infratentorial structures, in patients with acute ischemic stroke. Cav-1 may be involved in the pathophysiology of CMBs, and may act as a potential target for treating cSVD.
Collapse
|
32
|
Xu L, Wang L, Wen Z, Wu L, Jiang Y, Yang L, Xiao L, Xie Y, Ma M, Zhu W, Ye R, Liu X. Caveolin-1 is a checkpoint regulator in hypoxia-induced astrocyte apoptosis via Ras/Raf/ERK pathway. Am J Physiol Cell Physiol 2016; 310:C903-10. [PMID: 27009876 DOI: 10.1152/ajpcell.00309.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/17/2016] [Indexed: 01/27/2023]
Abstract
Astrocytes, the most numerous cells in the human brain, play a central role in the metabolic homeostasis following hypoxic injury. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, has been shown to converge prosurvival signaling in the central nerve system. The present study aimed to investigate the role of Cav-1 in the hypoxia-induced astrocyte injury. We also examined how Cav-1 alleviates apoptotic astrocyte death. To this end, primary astrocytes were exposed to oxygen-glucose deprivation (OGD) for 6 h and a subsequent 24-h reoxygenation to mimic hypoxic injury. OGD significantly reduced Cav-1 expression. Downregulation of Cav-1 using Cav-1 small interfering RNA dramatically worsened astrocyte cell damage and impaired cellular glutamate uptake after OGD, whereas overexpression of Cav-1 with Cav-1 scaffolding domain peptide attenuated OGD-induced cell apoptosis. Mechanistically, the expressions of Ras-GTP, phospho-Raf, and phospho-ERK were sequestered in Cav-1 small interfering RNA-treated astrocytes, yet were stimulated after supplementation with caveolin peptide. MEK/ERK inhibitor U0126 remarkably blocked the Cav-1-induced counteraction against apoptosis following hypoxia, indicating Ras/Raf/ERK pathway is required for the Cav-1's prosurvival role. Together, these findings support Cav-1 as a checkpoint for the in hypoxia-induced astrocyte apoptosis and warrant further studies targeting Cav-1 to treat hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Liumin Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Li Wu
- Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Lian Yang
- Department of Neurology, the Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
| | - Lulu Xiao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Minmin Ma
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China;
| |
Collapse
|
33
|
Bang OY, Fujimura M, Kim SK. The Pathophysiology of Moyamoya Disease: An Update. J Stroke 2016; 18:12-20. [PMID: 26846756 PMCID: PMC4747070 DOI: 10.5853/jos.2015.01760] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 11/23/2022] Open
Abstract
Moyamoya disease (MMD) is a unique cerebrovascular disease characterized by the progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. Because the etiology of MMD is unknown, its diagnosis is based on characteristic angiographic findings. Re-vascularization techniques (e.g., bypass surgery) are used to restore perfusion, and are the primary treatment for MMD. There is no specific treatment to prevent MMD progression. This review summarizes the recent advances in MMD pathophysiology, including the genetic and circulating factors related to disease development. Genetic and environmental factors may play important roles in the development of the vascular stenosis and aberrant angiogenesis in complex ways. These factors include the related changes in circulating endothelial/smooth muscle progenitor cells, cytokines related to vascular remodeling and angiogenesis, and endothelium, such as caveolin which is a plasma membrane protein. With a better understanding of MMD pathophysiology, nonsurgical approaches targeting MMD pathogenesis may be available to stop or slow the progression of this disease. The possible strategies include targeting growth factors, retinoic acid, caveolin-1, and stem cells.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Miki Fujimura
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|