1
|
Butler AS, Ascione R, Marrion NV, Harmer SC, Hancox JC. In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition. Sci Rep 2024; 14:3185. [PMID: 38326449 PMCID: PMC10850090 DOI: 10.1038/s41598-024-53571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, > 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p < 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.
Collapse
Affiliation(s)
- Andrew S Butler
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, BS2 8HW, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
Giommi A, Gurgel ARB, Smith GL, Workman AJ. Does the small conductance Ca 2+-activated K + current I SK flow under physiological conditions in rabbit and human atrial isolated cardiomyocytes? J Mol Cell Cardiol 2023; 183:70-80. [PMID: 37704101 DOI: 10.1016/j.yjmcc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 μM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 μM ICAGEN (at [Ca2+]i ∼ 100-450 nM), nor 100 nM apamin ([Ca2+]i ∼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 μM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 μM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 μM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.
Collapse
Affiliation(s)
- Alessandro Giommi
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Aline R B Gurgel
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Antony J Workman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Ko TH, Jeong D, Yu B, Song JE, Le QA, Woo SH, Choi JI. Inhibition of late sodium current via PI3K/Akt signaling prevents cellular remodeling in tachypacing-induced HL-1 atrial myocytes. Pflugers Arch 2023; 475:217-231. [PMID: 36274100 PMCID: PMC9849166 DOI: 10.1007/s00424-022-02754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
An aberrant late sodium current (INa,Late) caused by a mutation in the cardiac sodium channel (Nav1.5) has emerged as a contributor to electrical remodeling that causes susceptibility to atrial fibrillation (AF). Although downregulation of phosphoinositide 3-kinase (PI3K)/Akt signaling is associated with AF, the molecular mechanisms underlying the negative regulation of INa,Late in AF remain unclear, and potential therapeutic approaches are needed. In this work, we constructed a tachypacing-induced cellular model of AF by exposing HL-1 myocytes to rapid electrical stimulation (1.5 V/cm, 4 ms, 10 Hz) for 6 h. Then, we gathered data using confocal Ca2+ imaging, immunofluorescence, patch-clamp recordings, and immunoblots. The tachypacing cells displayed irregular Ca2+ release, delayed afterdepolarization, prolonged action potential duration, and reduced PI3K/Akt signaling compared with controls. Those detrimental effects were related to increased INa,Late and were significantly mediated by treatment with the INa,Late blocker ranolazine. Furthermore, decreased PI3K/Akt signaling via PI3K inhibition increased INa,Late and subsequent aberrant myocyte excitability, which were abolished by INa,Late inhibition, suggesting that PI3K/Akt signaling is responsible for regulating pathogenic INa,Late. These results indicate that PI3K/Akt signaling is critical for regulating INa,Late and electrical remodeling, supporting the use of PI3K/Akt-mediated INa,Late as a therapeutic target for AF.
Collapse
Affiliation(s)
- Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea ,Ion Channel Research Unit, Cardiovascular Research Institute, Korea University, Seoul, Republic of Korea
| | - Daun Jeong
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Byeongil Yu
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ji Eun Song
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Qui Anh Le
- Laboratory of Pathophysiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Sun-Hee Woo
- Laboratory of Pathophysiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea ,Ion Channel Research Unit, Cardiovascular Research Institute, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Butler AS, Hancox JC, Marrion NV. Preferential formation of human heteromeric SK2:SK3 channels limits homomeric SK channel assembly and function. J Biol Chem 2022; 299:102783. [PMID: 36502918 PMCID: PMC9841042 DOI: 10.1016/j.jbc.2022.102783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Three isoforms of small conductance, calcium-activated potassium (SK) channel subunits have been identified (SK1-3) that exhibit a broad and overlapping tissue distribution. SK channels have been implicated in several disease states including hypertension and atrial fibrillation, but therapeutic targeting of SK channels is hampered by a lack of subtype-selective inhibitors. This is further complicated by studies showing that SK1 and SK2 preferentially form heteromeric channels during co-expression, likely limiting the function of homomeric channels in vivo. Here, we utilized a simplified expression system to investigate functional current produced when human (h) SK2 and hSK3 subunits are co-expressed. When expressed alone, hSK3 subunits were more clearly expressed on the cell surface than hSK2 subunits. hSK3 surface expression was reduced by co-transfection with hSK2. Whole-cell recording showed homomeric hSK3 currents were larger than homomeric hSK2 currents or heteromeric hSK2:hSK3 currents. The smaller amplitude of hSK2:hSK3-mediated current when compared with homomeric hSK3-mediated current suggests hSK2 subunits regulate surface expression of heteromers. Co-expression of hSK2 and hSK3 subunits produced a current that arose from a single population of heteromeric channels as exhibited by an intermediate sensitivity to the inhibitors apamin and UCL1684. Co-expression of the apamin-sensitive hSK2 subunit and a mutant, apamin-insensitive hSK3 subunit [hSK3(H485N)], produced an apamin-sensitive current. Concentration-inhibition relationships were best fit by a monophasic Hill equation, confirming preferential formation of heteromers. These data show that co-expressed hSK2 and hSK3 preferentially form heteromeric channels and suggest that the hSK2 subunit acts as a chaperone, limiting membrane expression of hSK2:hSK3 heteromeric channels.
Collapse
Affiliation(s)
- Andrew S Butler
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| |
Collapse
|
5
|
Zhang D, Zhu Q, Xia W, Zhu C, Zhao X, Zhang Y, He C, Ji S, Li X, Zhang J. The role of SK3 in progesterone-induced inhibition of human fallopian tubal contraction. Reprod Biol Endocrinol 2022; 20:73. [PMID: 35488306 PMCID: PMC9052544 DOI: 10.1186/s12958-022-00932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal motor activity of the fallopian tube is critical for human reproduction, and abnormal tubal activity may lead to ectopic pregnancy (EP) or infertility. Progesterone has an inhibitory effect on tubal contraction; however, the underlying mechanisms remain unclear. Small-conductance calcium-activated K+ channel 3 (SK3) is abundantly expressed in platelet-derived growth factor receptor α positive (PDGFRα+) cells and was reported to be important for the relaxation of smooth muscle. The present study aims to explore the expression of SK3 in the human fallopian tube and its role in progesterone-induced inhibition of tubal contraction. METHODS We collected specimens of fallopian tubes from patients treated by salpingectomy for EP (EP group) and other benign gynecological diseases (Non-EP group). The expression of SK3 was detected by quantitative real-time polymerase chain reaction, western blot, immunocytochemistry, and immunohistochemistry analyses. Isometric tension experiments were performed to investigate the role of SK3 in progesterone-induced inhibition of tubal contraction. RESULTS The baseline amplitude and frequency of human fallopian tube contraction were both statistically lower in the EP group compared with the non-EP group. The expression levels of SK3 in different portions of fallopian tubes from the non-EP group were significantly higher than in those from the EP group. Progesterone had an inhibitory effect on tubal contraction, mainly on the amplitude, in both groups, and SK3 as well as other calcium-activated K+ channels may be involved. SK3-expressing PDGFRα (+) cells were detected in the human fallopian tube. CONCLUSIONS The expression of SK3 is lower in the EP group, and SK3 is involved in the progesterone-induced inhibition of human fallopian tube contraction.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Chenfeng Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Chuqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Sifan Ji
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xiaocui Li
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| |
Collapse
|
6
|
Pope L, Minor DL. The Polysite Pharmacology of TREK K 2P Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:51-65. [PMID: 35138610 DOI: 10.1007/978-981-16-4254-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
K2P (KCNK) potassium channels form "background" or "leak" currents that have critical roles in cell excitability control in the brain, cardiovascular system, and somatosensory neurons. Similar to many ion channel families, studies of K2Ps have been limited by poor pharmacology. Of six K2P subfamilies, the thermo- and mechanosensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) are the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that underlie K2P function and have uncovered sites residing at every level of the channel structure with respect to the membrane where small molecules or lipids can control channel function. This polysite pharmacology within a relatively small (~70 kDa) ion channel comprises four structurally defined modulator binding sites that occur above (Keystone inhibitor site), at the level of (K2P modulator pocket), and below (Fenestration and Modulatory lipid sites) the C-type selectivity filter gate that is at the heart of K2P function. Uncovering this rich structural landscape provides the framework for understanding and developing subtype-selective modulators to probe K2P function that may provide leads for drugs for anesthesia, pain, arrhythmia, ischemia, and migraine.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US. .,Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA. .,California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA. .,Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Lambert M, Mendes-Ferreira P, Ghigna MR, LeRibeuz H, Adão R, Boet A, Capuano V, Rucker-Martin C, Brás-Silva C, Quarck R, Domergue V, Vachiéry JL, Humbert M, Perros F, Montani D, Antigny F. Kcnk3 dysfunction exaggerates the development of pulmonary hypertension induced by left ventricular pressure overload. Cardiovasc Res 2021; 117:2474-2488. [PMID: 33483721 DOI: 10.1093/cvr/cvab016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Pulmonary hypertension (PH) is a common complication of left heart disease (LHD, Group 2 PH) leading to right ventricular (RV) failure and death. Several loss-of-function (LOF) mutations in KCNK3 were identified in pulmonary arterial hypertension (PAH, Group 1 PH). Additionally, we found that KCNK3 dysfunction is a hallmark of PAH at pulmonary vascular and RV levels. However, the role of KCNK3 in the pathobiology of PH due to LHD is unknown. METHODS AND RESULTS We evaluated the role of KCNK3 on PH induced by ascending aortic constriction (AAC), in WT and Kcnk3-LOF-mutated rats, by echocardiography, RV catheterization, histology analyses, and molecular biology experiments. We found that Kcnk3-LOF-mutation had no consequence on the development of left ventricular (LV) compensated concentric hypertrophy in AAC, while left atrial emptying fraction was impaired in AAC-Kcnk3-mutated rats. AAC-animals (WT and Kcnk3-mutated rats) developed PH secondary to AAC and Kcnk3-mutated rats developed more severe PH than WT. AAC-Kcnk3-mutated rats developed RV and LV fibrosis in association with an increase of Col1a1 mRNA in right ventricle and left ventricle. AAC-Kcnk3-mutated rats developed severe pulmonary vascular (pulmonary artery as well as pulmonary veins) remodelling with intense peri-vascular and peri-bronchial inflammation, perivascular oedema, alveolar wall thickening, and exaggerated lung vascular cell proliferation compared to AAC-WT-rats. Finally, in lung, right ventricle, left ventricle, and left atrium of AAC-Kcnk3-mutated rats, we found a strong increased expression of Il-6 and periostin expression and a reduction of lung Ctnnd1 mRNA (coding for p120 catenin), contributing to the exaggerated pulmonary and heart remodelling and pulmonary vascular oedema in AAC-Kcnk3-mutated rats. CONCLUSIONS Our results indicate that Kcnk3-LOF is a key event in the pathobiology of PH due to AAC, suggesting that Kcnk3 channel dysfunction could play a potential key role in the development of PH due to LHD.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven-University of Leuven, Leuven,Belgium
| | - Maria-Rosa Ghigna
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Hélène LeRibeuz
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Rui Adão
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
| | - Angèle Boet
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Véronique Capuano
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Catherine Rucker-Martin
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Carmen Brás-Silva
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven-University of Leuven, Leuven,Belgium
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven, Leuven, Belgium
| | - Valérie Domergue
- Animal Facility, Institut Paris Saclay d'Innovation Thérapeutique (UMS IPSIT), Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Luc Vachiéry
- Department of Cardiology, Cliniques Universitaires de Bruxelles-Hôpital Erasme, Brussels, Belgium
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Frédéric Perros
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - David Montani
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| |
Collapse
|
8
|
Rahm AK, Wieder T, Gramlich D, Müller ME, Wunsch MN, El Tahry FA, Heimberger T, Sandke S, Weis T, Most P, Katus HA, Thomas D, Lugenbiel P. Differential regulation of K Ca 2.1 (KCNN1) K + channel expression by histone deacetylases in atrial fibrillation with concomitant heart failure. Physiol Rep 2021; 9:e14835. [PMID: 34111326 PMCID: PMC8191401 DOI: 10.14814/phy2.14835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
Atrial fibrillation (AF) with concomitant heart failure (HF) poses a significant therapeutic challenge. Mechanism‐based approaches may optimize AF therapy. Small‐conductance, calcium‐activated K+ (KCa, KCNN) channels contribute to cardiac action potential repolarization. KCNN1 exhibits predominant atrial expression and is downregulated in chronic AF patients with preserved cardiac function. Epigenetic regulation is suggested by AF suppression following histone deacetylase (HDAC) inhibition. We hypothesized that HDAC‐dependent KCNN1 remodeling contributes to arrhythmogenesis in AF complicated by HF. The aim of this study was to assess KCNN1 and HDAC1–7 and 9 transcript levels in AF/HF patients and in a pig model of atrial tachypacing‐induced AF with reduced left ventricular function. In HL‐1 atrial myocytes, tachypacing and anti‐Hdac siRNAs were employed to investigate effects on Kcnn1 mRNA levels. KCNN1 expression displayed side‐specific remodeling in AF/HF patients with upregulation in left and suppression in right atrium. In pigs, KCNN1 remodeling showed intermediate phenotypes. HDAC levels were differentially altered in humans and pigs, reflecting highly variable epigenetic regulation. Tachypacing recapitulated downregulation of Hdacs1, 3, 4, 6, and 7 with a tendency towards reduced Kcnn1 levels in vitro, indicating that atrial high rates induce remodeling. Finally, Kcnn1 expression was decreased by knockdown of Hdacs2, 3, 6, and 7 and enhanced by genetic Hdac9 inactivation, while anti‐Hdac1, 4, and 5 siRNAs did not affect Kcnn1 transcript levels. In conclusion, KCNN1 and HDAC expression is differentially remodeled in AF complicated by HF. Direct regulation of KCNN1 by HDACs in atrial myocytes provides a basis for mechanism‐based antiarrhythmic therapy.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian N Wunsch
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Steffi Sandke
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Rahm AK, Wieder T, Gramlich D, Müller ME, Wunsch MN, El Tahry FA, Heimberger T, Weis T, Most P, Katus HA, Thomas D, Lugenbiel P. HDAC2-dependent remodeling of K Ca2.2 (KCNN2) and K Ca2.3 (KCNN3) K + channels in atrial fibrillation with concomitant heart failure. Life Sci 2020; 266:118892. [PMID: 33310041 DOI: 10.1016/j.lfs.2020.118892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
AIMS Atrial fibrillation (AF) with concomitant heart failure (HF) is associated with prolonged atrial refractoriness. Small-conductance, calcium-activated K+ (KCa, KCNN) channels promote action potential (AP) repolarization. KCNN2 and KCNN3 variants are associated with AF risk. In addition, histone deacetylase (HDAC)-related epigenetic mechanisms have been implicated in AP regulation. We hypothesized that HDAC2-dependent remodeling of KCNN2 and KCNN3 expression contributes to atrial arrhythmogenesis in AF complicated by HF. The objectives were to assess HDAC2 and KCNN2/3 transcript levels in AF/HF patients and in a pig model, and to investigate cellular epigenetic effects of HDAC2 inactivation on KCNN expression. MATERIALS AND METHODS HDAC2 and KCNN2/3 transcript levels were quantified in patients with AF and HF, and in a porcine model of atrial tachypacing-induced AF and reduced left ventricular function. Tachypacing and anti-Hdac2 siRNA treatment were employed in HL-1 atrial myocytes to study effects on KCNN2/3 mRNA and KCa protein abundance. KEY FINDINGS Atrial KCNN2 and KCNN3 expression was reduced in AF/HF patients and in a corresponding pig model. HDAC2 displayed significant downregulation in humans and a tendency towards reduced expression in right atrial tissue of pigs. Tachypacing recapitulated downregulation of Kcnn2/KCa2.2, Kcnn3/KCa2.3 and Hdac2/HDAC2, indicating that high atrial rates trigger epigenetic remodeling mechanisms. Finally, knock-down of Hdac2 in vitro reduced Kcnn3/KCa2.3 expression. SIGNIFICANCE KCNN2/3 and HDAC2 expression is suppressed in AF complicated by HF. Hdac2 directly regulates Kcnn3 mRNA levels in atrial cells. The mechanistic and therapeutic significance of epigenetic electrophysiological effects in AF requires further validation.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Maximilian N Wunsch
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Caves RE, Carpenter A, Choisy SC, Clennell B, Cheng H, McNiff C, Mann B, Milnes JT, Hancox JC, James AF. Inhibition of voltage-gated Na + currents by eleclazine in rat atrial and ventricular myocytes. Heart Rhythm O2 2020; 1:206-214. [PMID: 32864638 PMCID: PMC7442036 DOI: 10.1016/j.hroo.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Atrial-ventricular differences in voltage-gated Na+ currents might be exploited for atrial-selective antiarrhythmic drug action for the suppression of atrial fibrillation without risk of ventricular tachyarrhythmia. Eleclazine (GS-6615) is a putative antiarrhythmic drug with properties similar to the prototypical atrial-selective Na+ channel blocker ranolazine that has been shown to be safe and well tolerated in patients. Objective The present study investigated atrial-ventricular differences in the biophysical properties and inhibition by eleclazine of voltage-gated Na+ currents. Methods The fast and late components of whole-cell voltage-gated Na+ currents (respectively, INa and INaL) were recorded at room temperature (∼22°C) from rat isolated atrial and ventricular myocytes. Results Atrial INa activated at command potentials ∼5.5 mV more negative and inactivated at conditioning potentials ∼7 mV more negative than ventricular INa. There was no difference between atrial and ventricular myocytes in the eleclazine inhibition of INaL activated by 3 nM ATX-II (IC50s ∼200 nM). Eleclazine (10 μM) inhibited INa in atrial and ventricular myocytes in a use-dependent manner consistent with preferential activated state block. Eleclazine produced voltage-dependent instantaneous inhibition in atrial and ventricular myocytes; it caused a negative shift in voltage of half-maximal inactivation and slowed the recovery of INa from inactivation in both cell types. Conclusions Differences exist between rat atrial and ventricular myocytes in the biophysical properties of INa. The more negative voltage dependence of INa activation/inactivation in atrial myocytes underlies differences between the 2 cell types in the voltage dependence of instantaneous inhibition by eleclazine. Eleclazine warrants further investigation as an atrial-selective antiarrhythmic drug.
Collapse
Affiliation(s)
- Rachel E Caves
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alexander Carpenter
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Stéphanie C Choisy
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Ben Clennell
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Hongwei Cheng
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Cameron McNiff
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Brendan Mann
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Ni H, Fogli Iseppe A, Giles WR, Narayan SM, Zhang H, Edwards AG, Morotti S, Grandi E. Populations of in silico myocytes and tissues reveal synergy of multiatrial-predominant K + -current block in atrial fibrillation. Br J Pharmacol 2020; 177:4497-4515. [PMID: 32667679 DOI: 10.1111/bph.15198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacotherapy of atrial fibrillation (AF), the most common cardiac arrhythmia, remains unsatisfactory due to low efficacy and safety concerns. New therapeutic strategies target atrial-predominant ion-channels and involve multichannel block (poly)therapy. As AF is characterized by rapid and irregular atrial activations, compounds displaying potent antiarrhythmic effects at fast and minimal effects at slow rates are desirable. We present a novel systems pharmacology framework to quantitatively evaluate synergistic anti-AF effects of combined block of multiple atrial-predominant K+ currents (ultra-rapid delayed rectifier K+ current, IKur , small conductance Ca2+ -activated K+ current, IKCa , K2P 3.1 2-pore-domain K+ current, IK2P ) in AF. EXPERIMENTAL APPROACH We constructed experimentally calibrated populations of virtual atrial myocyte models in normal sinus rhythm and AF-remodelled conditions using two distinct, well-established atrial models. Sensitivity analyses on our atrial populations was used to investigate the rate dependence of action potential duration (APD) changes due to blocking IKur , IK2P or IKCa and interactions caused by blocking of these currents in modulating APD. Block was simulated in both single myocytes and one-dimensional tissue strands to confirm insights from the sensitivity analyses and examine anti-arrhythmic effects of multi-atrial-predominant K+ current block in single cells and coupled tissue. KEY RESULTS In both virtual atrial myocytes and tissues, multiple atrial-predominant K+ -current block promoted favourable positive rate-dependent APD prolongation and displayed positive rate-dependent synergy, that is, increasing synergistic antiarrhythmic effects at fast pacing versus slow rates. CONCLUSION AND IMPLICATIONS Simultaneous block of multiple atrial-predominant K+ currents may be a valuable antiarrhythmic pharmacotherapeutic strategy for AF.
Collapse
Affiliation(s)
- Haibo Ni
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Alex Fogli Iseppe
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sanjiv M Narayan
- Division of Cardiology, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Andrew G Edwards
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Arazi E, Blecher G, Zilberberg N. Monoterpenes Differently Regulate Acid-Sensitive and Mechano-Gated K 2P Channels. Front Pharmacol 2020; 11:704. [PMID: 32508645 PMCID: PMC7251055 DOI: 10.3389/fphar.2020.00704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Potassium K2P (“leak”) channels conduct current across the entire physiological voltage range and carry leak or “background” currents that are, in part, time- and voltage-independent. The activity of K2P channels affects numerous physiological processes, such as cardiac function, pain perception, depression, neuroprotection, and cancer development. We have recently established that, when expressed in Xenopus laevis oocytes, K2P2.1 (TREK-1) channels are activated by several monoterpenes (MTs). Here, we show that, within a few minutes of exposure, other mechano-gated K2P channels, K2P4.1 (TRAAK) and K2P10.1 (TREK-2), are opened by monoterpenes as well (up to an eightfold increase in current). Furthermor\e, carvacrol and cinnamaldehyde robustly enhance currents of the alkaline-sensitive K2P5.1 (up to a 17-fold increase in current). Other members of the K2P potassium channels, K2P17.1, K2P18.1, but not K2P16.1, were also activated by various MTs. Conversely, the activity of members of the acid-sensitive (TASK) K2P channels (K2P3.1 and K2P9.1) was rapidly decreased by monoterpenes. We found that MT selectively decreased the voltage-dependent portion of the current and that current inhibition was reduced with the elevation of external K+ concentration. These findings suggest that penetration of MTs into the outer leaflet of the membrane results in immediate changes at the selectivity filter of members of the TASK channel family. Thus, we suggest MTs as promising new tools for the study of K2P channels’ activity in vitro as well as in vivo.
Collapse
Affiliation(s)
- Eden Arazi
- Department of Life Sciences Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Galit Blecher
- Department of Life Sciences Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Zilberberg
- Department of Life Sciences Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Staudacher I, Seehausen S, Illg C, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Cardiac K2P13.1 (THIK-1) two-pore-domain K+ channels: Pharmacological regulation and remodeling in atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:128-138. [DOI: 10.1016/j.pbiomolbio.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 01/30/2023]
|
14
|
Circular RNA expression profiles of persistent atrial fibrillation in patients with rheumatic heart disease. Anatol J Cardiol 2019; 21:2-10. [PMID: 30587718 PMCID: PMC6382899 DOI: 10.14744/anatoljcardiol.2018.35902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: To investigate the expression profile of circular RNAs (circRNAs) and proposed circRNA–microRNA (miRNA) regulatory network in atrial fibrillation (AF). Methods: Atrial tissues from patients with persistent AF with rheumatic heart disease and non-AF myocardium with normal hearts were collected for circRNA differential expression analyses by high-throughput sequencing. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the potential functions of the differentially expressed genes and AF-related pathways. Co-expression networks of circRNA–miRNA were constructed based on the correlation analyses between the differentially expressed RNAs. Quantitative reverse transcription polymerase chain reaction (PCR) was performed to validate the results. Results: A total of 108 circRNAs were found to be differentially expressed in AF. Among them, 51 were up-regulated, and 57 were down-regulated. Dysregulated circRNAs were validated by quantitative real-time PCR. The GO and KEGG pathway enrichment analyses were executed to determine the principal functions of the significantly deregulated genes. Furthermore, we constructed correlated expression networks between circRNAs and miRNAs. circRNA19591, circRNA19596, and circRNA16175 interacted with 36, 28, and 18 miRNAs, respectively; miR-29b-1-5p and miR-29b-2-5p were related to 12 down-regulated circRNAs, respectively. Conclusion: Our findings provide a novel perspective on circRNAs involved in AF due to rheumatic heart disease and establish the foundation for future research of the potential roles of circRNAs in AF.
Collapse
|
15
|
Hancox JC, Whittaker DG, Zhang H, Stuart AG. Learning from studying very rare cardiac conditions: the example of short QT syndrome. JOURNAL OF CONGENITAL CARDIOLOGY 2019. [DOI: 10.1186/s40949-019-0024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
16
|
Ni H, Zhang H, Grandi E, Narayan SM, Giles WR. Transient outward K + current can strongly modulate action potential duration and initiate alternans in the human atrium. Am J Physiol Heart Circ Physiol 2019; 316:H527-H542. [PMID: 30576220 PMCID: PMC6415821 DOI: 10.1152/ajpheart.00251.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023]
Abstract
Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
- Department of Pharmacology, University of California , Davis, California
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
| | - Eleonora Grandi
- Department of Pharmacology, University of California , Davis, California
| | - Sanjiv M Narayan
- Division of Cardiology, Cardiovascular Institute, Stanford University , Stanford, California
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
17
|
Cloning and characterization of zebrafish K2P13.1 (THIK-1) two-pore-domain K+ channels. J Mol Cell Cardiol 2019; 126:96-104. [DOI: 10.1016/j.yjmcc.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/23/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
|
18
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
19
|
Rahm AK, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Role of ion channels in heart failure and channelopathies. Biophys Rev 2018; 10:1097-1106. [PMID: 30019205 PMCID: PMC6082303 DOI: 10.1007/s12551-018-0442-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is a complication of multiple cardiac diseases and is characterized by impaired contractile and electric function. Patients with HF are not only limited by reduced contractile function but are also prone to life-threatening ventricular arrhythmias. HF itself leads to remodeling of ion channels, gap junctions, and intracellular calcium handling abnormalities that in combination with structural remodeling, e.g., fibrosis, produce a substrate for an arrhythmogenic disorders. Not only ventricular life-threatening arrhythmias contribute to increased morbidity and mortality but also atrial arrhythmias, especially atrial fibrillation (AF), are common in HF patients and contribute to morbidity and mortality. The distinct ion channel remodeling processes in HF and in channelopathies associated with HF will be discussed. Further basic research and clinical studies are needed to identify underlying molecular pathways of HF pathophysiology to provide the basis for improved patient care and individualized therapy based on individualized ion channel composition and remodeling.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick A. Schweizer
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Staudacher I, Illg C, Gierten J, Seehausen S, Schweizer PA, Katus HA, Thomas D. Identification and functional characterization of zebrafish K 2P 17.1 (TASK-4, TALK-2) two-pore-domain K + channels. Eur J Pharmacol 2018; 831:94-102. [DOI: 10.1016/j.ejphar.2018.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
|
21
|
Calvo D, Filgueiras-Rama D, Jalife J. Mechanisms and Drug Development in Atrial Fibrillation. Pharmacol Rev 2018; 70:505-525. [PMID: 29921647 PMCID: PMC6010660 DOI: 10.1124/pr.117.014183] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation is a highly prevalent cardiac arrhythmia and the most important cause of embolic stroke. Although genetic studies have identified an increasing assembly of AF-related genes, the impact of these genetic discoveries is yet to be realized. In addition, despite more than a century of research and speculation, the molecular and cellular mechanisms underlying AF have not been established, and therapy for AF, particularly persistent AF, remains suboptimal. Current antiarrhythmic drugs are associated with a significant rate of adverse events, particularly proarrhythmia, which may explain why many highly symptomatic AF patients are not receiving any rhythm control therapy. This review focuses on recent advances in AF research, including its epidemiology, genetics, and pathophysiological mechanisms. We then discuss the status of antiarrhythmic drug therapy for AF today, reviewing molecular mechanisms, and the possible clinical use of some of the new atrial-selective antifibrillatory agents, as well as drugs that target atrial remodeling, inflammation and fibrosis, which are being tested as upstream therapies to prevent AF perpetuation. Altogether, the objective is to highlight the magnitude and endemic dimension of AF, which requires a significant effort to develop new and effective antiarrhythmic drugs, but also improve AF prevention and treatment of risk factors that are associated with AF complications.
Collapse
Affiliation(s)
- David Calvo
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| | - David Filgueiras-Rama
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| | - José Jalife
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| |
Collapse
|
22
|
Skarsfeldt MA, Bomholtz SH, Lundegaard PR, Lopez-Izquierdo A, Tristani-Firouzi M, Bentzen BH. Atrium-specific ion channels in the zebrafish-A role of I KACh in atrial repolarization. Acta Physiol (Oxf) 2018; 223:e13049. [PMID: 29412518 DOI: 10.1111/apha.13049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
AIM The zebrafish has emerged as a novel model for investigating cardiac physiology and pathology. The aim of this study was to investigate the atrium-specific ion channels responsible for shaping the atrial cardiac action potential in zebrafish. METHODS Using quantitative polymerase chain reaction, we assessed the expression level of atrium-specific potassium channels. The functional role of these channels was studied by patch clamp experiments on isolated atrial and ventricular cardiomyocytes and by optical mapping of explanted adult zebrafish hearts. Finally, surface ECGs were recorded to establish possible in vivo roles of atrial ion channels. RESULTS In isolated adult zebrafish hearts, we identified the expression of kcnk3, kcnk9, kcnn1, kcnn2, kcnn3, kcnj3 and kcnj5, the genes that encode the atrium-specific K2P , KCa 2.x and Kir 3.1/4 (KACh ) ion channels. The electrophysiological data indicate that the acetylcholine-activated inward-rectifying current, IKACh, plays a major role in the zebrafish atrium, whereas K2P 3.1/9.1 and KCa 2.x channels do not appear to be involved in regulating the action potential in the zebrafish heart. CONCLUSION We demonstrate that the acetylcholine-activated inward-rectifying current (IKACh ) current plays a major role in the zebrafish atrium and that the zebrafish could potentially be a cost-effective and reliable model for pharmacological testing of atrium-specific IKACh modulating compounds.
Collapse
Affiliation(s)
- M. A. Skarsfeldt
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
- Nora Eccles Harrison Cardiovascular Research and Training Institute; University of Utah; Salt Lake City UT USA
| | - S. H. Bomholtz
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| | - P. R. Lundegaard
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| | - A. Lopez-Izquierdo
- Nora Eccles Harrison Cardiovascular Research and Training Institute; University of Utah; Salt Lake City UT USA
| | - M. Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute; University of Utah; Salt Lake City UT USA
| | - B. H. Bentzen
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|
23
|
Hancox JC, Whittaker DG, Du C, Stuart AG, Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert Opin Ther Targets 2018; 22:439-451. [DOI: 10.1080/14728222.2018.1470621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Dominic G Whittaker
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - A. Graham Stuart
- Cardiology, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Schmidt C, Wiedmann F, Gaubatz AR, Ratte A, Katus HA, Thomas D. New Targets for Old Drugs: Cardiac Glycosides Inhibit Atrial-Specific K 2P3.1 (TASK-1) Channels. J Pharmacol Exp Ther 2018; 365:614-623. [PMID: 29643254 DOI: 10.1124/jpet.118.247692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiac glycosides have been used in the treatment of arrhythmias for more than 200 years. Two-pore-domain (K2P) potassium channels regulate cardiac action potential repolarization. Recently, K2P3.1 [tandem of P domains in a weak inward rectifying K+ channel (TWIK)-related acid-sensitive K+ channel (TASK)-1] has been implicated in atrial fibrillation pathophysiology and was suggested as an atrial-selective antiarrhythmic drug target. We hypothesized that blockade of cardiac K2P channels contributes to the mechanism of action of digitoxin and digoxin. All functional human K2P channels were screened for interactions with cardiac glycosides. Human K2P channel subunits were expressed in Xenopus laevis oocytes, and voltage clamp electrophysiology was used to record K+ currents. Digitoxin significantly inhibited K2P3.1 and K2P16.1 channels. By contrast, digoxin displayed isolated inhibitory effects on K2P3.1. K2P3.1 outward currents were reduced by 80% (digitoxin, 1 Hz) and 78% (digoxin, 1 Hz). Digitoxin inhibited K2P3.1 currents with an IC50 value of 7.4 µM. Outward rectification properties of the channel were not affected. Mutagenesis studies revealed that amino acid residues located at the cytoplasmic site of the K2P3.1 channel pore form parts of a molecular binding site for cardiac glycosides. In conclusion, cardiac glycosides target human K2P channels. The antiarrhythmic significance of repolarizing atrial K2P3.1 current block by digoxin and digitoxin requires validation in translational and clinical studies.
Collapse
Affiliation(s)
- Constanze Schmidt
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); and German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site, University of Heidelberg, Heidelberg, Germany (C.S., F.W., H.A.K., D.T.)
| | - Felix Wiedmann
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); and German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site, University of Heidelberg, Heidelberg, Germany (C.S., F.W., H.A.K., D.T.)
| | - Anne-Rike Gaubatz
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); and German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site, University of Heidelberg, Heidelberg, Germany (C.S., F.W., H.A.K., D.T.)
| | - Antonius Ratte
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); and German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site, University of Heidelberg, Heidelberg, Germany (C.S., F.W., H.A.K., D.T.)
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); and German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site, University of Heidelberg, Heidelberg, Germany (C.S., F.W., H.A.K., D.T.)
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany (C.S., F.W., A.-R.G., A.R., H.A.K., D.T.); and German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site, University of Heidelberg, Heidelberg, Germany (C.S., F.W., H.A.K., D.T.)
| |
Collapse
|
25
|
Capucci A, Cipolletta L, Guerra F, Giannini I. Emerging pharmacotherapies for the treatment of atrial fibrillation. Expert Opin Emerg Drugs 2018; 23:25-36. [PMID: 29508636 DOI: 10.1080/14728214.2018.1446941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The main aim of current research on the field of atrial fibrillation (AF) treatment is to find new antiarrhythmic drugs with less side effects. Areas covered: Dronedarone and vernakalant showed promising result in term of efficacy and safety in selected patients. Ranolazine and colchicine are obtaining a role as a potential antiarrhythmic drug. Ivabradine is used in experimental studies for the rate control of AF. Moreover, new compounds (vanoxerine, moxonidine, budiodarone) are still under investigation. Monoclonal antibodies or selective antagonist of potassium channel are under investigation for long term maintenance of sinus rhythm. Clinical evidence and new pharmacological investigation on new drugs will be accurately reviewed in this article. Expert opinion: Dronedarone use is not recommended in patients with symptomatic heart failure (HF), NYHA class III-IV, depressed ventricular function and permanent AF, especially in patients assuming a concomitant therapy with digoxin. Vernakalant had superior efficacy than amiodarone, flecainide and propafenone in single studies and similar efficacy to direct current cardioversion. Several of the developing drugs examined in this paper show an interesting potential, in particular the research on selective ionic channel inhibition and on compounds which reduce the inflammation state, especially after ablation or surgery.
Collapse
Affiliation(s)
- Alessandro Capucci
- a Department of Scienze Cardiovascolari , Clinica di Cardiologia Universita' Politecnica delle Marche - Scienze Cardiovascolari , Ancona , Italy
| | - Laura Cipolletta
- a Department of Scienze Cardiovascolari , Clinica di Cardiologia Universita' Politecnica delle Marche - Scienze Cardiovascolari , Ancona , Italy
| | - Federico Guerra
- a Department of Scienze Cardiovascolari , Clinica di Cardiologia Universita' Politecnica delle Marche - Scienze Cardiovascolari , Ancona , Italy
| | - Irene Giannini
- a Department of Scienze Cardiovascolari , Clinica di Cardiologia Universita' Politecnica delle Marche - Scienze Cardiovascolari , Ancona , Italy
| |
Collapse
|
26
|
Ni H, Whittaker DG, Wang W, Giles WR, Narayan SM, Zhang H. Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Front Physiol 2017; 8:946. [PMID: 29218016 PMCID: PMC5703742 DOI: 10.3389/fphys.2017.00946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Dominic G Whittaker
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wei Wang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, AB, Canada
| | - Sanjiv M Narayan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Henggui Zhang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
27
|
Ravens U. Atrial-selective K + channel blockers: potential antiarrhythmic drugs in atrial fibrillation? Can J Physiol Pharmacol 2017; 95:1313-1318. [PMID: 28738160 DOI: 10.1139/cjpp-2017-0024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K+) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting IKur, the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting IK,ACh, the Ca2+-activated K+ channels of small conductance (SK) conducting ISK, and the two-pore domain K+ (K2P) channels (tandem of P domains, weak inward-rectifying K+ channels (TWIK-1), TWIK-related acid-sensitive K+ channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents ITWIK-1, ITASK-1, and ITASK-3. Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| |
Collapse
|
28
|
Atrial-ventricular differences in rabbit cardiac voltage-gated Na + currents: Basis for atrial-selective block by ranolazine. Heart Rhythm 2017; 14:1657-1664. [PMID: 28610990 PMCID: PMC5666337 DOI: 10.1016/j.hrthm.2017.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 01/15/2023]
Abstract
Background Class 1 antiarrhythmic drugs are highly effective in restoring and maintaining sinus rhythm in atrial fibrillation patients but carry a risk of ventricular tachyarrhythmia. The antianginal agent ranolazine is a prototypic atrial-selective voltage-gated Na+ channel blocker but the mechanisms underlying its atrial-selective action remain unclear. Objective The present study examined the mechanisms underlying the atrial-selective action of ranolazine. Methods Whole-cell voltage-gated Na+ currents (INa) were recorded at room temperature (∼22°C) from rabbit isolated left atrial and right ventricular myocytes. Results INa conductance density was ∼1.8-fold greater in atrial than in ventricular cells. Atrial INa was activated at command potentials ∼7 mV more negative and inactivated at conditioning potentials ∼11 mV more negative than ventricular INa. The onset of inactivation of INa was faster in atrial cells than in ventricular myocytes. Ranolazine (30 μM) inhibited INa in atrial and ventricular myocytes in a use-dependent manner consistent with preferential activated/inactivated state block. Ranolazine caused a significantly greater negative shift in voltage of half-maximal inactivation in atrial cells than in ventricular cells, the recovery from inactivation of INa was slowed by ranolazine to a greater extent in atrial myocytes than in ventricular cells, and ranolazine produced an instantaneous block that showed marked voltage dependence in atrial cells. Conclusion Differences exist between rabbit atrial and ventricular myocytes in the biophysical properties of INa. The more negative voltage dependence of INa activation and inactivation, together with trapping of the drug in the inactivated channel, underlies an atrial-selective action of ranolazine.
Collapse
|
29
|
Abstract
Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K+) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting IKur, the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting IK,ACh, the Ca2+-activated K+ channels of small conductance (SK) conducting ISK, and the two pore domain K+ (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents ITWIK-1, ITASK-1, and ITASK-3. Here, we briefly review the characteristics of these K+ channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Physiology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany.
| | - Katja E Odening
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| |
Collapse
|