1
|
Sumbalová Z, Rausová Z, Kucharská J, Šranko P, Harbulák P, Svitok P, López-Lluch G, Gvozdjáková A. Platelet Mitochondrial Function and Endogenous Coenzyme Q 10 Levels Could Be Used as Markers of Mitochondrial Health in Infertile Men: A Pilot Study. Int J Mol Sci 2024; 26:268. [PMID: 39796125 PMCID: PMC11720540 DOI: 10.3390/ijms26010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Fertility disorders are a worldwide problem affecting 8-12% of the population, with the male factor substantially contributing to about 40-50% of all infertility cases. Mitochondria, crucial organelles for cellular viability, play a pivotal role in the processes of spermatogenesis and significantly affect sperm quality and their fertilizing ability. Mitochondrial oxidative phosphorylation (OXPHOS) dysfunction, reduced energy supply for sperm, reduced endogenous coenzyme Q10 (CoQ10) levels, and oxidative stress are among the main factors that contribute to male infertility. There is great interest in the role of mitochondrial dysfunction in male infertility, and the diagnosis and assessment of mitochondrial health in infertile men present challenges. Platelets are a source of viable mitochondria that can be obtained non-invasively. Changes in platelet mitochondrial respiration were documented in various diseases, confirming platelet mitochondrial bioenergetics as a marker of systemic mitochondrial health. The aim of our study was to determine whether (a) platelet mitochondrial bioenergetics and CoQ10 levels could be used as metabolic markers of mitochondrial health in infertile men and whether (b) the parameters of mitochondrial respiration in platelets correlate with sperm parameters. The high-resolution respirometry method was used for platelet bioenergetics, and the high-performance liquid chromatography (HPLC) method was used for CoQ10 level measurement. The static oxidation-reduction potential (sORP) of the ejaculate was evaluated by MiOXSYS®System. We found a deficit in mitochondrial complex I-linked OXPHOS and electron transfer capacity and CoQ10 and α-tocopherol levels in infertile men. The proportion of sperm, heads, and midpiece abnormalities correlated negatively with the complex I-linked parameters of platelet mitochondrial bioenergetics. We suppose that dysfunctional mitochondria contribute to increased oxidative stress, and these imbalances can be considered a cause of Male Oxidative Stress Infertility (MOSI). Our results suggest that platelet mitochondrial function and the endogenous levels of CoQ10 in platelets could be used as metabolic markers for monitoring mitochondrial health and targeted therapy in infertile men. sORP could be a useful clinical biomarker of MOSI.
Collapse
Affiliation(s)
- Zuzana Sumbalová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (Z.R.); (J.K.)
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (Z.R.); (J.K.)
| | - Patrik Šranko
- GYN-FIV, a.s., Trnavská cesta 106, 821 01 Bratislava, Slovakia; (P.Š.); (P.H.); (P.S.)
| | - Peter Harbulák
- GYN-FIV, a.s., Trnavská cesta 106, 821 01 Bratislava, Slovakia; (P.Š.); (P.H.); (P.S.)
| | - Pavel Svitok
- GYN-FIV, a.s., Trnavská cesta 106, 821 01 Bratislava, Slovakia; (P.Š.); (P.H.); (P.S.)
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, 41013 Seville, Spain;
| | - Anna Gvozdjáková
- Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia;
| |
Collapse
|
2
|
Huang R, Xia H, Lin W, Wang Z, Li L, Deng J, Ye T, Li Z, Yang Y, Huang Y. Riluzole Reverses Blood-Testis Barrier Loss to Rescue Chemotherapy-Induced Male Infertility by Binding to TRPC. Cells 2024; 13:2016. [PMID: 39682764 DOI: 10.3390/cells13232016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatments, including cytotoxic therapy, often result in male infertility, necessitating the development of safe and effective strategies to preserve male reproductive potential during chemotherapy. Notably, our study uncovers the potential of repurposing riluzole, an FDA-approved drug for amyotrophic lateral sclerosis (ALS), in enhancing spermatogenesis. Hence, this research aims to explore the feasibility of utilizing riluzole to alleviate male infertility induced by busulfan (BSF), a commonly used chemotherapy drug. We established a BSF-induced oligospermia model in 4-week-old male mice and found that riluzole could effectively counter the detrimental effects of BSF on sperm production in mice with oligospermia. By restoring blood-testis barrier (BTB) functionality, riluzole improves sperm quality and reduces testicular atrophy. Through transcriptomic and molecular docking analyses, we identify transient receptor potential canonical subfamily member 5 (TRPC5) as a potential target for riluzole-mediated regulation of blood-testis barrier function. These findings propose riluzole as a promising therapeutic option for chemotherapy-induced male infertility, thereby addressing the fertility challenges associated with cancer treatments. Moreover, repurposing riluzole could streamline the drug development process, providing a cost-effective approach with reduced risk compared to developing entirely new drugs.
Collapse
Affiliation(s)
- Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
3
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Chen P, Song Y, Tang L, Qiu Z, Chen J, Xia S, Iyaswamy A, Cai J, Sun Y, Yang C, Wang J. Integrated RNA sequencing and biochemical studies reveal endoplasmic reticulum stress and autophagy dysregulation contribute to Tri (2-Ethylhexyl) phosphate (TEHP)-induced cell injury in Sertoli cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124536. [PMID: 39029862 DOI: 10.1016/j.envpol.2024.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Tri (2-Ethylhexyl) phosphate (TEHP), widely used as a fire retardant and plasticizer, has been commonly found in the environment. Its potential health-related risks, especially reproductive toxicity, have aroused concern. However, the potential cellular mechanisms remain unexplored. In this study, we aimed to investigate the molecular mechanisms underlying TEHP-caused cell damage in Sertoli cells, which play a crucial role in supporting spermatogenesis. Our findings indicate that TEHP induces apoptosis in 15P-1 mouse Sertoli cells. Subsequently, we conducted RNA sequencing analyses, which suggested that ER stress, autophagy, and MAPK-related pathways may participate in TEHP-induced cytotoxicity. Furthermore, we demonstrated that TEHP triggers ER stress, activates p38 MAPK, and inhibits autophagy flux. Then, we showed that the inhibition of ER stress or p38 MAPK activation attenuates TEHP-induced apoptosis, while the inhibition of autophagy flux is responsible for TEHP-induced apoptosis. These results collectively reveal that TEHP induces ER stress, activates p38, and inhibits autophagy flux, ultimately leading to apoptosis in Sertoli cells. These shed light on the molecular mechanisms underlying TEHP-associated testicular toxicity.
Collapse
Affiliation(s)
- Pengchen Chen
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Li Tang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Zhuolin Qiu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Siyu Xia
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Jing Cai
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Yan Sun
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Chuanbin Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China.
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Huang X, Fu Y, Wang S, Guo Q, Wu Y, Zheng X, Wang J, Wu S, Shen L, Wei G. 2,2',4,4'-Tetrabromodiphenyl ether exposure disrupts blood-testis barrier integrity through CMA-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174738. [PMID: 39009145 DOI: 10.1016/j.scitotenv.2024.174738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47), being the most prevalent congener of polybrominated diphenyl ethers (PBDEs), has been found to accumulate greatly in the environment and induce spermatogenesis dysfunction. However, the specific underlying factors and mechanisms have not been elucidated. Herein, male Sprague-Dawley (SD) rats were exposed to corn oil, 10 mg/kg body weight (bw) PBDE-47 or 20 mg/kg bw PBDE-47 by gavage for 30 days. PBDE-47 exposure led to blood-testis barrier (BTB) integrity disruption and aberrant spermatogenesis. Given that Sertoli cells are the main toxicant target, to explore the potential mechanism involved, we performed RNA sequencing (RNA-seq) in Sertoli cells, and the differentially expressed genes were shown to be enriched in ferroptosis and lysosomal pathways. We subsequently demonstrated that ferroptosis was obviously increased in testes and Sertoli cells upon exposure to PBDE-47, and the junctional function of Sertoli cells was restored after treatment with the ferroptosis inhibitor ferrostatin-1. Since glutathione peroxidase 4 (GPX4) was dramatically reduced in PBDE-47-exposed testes and Sertoli cells and considering the RNA-sequencing results, we examined the activity of chaperone-mediated autophagy (CMA) and verified that the expression of LAMP2a and HSC70 was upregulated significantly after PBDE-47 exposure. Notably, Lamp2a knockdown not only inhibited ferroptosis by suppressing GPX4 degradation but also restored the impaired junctional function induced by PBDE-47. These collective findings strongly indicate that PBDE-47 induces Sertoli cell ferroptosis through CMA-mediated GPX4 degradation, resulting in decreased BTB-associated protein expression and eventually leading to BTB integrity disruption and spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Xu Huang
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Siyuan Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Yuhao Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Junke Wang
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Lianju Shen
- Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China.
| |
Collapse
|
6
|
Rotimi DE, Iyobhebhe M, Oluwayemi ET, Olajide OP, Akinsanola BA, Evbuomwan IO, Asaleye RM, Ojo OA. Energy metabolism and spermatogenesis. Heliyon 2024; 10:e38591. [PMID: 39397940 PMCID: PMC11470522 DOI: 10.1016/j.heliyon.2024.e38591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Infertility has become a significant health burden around the globe as it is believed that 15 % of married couples struggle with infertility, with half of the problem accrued to the male. The issue of male infertility could be traced to insufficient or absence of spermatozoa. Glucose metabolism is essential for continued spermatogenesis and for the reproductive potential of sperm cells. Appropriate nutrition is critical in maintaining reproductive function as caloric restriction along with weight reduction, excessive food consumption and obesity are harmful to reproductive function. The link between metabolism and reproduction is tied to metabolic hormones like insulin, leptin and thyroid, extracellular environment, mitochondria function, nutrient substrate, availability, and environmental stressors. Although matured spermatozoa utilize glucose directly, it is not the preferred energy substrate for germ cells as they rely on Sertoli cells to supply lactate. The reproductive potential of sperm cells depends on certain modifications like hyperactivated motility, which is mainly dependent on glucose metabolism. Without other energy sources, spermatozoa utilize their internal lipid stores. The uptake and metabolism of glucose by sperm are essential endpoints for determining the potential fertility of male individuals. The biological energy in sperm cells fuels all the physiological processes they engage in, from their deposition in the female reproductive tract to the point where they fertilize an egg. This article thus reviews facts pertinent to the energy metabolism of male germ cells and Sertoli cells.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew Iyobhebhe
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | - Elizabeth Temidayo Oluwayemi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | | | | | | | - Rotdelmwa Maimako Asaleye
- Department of Life and Consumer Sciences University of South Africa Private Bag X06, Florida, 1710, South Africa
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo, 232101, Nigeria
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria
| |
Collapse
|
7
|
Justin Margret J, Jain SK. The Protective Role of L-Cysteine in the Regulation of Blood-Testis Barrier Functions-A Brief Review. Genes (Basel) 2024; 15:1201. [PMID: 39336792 PMCID: PMC11430845 DOI: 10.3390/genes15091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Blood-testis barrier (BTB) genes are crucial for the cellular mechanisms of spermatogenesis as they protect against detrimental cytotoxic agents, chemicals, and pathogens, thereby maintaining a sterile environment necessary for sperm development. BTB proteins predominantly consist of extensive tight and gap junctions formed between Sertoli cells. These junctions form a crucial immunological barrier restricting the intercellular movement of substances and molecules within the adluminal compartment. Epithelial tight junctions are complex membrane structures composed of various integral membrane proteins, including claudins, zonula occludens-1, and occludin. Inter-testicular cell junction proteins undergo a constant process of degradation and renewal. In addition, the downregulation of genes crucial to the development and preservation of cell junctions could disrupt the functionality of the BTB, potentially leading to male infertility. Oxidative stress and inflammation may contribute to disrupted spermatogenesis, resulting in male infertility. L-cysteine is a precursor to glutathione, a crucial antioxidant that helps mitigate damage and inflammation resulting from oxidative stress. Preclinical research indicates that L-cysteine may offer protective benefits against testicular injury and promote the expression of BTB genes. This review emphasizes various BTB genes essential for preserving its structural integrity and facilitating spermatogenesis and male fertility. Furthermore, it consolidates various research findings suggesting that L-cysteine may promote the expression of BTB-associated genes, thereby aiding in the maintenance of testicular functions.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
8
|
Cham TC, Ibtisham F, Al-Dissi A, Honaramooz A. An in vitro testicular organoid model for the study of testis morphogenesis, somatic cell maturation, endocrine function, and toxicological assessment of endocrine disruptors. Reprod Toxicol 2024; 128:108645. [PMID: 38897308 DOI: 10.1016/j.reprotox.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Male reproductive capacity has fallen considerably in recent decades; in addition, the incidence of testicular cancer has increased in many developed countries. The cause of this phenomenon is unknown, but environmental toxicants are considered a major contributing factor. To study potential reproductive toxicants, robust in vitro testis models are needed. We have recently established a porcine testis organoid system with a high resemblance to the architectures of innate testis tissue. Here, we further investigated the testis morphogenesis, cell maturation, and endocrine function of the testis organoids. We also challenged this system with abiraterone, a steroidogenic inhibitor, to validate its suitability as an in vitro platform for endocrine toxicology tests. Our results showed that the testis cells in the organoids reorganize into testis cordal structures, and the cordal relative areas increase in the organoids over time of culture. Moreover, the diameters and cell numbers per cross-section of the cordal structures increased over time. Interestingly, Sertoli cells in the organoids gradually underwent maturational changes by showing increased expression of androgen receptors, decreased expression of the anti-müllerian hormone, and formation of the blood-testis barrier. Next, we confirmed that the organoids respond to hormonal stimulation and release multiple sex hormones, including testosterone, estradiol, and progesterone. Finally, we showed that the production of testosterone and estradiol in this system can be inhibited in response to the steroidogenic inhibitor. Taken together, our organoid system provides a promising in vitro platform for male reproductive toxicology studies on testis morphogenesis, somatic cell maturation, and endocrine production.
Collapse
Affiliation(s)
- Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Fahar Ibtisham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ahmad Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
9
|
Raeeszadeh M, Moradian M, Khademi N, Amiri AA. The Effectiveness of Time in Treatment with Vitamin C and Broccoli Extract on Cadmium Poisoning in Mice: Histological Changes of Testicular Tissue and Cell Apoptotic Index. Biol Trace Elem Res 2024; 202:3278-3292. [PMID: 37821783 DOI: 10.1007/s12011-023-03898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The growth rate of reproductive system disorders caused by heavy metals is undeniable. The effect of time and interfering compounds are also of paramount importance. The main objective of this study was to compare the effects of broccoli extract and vitamin C in the context of cadmium poisoning on various reproductive parameters in mice, with a specific focus on the influence of time. A total of one hundred and forty-four male mice were randomly assigned to six groups. The control (C) group received only water and a standard diet without any interventions. The Cd group received a single intraperitoneal dose of cadmium chloride at 1.5 mg/kg. The cadmium intervention groups were administered broccoli extract at dosages of 100 mg/kg (Cd + B100), 200 mg/kg (Cd + B200), and 300 mg/kg (Cd + B300), respectively. Additionally, the Cd + VC group was treated with cadmium and vitamin C at 200 mg/kg intraperitoneally for a duration of 28 days. At the end of each week (four stages), five animals were randomly chosen from each group. Epididymal sperm were subjected to analysis for sperm parameters, while testicular tissue sections were examined for histological studies, apoptosis index, and markers of oxidative stress. The influence of time on body and testis weight gain was notably significant in the Cd + B300 and Cd + VC groups (p = 0.001). In all groups, except for Cd + B100, there were marked increases in spermatogenic cell lines and the Johnson coefficient compared to the Cd group (p = 0.001). These changes were particularly pronounced in the Cd + VC and Cd + B300 groups with respect to time (p < 0.001). Furthermore, there was a discernible positive impact of time on sperm count in the high-dose broccoli and vitamin C groups, although this effect did not reach significance in terms of sperm motility and vitality. Over time, the levels of superoxide dismutase (SOD) and catalase (CAT) enzymes increased, while malondialdehyde (MDA) levels decreased in the Cd + VC, Cd + B200, and Cd + B300 groups (p = 0.001). The apoptosis index in testicular tissue reached its highest level in the Cd group and its lowest level in the Cd + B300 and Cd + VC groups during the fourth week (p < 0.05). Linolenic acid, indole, and sulforaphane were identified as the most potent compounds in broccoli during this intervention. Consequently, vitamin C and broccoli extract at a dosage of 300 mg/kg demonstrated significant enhancements in reproductive performance in cases of cadmium poisoning. Overall, the influence of time significantly amplified the process of spermatogenesis and sperm production, with no observable changes in sperm viability and motility.
Collapse
Affiliation(s)
- Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Midia Moradian
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Nadia Khademi
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ali Akbar Amiri
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
10
|
Yang X, He L, Li X, Wang L, Bu T, Yun D, Lu X, Gao S, Huang Q, Li J, Zheng B, Yu J, Sun F. Triptolide exposure triggers testicular vacuolization injury by disrupting the Sertoli cell junction and cytoskeletal organization via the AKT/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116502. [PMID: 38788563 DOI: 10.1016/j.ecoenv.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure. METHODS Male mice were subjected to TP at doses of 15, 30, and 60 μg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood-testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining. RESULTS TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells. CONCLUSION This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.
Collapse
Affiliation(s)
- Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Tiao Bu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinran Lu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou 215002, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Meng K, Liu Q, Qin Y, Qin W, Zhu Z, Sun L, Jiang M, Adu-Amankwaah J, Gao F, Tan R, Yuan J. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin Med J (Engl) 2024:00029330-990000000-01098. [PMID: 38855875 DOI: 10.1097/cm9.0000000000003126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.
Collapse
Affiliation(s)
- Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| | - Qian Liu
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Yiding Qin
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Wenjie Qin
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Ziming Zhu
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Longlong Sun
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Mingchao Jiang
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Joseph Adu-Amankwaah
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Fei Gao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 101408, China
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
12
|
Jiang J, Shu Z, Qiu L. Adverse effects and potential mechanisms of polystyrene microplastics (PS-MPs) on the blood-testis barrier. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:238. [PMID: 38849627 DOI: 10.1007/s10653-024-02033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024]
Abstract
Microplastics (MPs) are defined as plastic particles or fragments with a diameter of less than 5 mm. These particles have been identified as causing male reproductive toxicity, although the precise mechanism behind this association is yet to be fully understood. Recent research has found that exposure to polystyrene microplastics (PS-MPs) can disrupt spermatogenesis by impacting the integrity of the blood-testis barrier (BTB), a formidable barrier within mammalian blood tissues. The BTB safeguards germ cells from harmful substances and infiltration by immune cells. However, the disruption of the BTB leads to the entry of environmental pollutants and immune cells into the seminiferous tubules, resulting in adverse reproductive effects. Additionally, PS-MPs induce reproductive damage by generating oxidative stress, inflammation, autophagy, and alterations in the composition of intestinal flora. Despite these findings, the precise mechanism by which PS-MPs disrupt the BTB remains inconclusive, necessitating further investigation into the underlying processes. This review aims to enhance our understanding of the pernicious effects of PS-MP exposure on the BTB and explore potential mechanisms to offer novel perspectives on BTB damage caused by PS-MPs.
Collapse
Affiliation(s)
- Jinchen Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, People's Republic of China
| | - Zhenhao Shu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, People's Republic of China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, People's Republic of China.
| |
Collapse
|
13
|
Hosseini M, Khalafiyan A, Zare M, Karimzadeh H, Bahrami B, Hammami B, Kazemi M. Sperm epigenetics and male infertility: unraveling the molecular puzzle. Hum Genomics 2024; 18:57. [PMID: 38835100 PMCID: PMC11149391 DOI: 10.1186/s40246-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The prevalence of infertility among couples is estimated to range from 8 to 12%. A paradigm shift has occurred in understanding of infertility, challenging the notion that it predominantly affects women. It is now acknowledged that a significant proportion, if not the majority, of infertility cases can be attributed to male-related factors. Various elements contribute to male reproductive impairments, including aberrant sperm production caused by pituitary malfunction, testicular malignancies, aplastic germ cells, varicocele, and environmental factors. MAIN BODY The epigenetic profile of mammalian sperm is distinctive and specialized. Various epigenetic factors regulate genes across different levels in sperm, thereby affecting its function. Changes in sperm epigenetics, potentially influenced by factors such as environmental exposures, could contribute to the development of male infertility. CONCLUSION In conclusion, this review investigates the latest studies pertaining to the mechanisms of epigenetic changes that occur in sperm cells and their association with male reproductive issues.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Zare
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniye Karimzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basireh Bahrami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Hammami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Parra-Martínez C, Selma-Royo M, Callejón-Leblic B, Collado MC, Abril N, García-Barrera T. Gut-gonad crosstalk in mice exposed to a "chemical cocktail" combining metabolomics and microbial profile by amplicon sequencing. Food Chem Toxicol 2024; 188:114627. [PMID: 38561037 DOI: 10.1016/j.fct.2024.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Testes are very prone to be damaged by environmental pollutants, but there is a lack of information about the impact of "chemical cocktails" (CC) on the testicular metabolome and the possible influence in the gut-gonad crosstalk. For this, BALB/c mice were given flumequine and diclofenac orally in food and potentially toxic trace elements (Cd, Hg, As) in drinking water. A mice group was supplemented with selenium, a well-known antagonist against many pollutants. Our results revealed that the steroid 5-alpha-androstan-17-beta-ol propionate, suggested as a parameter of androgenicity independent of testosterone levels, proline that improves reproductive indicators in male rabbits affected by environmental stress) among others metabolites are only present after CC exposure with rodent and selenium supplemented diet. Selenium also antagonized the up-or down-regulation of anandamide (20:l, n-9) (p < 0.001 and FC 0.54 of CC vs C but p > 0,05 and FC 0.74 of CC-Se vs C), that regulates gonadotropin-releasing hormones in mammals, 2,3-dinor-11b-PGF2a (p < 0.001 and FC 0.12 of CC vs C but p > 0,05 and FC 0.34 of CC-Se vs C), which has been related with reproductive hormones, besides others testicular metabolites altered by the exposure to the CC and reversed the levels to control. Moreover, numerous significant associations between gut microbes and testicular metabolites indicated a possible impact of pollutants in the testes mediated by gut microbiota due to a gut-gonad crosstalk.
Collapse
Affiliation(s)
- C Parra-Martínez
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - M Selma-Royo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - B Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - M C Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - N Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - T García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
15
|
Rindone GM, Dasso ME, Centola CL, Sobarzo CM, Galardo MN, Meroni SB, Riera MF. Effect of Metformin on Sertoli Cell Fatty Acid Metabolism and Blood-Testis Barrier Formation. BIOLOGY 2024; 13:330. [PMID: 38785812 PMCID: PMC11117697 DOI: 10.3390/biology13050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Sertoli cells (SCs) are essential to maintaining germ cell development. Metformin, the main pharmacologic treatment for pediatric type 2 diabetes, is administered to children during SC maturation. The present study aimed to analyze whether metformin affects SC energy metabolism and blood-testis barrier (BTB) integrity. Primary SC cultures were used for the in vitro studies. In vivo effects were studied in Sprague-Dawley rats treated with 200 mg/kg metformin from Pnd14 to Pnd30. Metformin decreased fatty acid oxidation and increased 3-hydroxybutyrate production in vitro. Moreover, it decreased the transepithelial electrical resistance across the monolayer and induced ZO-1 redistribution, suggesting an alteration of cell junctions. In vivo, a mild but significant increase in BTB permeability and ZO-1 expression was observed in the metformin group, without changes in testicular histology and meiosis progression. Additionally, adult rats that received metformin treatment during the juvenile period showed no alteration in BTB permeability or daily sperm production. In conclusion, metformin exposure may affect BTB permeability in juvenile rats, but this seems not to influence spermatogenesis progression. Considering the results obtained in adult animals, it is possible to speculate that metformin treatment during the juvenile period does not affect testicular function in adulthood.
Collapse
Affiliation(s)
- Gustavo Marcelo Rindone
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Cristian Marcelo Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina;
| | - María Noel Galardo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - María Fernanda Riera
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| |
Collapse
|
16
|
Wanjari UR, Gopalakrishnan AV. Blood-testis barrier: a review on regulators in maintaining cell junction integrity between Sertoli cells. Cell Tissue Res 2024; 396:157-175. [PMID: 38564020 DOI: 10.1007/s00441-024-03894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
The blood-testis barrier (BTB) is formed adjacent to the seminiferous basement membrane. It is a distinct ultrastructure, partitioning testicular seminiferous epithelium into apical (adluminal) and basal compartments. It plays a vital role in developing and maturing spermatocytes into spermatozoa via reorganizing its structure. This enables the transportation of preleptotene spermatocytes across the BTB, from basal to adluminal compartments in the seminiferous tubules. Several bioactive peptides and biomolecules secreted by testicular cells regulate the BTB function and support spermatogenesis. These peptides activate various downstream signaling proteins and can also be the target themself, which could improve the diffusion of drugs across the BTB. The gap junction (GJ) and its coexisting junctions at the BTB maintain the immunological barrier integrity and can be the "gateway" during spermatocyte transition. These junctions are the possible route for toxicant entry, causing male reproductive dysfunction. Herein, we summarize the detailed mechanism of all the regulators playing an essential role in the maintenance of the BTB, which will help researchers to understand and find targets for drug delivery inside the testis.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, PIN 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, PIN 632014, India.
| |
Collapse
|
17
|
Chen Z, Chen Z, Gao S, Shi J, Li X, Sun F. PFOS exposure destroys the integrity of the blood-testis barrier (BTB) through PI3K/AKT/mTOR-mediated autophagy. Reprod Biol 2024; 24:100846. [PMID: 38160586 DOI: 10.1016/j.repbio.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
18
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
19
|
Li Y, Li L, Xiong W, Duan X, Xi H. Fluorochloridone induces mitochondrial dysfunction and apoptosis in primary goat Sertoli cells. Theriogenology 2024; 214:192-200. [PMID: 37897848 DOI: 10.1016/j.theriogenology.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Fluorochloridone (FLC), a pyrrolidone herbicide, has been recognized as a hazardous chemical. The in vitro adverse effects of FLC on the reproduction of livestock have not been assessed. This study was conducted to explore the cytotoxicity and toxicological mechanisms of FLC on cultured goat Sertoli cells. The results showed that FLC exposure significantly decreased goat Sertoli cell viability (p < 0.05) and induced oxidative stress. And FLC treatment promoted apoptosis and initiation of autophagy. Interestingly, FLC inhibited lysosomal biogenesis and blocked autophagic flux in goat Sertoli cells. The expression levels of autophagy-related proteins Atg5, LC3II, and p62 were significantly increased (p < 0.05) in FLC-treated goat Sertoli cells compared with the control. Importantly, FLC-induced ROS accumulation further causes mitochondrial dysfunction and disturbs mitophagy. FLC significantly decreased (p < 0.05) the expression levels of OPA1, MFN2, p-Drp1, FIS1, PINK1, and Parkin in goat Sertoli cells. Moreover, pretreatment with N-acetyl-l-cysteine (NAC, an antioxidant) significantly reduced (p < 0.01) FLC-induced ROS accumulation and reversed the disorder of autophagy levels. Our results indicated that FLC-induced toxicity in primary goat Sertoli cells was characterized by ROS accumulation, inducing oxidative stress, inhibiting lysosomal biogenesis, blocking autophagic flux, and promoting mitochondrial dysfunction, resulting in apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | - Lishu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | - Wenjie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, People's Republic of China.
| | - Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
20
|
Li T, Jiang L, Zheng S, Qiu C, Zhao N, Lin X, Ren H, Huang J, Wang H, Qiu L. Organic anion transporting polypeptide 3a1 is a novel influx pump for Perfluorooctane sulfonate in Sertoli cells and contributes to its reproductive toxicity. CHEMOSPHERE 2023; 345:140428. [PMID: 37858765 DOI: 10.1016/j.chemosphere.2023.140428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Persistent organic pollutant perfluorooctane sulfonate (PFOS) is strongly associated with male reproductive disorders, but the related mechanisms are still not fully understood. In this study, we used in vivo and in vitro models to explore the role of organic anion transporting polypeptide 3a1 (Oatp3a1) on PFOS-induced male reproductive injury. Thirty male C57BL/6 (B6) mice were orally given PFOS (0-10 mg/kg/bw) for 28 days. Body weight, organ index, sperm count, histology, and blood-testis barrier (BTB) integrity were evaluated. Primary Sertoli cells were used to describe the related molecular mechanisms of male reproductive injury caused by PFOS. Our results showed that PFOS induced a decrease in sperm count, morphological damage to testicular Sertoli cells, and disruption of BTB. In the in vitro model, exposure to PFOS significantly increased Oatp3a1 mRNA and protein levels and decreased miR-23a-3p expression in Sertoli cells, accompanied by reduced trans-epithelial electrical resistance (TEER) value. By performing the 14C-PFOS uptake experiment, we showed that 14C-PFOS uptake in HEK293-Oatp3a1 cells was apparently higher than in HEK293-MOCK cells. Meanwhile, treating Sertoli cells with Oatp3a1 siRNA significantly decreased Oatp3a1 expression and rescued PFOS-induced decreases in TEER value. As such, the present study highlights that Oatp3a1 may play an important role in the toxic effect of PFOS on Sertoli cells, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd., Nantong, 226001, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
21
|
Feng Y, Wu J, Lei R, Zhang Y, Qiao M, Zhou J, Xu Z, Li Z, Sun H, Peng X, Mei S. N-Acetyl-L-Cysteine Ameliorates BPAF-Induced Porcine Sertoli Cell Apoptosis and Cell Cycle Arrest via Inhibiting the ROS Level. TOXICS 2023; 11:923. [PMID: 37999575 PMCID: PMC10675769 DOI: 10.3390/toxics11110923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol AF (BPAF) is a newly identified contaminant in the environment that has been linked to impairment of the male reproductive system. However, only a few studies have systematically studied the mechanisms underlying BPAF-induced toxicity in testicular Sertoli cells. Hence, this study primarily aims to explore the toxic mechanism of BPAF on the porcine Sertoli cell line (ST cells). The effects of various concentrations of BPAF on ST cell viability and cytotoxicity were evaluated using the Counting Kit-8 (CCK-8) assay. The results demonstrated that exposure to a high concentration of BPAF (above 50 μM) significantly inhibited ST cell viability due to marked cytotoxicity. Flow cytometry analysis further confirmed that BPAF facilitated apoptosis and induced cell cycle arrest in the G2/M phase. Moreover, BPAF exposure upregulated the expression of pro-apoptotic markers BAD and BAX while downregulating anti-apoptotic and cell proliferation markers BCL-2, PCNA, CDK2, and CDK4. BPAF exposure also resulted in elevated intracellular levels of reactive oxygen species (ROS) and malondialdehyde (MDA), alongside reduced activities of the antioxidants glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Furthermore, the ROS scavenger N-acetyl-L-cysteine (NAC) effectively blocked BPAF-triggered apoptosis and cell cycle arrest. Therefore, this study suggests that BPAF induces apoptosis and cell cycle arrest in ST cells by activating ROS-mediated pathways. These findings enhance our understanding of BPAF's role in male reproductive toxicity and provide a foundation for future toxicological assessments.
Collapse
Affiliation(s)
- Yue Feng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Runyu Lei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
22
|
Xiong YW, Li DX, Ling ZJ, Tan LL, Zhang YF, Zhang J, Li H, Chang W, Zhu HL, Zhang J, Gao L, Xu DX, Yang L, Wang H. Loss of Atg5 in Sertoli cells enhances the susceptibility of cadmium-impaired testicular spermatogenesis in mice. Food Chem Toxicol 2023; 179:113967. [PMID: 37506864 DOI: 10.1016/j.fct.2023.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Cadmium (Cd), one of the most common contaminants in diet and drinking water, impairs testicular germ cell development and spermatogenesis. Autophagy is essential for maintaining Sertoli cell function and Sertoli-germ cell communication. However, the role of Sertoli cell autophagy in Cd-caused spermatogenesis disorder remains unclear. Here, the mice of autophagy-related gene 5 (Atg5) knockouts in Sertoli cells were used to investigate the effect of autophagy deficiency on Cd-impaired spermatogenesis and its underlying mechanisms. Results showed that Sertoli cell-specific knockout of Atg5 exacerbated Cd-reduced sperm count and MVH (a specific marker for testicular germ cells) level in mice. Additionally, Sertoli cell Atg5 deficiency reduced the number of spermatocytes and decreased the level of meiosis-related proteins (SYCP3 and STRA8) in Cd-treated mouse testes. Loss of Atg5 in Sertoli cell exacerbated Cd-reduced the level of retinoic acid (RA) and retinal dehydrogenase (ALDH1A1 and ALDH1A) in mouse testes. Meanwhile, we found that the level of transcription factor WT1 was significantly downregulated in Atg5-/- plus Cd-treated testes. Further experiments showed that Wt1 overexpression restored Cd-decreased the levels of ALDH1A1 in Sertoli cells. Collectively, the above data suggest that knockout of Atg5 in Sertoli cell enhances the susceptibility of Cd-impaired testicular spermatogenesis. These findings provide new insights into autophagy of Sertoli cell preventing environmental toxicants-impaired testicular spermatogenesis.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Dai-Xin Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zheng-Jia Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Prenatal Diagnosis Center, Wuxi Maternity and Child Health Care Hospital, 214002, Wuxi, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lan Yang
- Prenatal Diagnosis Center, Wuxi Maternity and Child Health Care Hospital, 214002, Wuxi, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
23
|
Venditti M, Santillo A, Latino D, Ben Rhouma M, Romano MZ, Haddadi A, Di Fiore MM, Minucci S, Messaoudi I, Chieffi Baccari G. Evidence of the protective role of D-Aspartate in counteracting/preventing cadmium-induced oxidative stress in the rat testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115067. [PMID: 37244200 DOI: 10.1016/j.ecoenv.2023.115067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3β-HSD, and 17β-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Debora Latino
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Mariem Ben Rhouma
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Asma Haddadi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy.
| | - Imed Messaoudi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
24
|
Lu T, Mortimer M, Li F, Li Z, Chen L, Li M, Guo LH. Putative adverse outcome pathways of the male reproductive toxicity derived from toxicological studies of perfluoroalkyl acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162439. [PMID: 36848992 DOI: 10.1016/j.scitotenv.2023.162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Lu Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
25
|
Ali W, Bian Y, Ali H, Sun J, Zhu J, Ma Y, Liu Z, Zou H. Cadmium-induced impairment of spermatozoa development by reducing exosomal-MVBs secretion: a novel pathway. Aging (Albany NY) 2023; 15:204675. [PMID: 37220720 DOI: 10.18632/aging.204675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/15/2023] [Indexed: 05/25/2023]
Abstract
Cadmium is a heavy environmental pollutant that presents a high risk to male-fertility and targets the different cellular and steroidogenic supporting germ cells networks during spermatogenesis. However, the mechanism accounting for its toxicity in multivesicular bodies (MVBs) biogenesis, and exosomal secretion associated with spermatozoa remains obscure. In the current study, the light and electron microscopy revealed that, the Sertoli cells perform a dynamic role with secretion of well-developed early endosomes (Ee) and MVBs pathway associated with spermatozoa during spermatogenesis. In addition, some apical blebs containing nano-scale exosomes located on the cell surface and after fragmentation nano-scale exosomes were directly linked with spermatozoa in the luminal compartment of seminiferous tubules, indicating normal spermatogenesis. Controversially, the cadmium treated group showed limited and deformed spermatozoa with damaging acromion process and mid-peace, and the cytoplasmic vacuolization of spermatids. After cadmium treatment, there is very limited biogenesis of MVBs inside the cytoplasm of Sertoli cells, and no obvious secretions of nano-scale exosomes interacted with spermatozoa. Interestingly, the cadmium treated group demonstrated relatively higher formation of autophagosomes and autolysosome, and the autophagosomes were enveloped by MVBs that later formed the amphisome which degraded by lysosomes, indicating the hypo-spermatogenesis. Moreover, cadmium declined the exosomal protein cluster of differentiation (CD63) and increased the autophagy-related proteins microtubule-associated light chain (LC3), sequestosome 1 (P62) and lysosomal-associated membrane protein 2 (LAMP2) expression level were confirmed by Western blotting. These results provide rich information regarding how cadmium is capable of triggering impaired spermatozoa development during spermatogenesis by reduction of MVBs pathway through high activation of autophagic pathway. This study explores the toxicant effect of cadmium on nano-scale exosomes secretion interacting with spermatozoa.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Hina Ali
- University of Health Sciences, Lahore 54651, Punjab, Pakistan
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| |
Collapse
|
26
|
Liu X, Xi H, Han S, Zhang H, Hu J. Zearalenone induces oxidative stress and autophagy in goat Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114571. [PMID: 36708663 DOI: 10.1016/j.ecoenv.2023.114571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Zearalenone (ZEA), one of the non-steroidal estrogen mycotoxin, can cause male reproductive damage and genotoxicity in mammals. Testicular oxidative injury is an important factor causing male sterility. Testicular Sertoli cells are essential for spermatogenesis and male fertility. At present, the mechanism of oxidative injury in dairy goat Sertoli cells after exposure to ZEA remains unclear. This study explored the effects of ZEA on oxidative stress and autophagy in dairy goat Sertoli cells. It was found that treatment of primary Sertoli cells with 25, 50 and 100 μmol/L ZEA for 24 h can promote ROS production, decrease cell viability, antioxidant enzyme activity and mitochondrial membrane potential, induce caspase-dependent cell apoptosis and autophagy activity. ZEA-induced autophagy was confirmed by LC3-I/LC3-II transformation. More importantly, N-acetylcysteine (NAC) pretreatment can remarkably inhibit ZEA-induced oxidative stress, apoptosis and autophagy in Sertoli cells by eliminating ROS. In conclusion, this study indicates that ZEA induces oxidative stress and autophagy in dairy goat Sertoli cells by promoting ROS production.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Shuaiqi Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongyun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
27
|
Khorsandi L, Heidari-Moghadam A, Younesi E, Javad Khodayar M, Asadi-Fard Y. Naringenin ameliorates cytotoxic effects of bisphenol A on mouse Sertoli cells by suppressing oxidative stress and modulating mitophagy: An experimental study. Int J Reprod Biomed 2023; 22:219-228. [PMID: 38868445 PMCID: PMC11165226 DOI: 10.18502/ijrm.v22i3.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
Background Bisphenol A (BPA), an endocrine-disrupting agent, is widely used as polycarbonate plastics for producing food containers. BPA exposure at environmentally relevant concentrations can cause reproductive disorders. Objective The effect of Naringenin (NG) on BPA-induced Sertoli cell toxicity and its mechanism was examined in the present study. Materials and Methods In this experimental-laboratory study, the mouse TM4 cells were treated to BPA (0.8 μM) or NG for 24 hr at concentrations of 10, 20, and 50 μg/ml. Cell viability, reactive oxygen species (ROS) production, malondialdehyde (MDA) content, antioxidant level, and mitochondrial membrane potential (MMP) were examined. The expression of mitophagy-related genes, including Parkin and PTEN-induced putative kinase 1 (Pink1), was also evaluated. Results BPA significantly lowered the viability of the Sertoli cells (p= 0.004). Pink1 and Parkin levels of the BPA group were significantly increased (p < 0.001), while the MMP was considerably decreased (p < 0.001). BPA raised MDA and ROS levels (p < 0.001) and reduced antioxidant biomarkers (p= 0.003). NG at the 20 and 50 μg/ml concentrations could significantly improve the viability and MMP of TM4 cells (p= 0.034). NG depending on concentration, could decrease Pink1 and Parkin at mRNA and protein levels compared to the BPA group (p = 0.024). NG enhanced antioxidant factors, while ROS and MDA levels were decreased in the BPA-exposed cells. Conclusion The beneficial impacts of NG on BPA-exposed Sertoli cells are related to the suppression of mitophagy and the reduction of oxidative stress.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Heidari-Moghadam
- Department of Anatomical Sciences, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Younesi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yousef Asadi-Fard
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
28
|
Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: A mini review. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:130-135. [PMID: 36717303 DOI: 10.1016/j.joim.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 01/22/2023]
Abstract
Male infertility has become a problem worldwide, and recent research has emphasized the development of more effective therapy options. Among natural compounds, rutin has been widely studied for its potential to treat dysfunction related to male infertility, including a reduction in sperm quality, spermatogenesis disruption and structural disruption in the testis. A thorough review of scientific literature published in several databases, including Google Scholar, PubMed/MEDLINE and Scopus, was used to synthesize the present state of research on the role of rutin in male reproductive health. Rutin has been shown to possess antiapoptotic, antioxidant and anti-inflammatory activities, among others, which are crucial in the management of male infertility. Numerous investigations have shown that rutin protects against male infertility and have explored the underlying mechanisms involved. The present review, therefore, assesses the therapeutic mechanisms involved in male infertility treatment using rutin. Rutin was able to mitigate the induced oxidative stress, apoptosis, inflammation, and related physiological processes that can cause testicular dysfunction. Please cite this article as: Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: a mini review. J Integr Med. 2022; Epub ahead of print.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Osun State, Nigeria.
| |
Collapse
|
29
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
30
|
Xi H, Hu Z, Han S, Liu X, Wang L, Hu J. FSH-inhibited autophagy protects against oxidative stress in goat Sertoli cells through p62-Nrf2 pathway. Theriogenology 2023; 195:103-114. [PMID: 36332369 DOI: 10.1016/j.theriogenology.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
31
|
Ali W, Ma Y, Zhu J, Zou H, Liu Z. Mechanisms of Cadmium-Induced Testicular Injury: A Risk to Male Fertility. Cells 2022; 11:cells11223601. [PMID: 36429028 PMCID: PMC9688678 DOI: 10.3390/cells11223601] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium is a heavy toxic metal with unknown biological functions in the human body. Over time, cadmium accretion in the different visceral organs (liver, lungs, kidney, and testis) is said to impair the function of these organs, which is associated with a relatively long biological half-life and a very low rate of excretion. Recently studies have revealed that the testes are highly sensitive to cadmium. In this review, we discussed the adverse effect of cadmium on the development and biological functions of the testis. The Sertoli cells (SCs), seminiferous tubules, and Blood Testis Barrier are severely structurally damaged by cadmium, which results in sperm loss. The development and function of Leydig cells are hindered by cadmium, which also induces Leydig cell tumors. The testis's vascular system is severely disturbed by cadmium. Cadmium also perturbs the function of somatic cells and germ cells through epigenetic regulation, giving rise to infertile or sub-fertile males. In addition, we also summarized the other findings related to cadmium-induced oxidative toxicity, apoptotic toxicity, and autophagic toxicity, along with their possible mechanisms in the testicular tissue of different animal species. Consequently, cadmium represents a high-risk factor for male fertility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
32
|
Sun W, Tian F, Pan H, Chang X, Xia M, Hu J, Wang Y, Li R, Li W, Yang M, Zhou Z. Flurochloridone induced abnormal spermatogenesis by damaging testicular Sertoli cells in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114163. [PMID: 36240522 DOI: 10.1016/j.ecoenv.2022.114163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity whose evidence is limited, but its mechanism remains unclear. The present study was conducted to systematically explore the male reproductive toxicity of FLC, including sperm quality, spermatogenesis, toxicity targets, and potential mechanisms. METHODS Male C57BL/6 mice aged 6-7 weeks received gavage administration of FLC (365/730 mg/kg/day) for 28 consecutive days. Then, the tissue and sperm of mice were collected for analysis. We measured the gonadosomatic index and analyzed sperm concentration, motility, malformation rate, and mitochondrial membrane potential (MMP). Spermatocyte immunofluorescence staining was performed to analyze meiosis. We also performed pathological staining on the testis and epididymis tissue and TUNEL staining, immunohistochemical analysis, and ultrastructural observation on the testicular tissue. RESULTS Results showed that FLC caused testicular weight reduction, dysfunction, and architectural damage in mice, but no significant adverse effect was found in the epididymis. The exposure interfered with spermatogonial proliferation and meiosis, affecting sperm concentration, motility, kinematic parameters, morphology, and MMP, decreasing sperm quality. Furthermore, mitochondrial damage and apoptosis of testicular Sertoli cells were observed in mice treated with FLC. CONCLUSION We found that FLC has significant adverse effects on spermatogonial proliferation and meiosis. Meanwhile, apoptosis and mitochondrial damage may be the potential mechanism of Sertoli cell damage. Our study demonstrated that FLC could induce testicular Sertoli cell damage, leading to abnormal spermatogenesis, which decreased sperm quality. The data provided references for the toxicity risk and research methods of FLC application in the environment.
Collapse
Affiliation(s)
- Weiqi Sun
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China; Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Hongjie Pan
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Runsheng Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
33
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Shen Y, You Y, Zhu K, Fang C, Yu X, Chang D. Bibliometric and visual analysis of blood-testis barrier research. Front Pharmacol 2022; 13:969257. [PMID: 36071829 PMCID: PMC9441755 DOI: 10.3389/fphar.2022.969257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research on the blood-testis barrier has been undertaken in recent years. However, no systematic bibliometric study has been conducted on this subject. Our research aimed to identify the hotspots and frontiers of blood-testis barrier research and to serve as a guide for future scientific research and decision-making in the field.Methods: Studies on the blood-testis barrier were found in the Web of Science Core Collection. VOSviewer, CiteSpace, and Microsoft Excel were used to conduct the bibliometric and visual analyses.Results: We found 942 blood-testis barrier studies published in English between 1992 and 2022. The number of annual publications and citations increased significantly between 2011 and 2022, notably in the United States. China and the United States, the US Population Council, Endocrinology, and Cheng C. Yan were the most productive countries, institution, journal, and author, respectively. The study keywords indicated that blood-testis barrier research involves a variety of compositional features (tight junctions, cytoskeleton, adherens junctions), cell types (Sertoli cells, germ cells, Leydig cells, stem cells), reproductive toxicity (cadmium, nanoparticles, bisphenol-a), and relevant mechanisms (spermatogenesis, apoptosis, oxidative stress, dynamics, inflammation, immune privilege).Conclusion: The composition and molecular processes of the blood-testis barrier as well as the blood-testis barrier in male infertility patients are the primary research hotspots in this field. In addition, future research will likely focus on treatment and the development of novel medications that target signal pathways in oxidative stress and apoptosis to preserve the blood-testis barrier. Further studies must extend to clinical diagnosis and therapy.
Collapse
|
35
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
36
|
Adegoke EO, Rahman MS, Amjad S, Pang WK, Ryu DY, Park YJ, Pang MG. Bisphenol A damages testicular junctional proteins transgenerationally in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119067. [PMID: 35231543 DOI: 10.1016/j.envpol.2022.119067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Testicular junctions are pivotal to male fertility and regulated by constituent proteins. Increasing evidence suggests that environmental chemicals, including bisphenol A (BPA), may impact these proteins, but whether the impacts persist for generations is not yet known. Here, we investigate the effect of BPA (a ubiquitous endocrine-disrupting chemical) on testis and sperm functions and whether the effects are transferred to subsequent generations. Male mice (F0) were exposed to corn oil (Control) or 5 or 50 mg BPA/kg body weight/day from 6 to 12 weeks of age. The F0 were mated with wild-type females to produce the first filial (F1) generation. F2 and F3 were produced using similar procedures. Our results showed that BPA doses decreased the levels of some junctional proteins partly via binding with estrogen receptors (ERα and Erβ), upregulation of p-ERK1/2, P85, p-JNK and activation of p38 mitogen-activated protein kinase signaling. Consequently, testicular histological abnormalities, disrupted spermatogenesis, decreased sperm count, and inability to fertilize eggs were observed in mice exposed to BPA. These effects were transferred to successive generations (F2), partly through DNA methylation, but mostly alleviated in F3 males. Our findings suggest that paternal exposure to chemicals promoting alteration of testicular junctional proteins and its transgenerational inheritance is a key component of the origin of male reproductive health problems.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Shereen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
37
|
Petricca S, Celenza G, Luzi C, Cinque B, Lizzi AR, Franceschini N, Festuccia C, Iorio R. Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells. Int J Mol Sci 2022; 23:ijms23105429. [PMID: 35628239 PMCID: PMC9140920 DOI: 10.3390/ijms23105429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.
Collapse
Affiliation(s)
- Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Carla Luzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy;
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (S.P.); (G.C.); (C.L.); (A.R.L.); (N.F.); (C.F.)
- Correspondence: ; Tel./Fax: +39-086-243-3443
| |
Collapse
|
38
|
Preconception exposure to dibutyl phthalate (DBP) impairs spermatogenesis by activating NF-κB/COX-2/RANKL signaling in Sertoli cells. Toxicology 2022; 474:153213. [DOI: 10.1016/j.tox.2022.153213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
|
39
|
Zhang Y, Wu X, Zhu K, Liu S, Yang Y, Yuan D, Wang T, He Y, Dun Y, Wu J, Zhang C, Zhao H. Icariin attenuates perfluorooctane sulfonate-induced testicular toxicity by alleviating Sertoli cell injury and downregulating the p38MAPK/MMP9 pathway. Food Funct 2022; 13:3674-3689. [PMID: 35262540 DOI: 10.1039/d1fo04135e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is widely recognized as causing Sertoli cell injury and testicular toxicity in males. Icariin is a flavonoid from Epimedium, which effectively improves spermatogenesis disturbance induced by several factors in clinic. However, it is unclear whether icariin improves PFOS-induced testicular toxicity. In vivo, fifty-two male mice were randomly separated into four groups: normal control group, model group, and low and high doses of icariin-treated groups, with 13 mice in each group. Except for the normal control group, the mice in the model group and icariin-treated groups were administered PFOS (10 mg kg-1) by gavage daily for 28 consecutive days, and concurrently treated with a diet containing different doses of icariin (0, 5 or 20 mg kg-1). In vitro, TM4 cells were treated with 150 μM PFOS to induce Sertoli cell injury, and were then utilized for icariin treatment. Our results demonstrated that icariin attenuated PFOS-induced testicular toxicity by increasing the testicular, epididymal and seminal vesicle weights, epididymal and seminal vesicle indices, sperm parameters, and seminiferous epithelium height. In addition, icariin improved the PFOS-induced blood-testis barrier (BTB) disruption by alleviating the Sertoli cell junctional injury, but without affecting Sertoli cell numbers in the testis of mice. Moreover, icariin increased the expression levels of tight junction proteins (ZO-1, Occludin and Claudin-11) and gap junction proteins (CX43 and p-CX43), and decreased the expression levels of p-p38MAPK and matrix metalloproteinase 9 (MMP9) both in vivo and in vitro. Furthermore, alleviation of the Sertoli cell injury by icariin exerted similar effects as SB203580 (an inhibitor of p38MAPK) in TM4 cells. This study revealed that icariin effectively reduces PFOS-induced testicular toxicity by alleviating the Sertoli cell injury and downregulating the p38MAPK/MMP9 pathway, indicating that icariin may be an attractive dietary supplement for the intervention of PFOS-induced testicular dysfunction.
Collapse
Affiliation(s)
- Yan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Xiaoping Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Kaili Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Shangyu Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yuan Yang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Ting Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yaoyan Dun
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Jie Wu
- Material Analysis and Testing Center, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Changcheng Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Haixia Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
40
|
Male Infertility in the XXI Century: Are Obesogens to Blame? Int J Mol Sci 2022; 23:ijms23063046. [PMID: 35328463 PMCID: PMC8948702 DOI: 10.3390/ijms23063046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The permanent exposure to environmental contaminants promoting weight gain (i.e., obesogens) has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline in male fertility and are key players in shaping future health outcomes, not only for those who are directly exposed to them, but also for upcoming generations. It has been hypothesized that obesogens affect male fertility. By using an interdisciplinary strategy, combining in silico, in vitro, in vivo and epidemiological findings, this review aims to contribute to the biological understanding of the molecular transformations induced by obesogens that are the basis of male infertility. Such understanding is shaped by the use of Adverse Outcomes Pathways, a new approach that may shift the paradigm of reproductive toxicology, contributing to the improvement of the diagnosis and management of the adverse effects of obesogens in male fertility.
Collapse
|
41
|
Machado-Neves M. Effect of heavy metals on epididymal morphology and function: An integrative review. CHEMOSPHERE 2022; 291:133020. [PMID: 34848222 DOI: 10.1016/j.chemosphere.2021.133020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Male fertility has deteriorated over the last decades, and environmental risk factors are among the possible causes of this phenomenon. Pollutants such as heavy metals might accumulate in male reproductive organs to levels that are associated with reproductive disorders. Several studies reported detrimental effects of inorganic arsenic (iAs+3/iAs+5), cadmium (Cd+2), lead (Pb+2), and mercury (Hg+2/CH3Hg+2) on the epididymis, which plays a crucial role in sperm maturation. However, the magnitude of their effects and the consequences on the physiology of the epididymis are still unclear. Therefore, an integrative review with meta-analyses was conducted examining 138 studies to determine how exposure to arsenic, cadmium, lead, and mercury affects epididymal morphology and functions, using primarily murine data from experimental studies as a source. This study showed that exposure to metal(loids) reduced epididymal weight, sperm motility, and sperm number. Inorganic arsenic, cadmium, and lead damaged sperm structures within the epididymal duct. While sodium arsenite, sodium arsenate, and lead acetate generate oxidative stress by an imbalance between ROS production and scavenging, cadmium chloride causes an increase in the pH level of the luminal fluid (from 6.5 to 7.37) that diminishes sperm viability. Inorganic arsenic induced a delay in the sperm transit time by modulating noradrenaline and dopamine secretion. Subacute exposure to heavy metals at concentrations < 0.1 mg L-1 initiates a dyshomeostasis of calcium, copper, iron, and zinc that disturbs sperm parameters and reduces epididymal weight. These alterations worsen with prolonged exposure time and higher doses. Most studies evaluated the effects of concentrations > 1.1 mg L-1 of heavy metals on the epididymis rather than doses with relevant importance for human health risk. This meta-analytical study faced limitations regarding a deeper analysis of epididymis physiology. Hence, several recommendations for future investigations are provided. This review creates a baseline for the comprehension of epididymal toxicology.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, DBG, Campus Universitário, Viçosa, 36570-900, Minas Gerais, Brasil.
| |
Collapse
|
42
|
She J, Feng N, Zheng W, Zheng H, Cai P, Zou H, Yuan Y, Gu J, Liu Z, Bian J. Zearalenone Exposure Disrupts Blood-Testis Barrier Integrity through Excessive Ca 2+-Mediated Autophagy. Toxins (Basel) 2021; 13:toxins13120875. [PMID: 34941713 PMCID: PMC8703826 DOI: 10.3390/toxins13120875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Zearalenone (ZEA), a common mycotoxin in grains and animal feeds, has been associated with male reproductive disorders. However, the potential toxicity mechanism of ZEA is not fully understood. In this study, in vivo and in vitro models were used to explore the effects of ZEA on the blood-testis barrier (BTB) and related molecular mechanisms. First, male BALB/C mice were administered ZEA orally (40 mg/kg·bw) for 5-7 d. Sperm motility, testicular morphology, and expressions of BTB junction proteins and autophagy-related proteins were evaluated. In addition, TM4 cells (mouse Sertoli cells line) were used to delineate the molecular mechanisms that mediate the effects of ZEA on BTB. Our results demonstrated that ZEA exposure induced severe testicular damage in histomorphology and an ultrastructural, time-dependent decrease in the expression of blood-testis barrier junction-related proteins, accompanied by an increase in the expression of autophagy-related proteins. Additionally, similar to the in vitro results, the dose-dependent treatment of ZEA increased the level of cytoplasmic Ca2+ and the levels of the autophagy markers LC3-II and p62, in conjunction with a decrease in the BTB junction proteins occludin, claudin-11, and Cx43, with the dislocation of the gap junction protein Cx43. Meanwhile, inhibition of autophagy by CQ and 3-MA or inhibition of cytoplasmic Ca2+ by BAPTA-AM was sufficient to reduce the effects of ZEA on the TM4 cell BTB. To summarize, this study emphasizes the role of Ca2+-mediated autophagy in ZEA-induced BTB destruction, which deepens our understanding of the molecular mechanism of ZEA-induced male reproductive disorders.
Collapse
Affiliation(s)
- Jinjin She
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hao Zheng
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Peirong Cai
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (N.F.); (W.Z.); (H.Z.); (P.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
43
|
Rato L, Sousa ACA. The Impact of Endocrine-Disrupting Chemicals in Male Fertility: Focus on the Action of Obesogens. J Xenobiot 2021; 11:163-196. [PMID: 34940512 PMCID: PMC8709303 DOI: 10.3390/jox11040012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The current scenario of male infertility is not yet fully elucidated; however, there is increasing evidence that it is associated with the widespread exposure to endocrine-disrupting chemicals (EDCs), and in particular to obesogens. These compounds interfere with hormones involved in the regulation of metabolism and are associated with weight gain, being also able to change the functioning of the male reproductive axis and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. The permanent exposure to obesogens has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline of male fertility and key players in shaping the future health outcomes not only for those who are directly exposed but also for upcoming generations. In addition to the changes that lead to inefficient functioning of the male gametes, obesogens induce alterations that are “imprinted” on the genes of the male gametes, establishing a link between generations and contributing to the transmission of defects. Unveiling the molecular mechanisms by which obesogens induce toxicity that may end-up in epigenetic modifications is imperative. This review describes and discusses the suggested molecular targets and potential mechanisms for obesogenic–disrupting chemicals and the subsequent effects on male reproductive health.
Collapse
Affiliation(s)
- Luís Rato
- Health School of the Polytechnic Institute of Guarda, 6300-035 Guarda, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| | - Ana C. A. Sousa
- Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-671 Évora, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| |
Collapse
|
44
|
Cen C, Wang F, Xiong K, Jiang L, Hou X. Protective effects of Coridius chinensis extracts on rat reproductive damage induced by manganese. Andrologia 2021; 54:e14326. [PMID: 34820869 PMCID: PMC9285684 DOI: 10.1111/and.14326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Manganese (Mn2+ ) is an environmental pollutant, and testis is one of the main target organs. Coridius chinensis (C. chinensis), a traditional Chinese medicine, has been shown widely used in treating various kinds of pain, nephropathy and erectile dysfunction. In our recent study, we found that Mn2+ exposure caused testicular injury could be rescued in part by the antioxidant activity of C. chinensis extracts (CcE). However, there is dearth of extensive knowledge on the therapeutic effects of C. chinensis on manganese-induced reproductive toxicity. In the present study, Sprague-Dawley (SD) rats were administered manganese chloride alone or co-treated with CcE for 30 consecutive days. Results indicated that C. chinensis mediated suppression of spermatogenic dysfunction, and the number of apoptotic cells was significantly decreased in CcE-treated groups. Furthermore, the disintegrated testicular ultrastructural structure caused by Mn2+ was partially repaired in CcE-treated groups. C. chinensis significantly inhibited Mn2+ -induced decline in biomarkers of blood-testis barrier (BTB) including occludin, claudin1, zonula occludens-1 and junctional adhesion molecule 1, whereas it decreased the expression of focal adhesion kinase (FAK) and c-Src. This study demonstrated that c-Src and FAK might be involved in the repair of Mn2+ -induced testicular injury by C. chinensis, but further research is needed.
Collapse
Affiliation(s)
- Changhuo Cen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Fengyue Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Keyi Xiong
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Lin Jiang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Xiaohui Hou
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
45
|
Zeng L, Zhou J, Wang X, Zhang Y, Wang M, Su P. Cadmium attenuates testosterone synthesis by promoting ferroptosis and blocking autophagosome-lysosome fusion. Free Radic Biol Med 2021; 176:176-188. [PMID: 34610361 DOI: 10.1016/j.freeradbiomed.2021.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
Ferroptosis is a newly defined programmed cell death pathway characterized by iron overload and lipid peroxidation. Increasing studies show that autophagy regulates testosterone synthesis and promotes ferroptosis. Testosterone is essential for sexual development and the maintenance of male characteristics. The deficiency of testosterone induced by cadmium (Cd) can severely affect male fertility. However, the underlying mechanism of testosterone reduction after Cd exposure remains blurry. In this study, we found that Cd affected iron homeostasis and elicited ferroptosis, ultimately reducing testosterone production. Mechanically, our findings revealed that Cd-induced ferroptosis depended upon the excessive activation of Heme oxygenase 1 (HMOX1) and the release of free iron from heme. Additionally, Cd exposure promoted autophagosome formation but blocked autophagosome-lysosome fusion, which attenuated the absorption of total cholesterol and triglycerides, further aggravating testosterone synthesis disorder. Collectively, Cd induced ferroptosis by iron homeostasis dysregulation, mediated by excessive activation of HMOX-1. The disruption of autophagy flow contributed to Cd-induced testicular dysfunction and attenuated testosterone synthesis.
Collapse
Affiliation(s)
- Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
46
|
Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, Wang J, Wu Y, Shen L, Wei G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117904. [PMID: 34371264 DOI: 10.1016/j.envpol.2021.117904] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
It has been found that polystyrene microplastics (PS-MPs) exposure leads to decreased sperm quality and quantity, and we aim to explore the underlying mechanisms. Therefore, we gave 20 mg/kg body weight (bw) and 40 mg/kg bw 4 μm and 10 μm PS-MPs to male Balb/c mice by gavage. RNA sequencing of testes was performed. After PS-MPs exposure, blood-testis barrier (BTB) integrity was impaired. Since cytoskeleton was closely related to BTB integrity maintenance, and cytoskeleton disorganization could be induced by PS-MPs exposure in the testis, which resulted in the truncation of actin filaments and disruption of BTB integrity. Such processes were attributed to the differential expression of Arp3 and Eps8 (two of the most important actin-binding proteins). According to the transcriptome sequencing results, we examined the oxidative stress level in the testes and Sertoli cells. We found that PS-MPs exposure induced increased reactive oxygen species (ROS) level, which destroyed the balance between mTORC1 and mTORC2 (the mTORC1 activity was increased, while the mTORC2 activity was decreased). In conclusion, PS-MPs induced the imbalance of mTORC1 and mTORC2 via the ROS burst, and altered the expression profile of actin-binding proteins, resulting in F-actin disorganization and reduced expression of junctional proteins in the BTB. Eventually PS-MPs led to BTB integrity disruption and spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Huan Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
47
|
Kleshchev M, Osadchuk A, Osadchuk L. Impaired semen quality, an increase of sperm morphological defects and DNA fragmentation associated with environmental pollution in urban population of young men from Western Siberia, Russia. PLoS One 2021; 16:e0258900. [PMID: 34679097 PMCID: PMC8535459 DOI: 10.1371/journal.pone.0258900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
Poor sperm morphology and an elevated DNA fragmentation level are considered to be related to spermiogenesis malfunctions as a result of genetic mutations and effects of environmental factors, including industrial pollution. Standardized cross-sectional population studies of sperm morphology defects and sperm DNA fragmentation, especially in regions with increased environmental pollution may be helpful to investigate an influence of industrial pollution and other population-related factors on spermiogenesis process. The aim of present study was to estimate an influence industrial pollution on sperm morphogenesis and sperm DNA fragmentation in men from the general population of the Western Siberia. The Novosibirsk and Kemerovo cities are located to same climatic conditions in Western Siberia but the Kemerovo city is characterized by increased environmental pollution especially by particulate matter (PM). The male volunteers living in Novosibirsk (n = 278) and Kemerovo (n = 258) were enrolled. Percentages of sperm morphological defects are counted after staining native ejaculate smears by Diff-Quick kits. DNA fragmentation was estimated by a SCSA technique. The residents of Kemerovo were characterized by lowered sperm count and sperm motility, elevated DNA fragmentation, poor sperm morphology and increased incidence of morphological effects of head (pyriform, elongated, round, abnormal acrosome and vacuolated chromatine), asymmetrical neck insertion and excess residual cytoplasm. Moreover, elevated DNA fragmentation was associated with lowered sperm count, sperm motility and increased percentages of several sperm morphology defects, with the place of residence affecting the relationships between conventional semen parameters, sperm morphology and DNA fragmentations. Our study suggests that excessive sperm head elongation and impaired acrosome formation can contribute to sperm morphology deterioration in men from polluted areas. Regional features in the relationships between sperm morphology, sperm count and DNA fragmentation were shown, suggesting an importance of studying sperm morphology pattern in men from different regions.
Collapse
Affiliation(s)
- Maxim Kleshchev
- Department of Human Molecular Genetic, Federal Research Center ‘Institute of Cytology and Genetics’, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| | - Alexander Osadchuk
- Department of Human Molecular Genetic, Federal Research Center ‘Institute of Cytology and Genetics’, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ludmila Osadchuk
- Department of Human Molecular Genetic, Federal Research Center ‘Institute of Cytology and Genetics’, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
48
|
Ješeta M, Navrátilová J, Franzová K, Fialková S, Kempisty B, Ventruba P, Žáková J, Crha I. Overview of the Mechanisms of Action of Selected Bisphenols and Perfluoroalkyl Chemicals on the Male Reproductive Axes. Front Genet 2021; 12:692897. [PMID: 34646297 PMCID: PMC8502804 DOI: 10.3389/fgene.2021.692897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Male fertility has been deteriorating worldwide for considerable time, with the greatest deterioration recorded mainly in the United States, Europe countries, and Australia. That is, especially in countries where an abundance of chemicals called endocrine disruptors has repeatedly been reported, both in the environment and in human matrices. Human exposure to persistent and non-persistent chemicals is ubiquitous and associated with endocrine-disrupting effects. This group of endocrine disrupting chemicals (EDC) can act as agonists or antagonists of hormone receptors and can thus significantly affect a number of physiological processes. It can even negatively affect human reproduction with an impact on the development of gonads and gametogenesis, fertilization, and the subsequent development of embryos. The negative effects of endocrine disruptors on sperm gametogenesis and male fertility in general have been investigated and repeatedly demonstrated in experimental and epidemiological studies. Male reproduction is affected by endocrine disruptors via their effect on testicular development, impact on estrogen and androgen receptors, potential epigenetic effect, production of reactive oxygen species or direct effect on spermatozoa and other cells of testicular tissue. Emerging scientific evidence suggests that the increasing incidence of male infertility is associated with the exposure to persistent and non-persistent endocrine-disrupting chemicals such as bisphenols and perfluoroalkyl chemicals (PFAS). These chemicals may impact men’s fertility through various mechanisms. This study provides an overview of the mechanisms of action common to persistent (PFAS) and nonpersistent (bisphenols) EDC on male fertility.
Collapse
Affiliation(s)
- Michal Ješeta
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Veterinary Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Navrátilová
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kateřina Franzová
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Sandra Fialková
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Bartozs Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.,Department of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland.,Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Pavel Ventruba
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Jana Žáková
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Igor Crha
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
49
|
Wang C, Zhu J, Gong X, Liang Y, Xu S, Yu Y, Yang L, Xu J, Wang SL. Bioaccumulation of BDE47 in testes by TiO 2 nanoparticles aggravates the reproductive impairment of male zebrafish by disrupting intercellular junctions. Nanotoxicology 2021; 15:1073-1086. [PMID: 34416130 DOI: 10.1080/17435390.2021.1966538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study attempts to explore the potential impact of titanium dioxide nanoparticles (n-TiO2) on bioconcentration and reproductive impairments of male zebrafish in the presence of 2,2',4,4'-tetrabromodiphenyl ether (BDE47), the congener of PBDEs predominant in environment and most abundant in biosamples. n-TiO2 nanoparticles strongly adsorbed BDE47 to form BDE47/TiO2 complex, which was taken up into the testes of zebrafish, and increased the tissue burdens of both BDE47 and n-TiO2. Correspondingly, no observed toxic dose of n-TiO2 (100 μg/L) was found to aggravate the abnormal histological morphology of the testes and the decrease in egg production, gonadosomatic index, sexual hormone levels and related gene expression in zebrafish in the presence of BDE47 at 5 or 50 μg/L. In addition, n-TiO2 exacerbated the destruction resulting from the ultrastructural disassembly of intercellular connectivity of germ cells in zebrafish and the decrease in transepithelial electrical resistance in TM4 cells induced by BDE47. Furthermore, n-TiO2 enhanced BDE47 to initially activate p-JNK MAPK signaling pathway and subsequently triggered the downregulation of junction proteins (i.e., ZO-1, Connexin-43 and N-cadherin), leading to impaired cell-cell junctions in vivo and in vitro. Our results demonstrated that n-TiO2 should act as a carrier to facilitate the accumulation of BDE47 in zebrafish testes and result in a synergistic effect on BDE47-induced adverse reproductive outcomes via disruption of intercellular connectivity of zebrafish testes. This study is beneficial in providing a scientific basis for improving the health risk assessment of environmental pollutants, particularly those that coexist with nanoparticle contamination in realistic environments.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Yinyin Liang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Shuyu Xu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Liu Yang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Jiayi Xu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
50
|
Altered Expression of DAAM1 and PREP Induced by Cadmium Toxicity Is Counteracted by Melatonin in the Rat Testis. Genes (Basel) 2021; 12:genes12071016. [PMID: 34208970 PMCID: PMC8304460 DOI: 10.3390/genes12071016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3β-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells' differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.
Collapse
|