1
|
dos Santos DA, Souza HFS, Silber AM, de Souza TDACB, Ávila AR. Protein kinases on carbon metabolism: potential targets for alternative chemotherapies against toxoplasmosis. Front Cell Infect Microbiol 2023; 13:1175409. [PMID: 37287468 PMCID: PMC10242022 DOI: 10.3389/fcimb.2023.1175409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a global disease that significantly impacts human health. The clinical manifestations are mainly observed in immunocompromised patients, including ocular damage and neuronal alterations leading to psychiatric disorders. The congenital infection leads to miscarriage or severe alterations in the development of newborns. The conventional treatment is limited to the acute phase of illness, without effects in latent parasites; consequently, a cure is not available yet. Furthermore, considerable toxic effects and long-term therapy contribute to high treatment abandonment rates. The investigation of exclusive parasite pathways would provide new drug targets for more effective therapies, eliminating or reducing the side effects of conventional pharmacological approaches. Protein kinases (PKs) have emerged as promising targets for developing specific inhibitors with high selectivity and efficiency against diseases. Studies in T. gondii have indicated the presence of exclusive PKs without homologs in human cells, which could become important targets for developing new drugs. Knockout of specific kinases linked to energy metabolism have shown to impair the parasite development, reinforcing the essentiality of these enzymes in parasite metabolism. In addition, the specificities found in the PKs that regulate the energy metabolism in this parasite could bring new perspectives for safer and more efficient therapies for treating toxoplasmosis. Therefore, this review provides an overview of the limitations for reaching an efficient treatment and explores the role of PKs in regulating carbon metabolism in Toxoplasma, discussing their potential as targets for more applied and efficient pharmacological approaches.
Collapse
Affiliation(s)
| | - Higo Fernando Santos Souza
- Laboratory of Biochemistry of Trypanosomes (LabTryp), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Trypanosomes (LabTryp), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| |
Collapse
|
2
|
Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards. J Biomol Struct Dyn 2022; 40:10481-10506. [PMID: 34129805 DOI: 10.1080/07391102.2021.1932598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria still persists as one of the deadliest infectious disease having a huge morbidity and mortality affecting the higher population of the world. Structure and ligand-based drug design methods like molecular docking and MD simulations, pharmacophore modeling, QSAR and virtual screening are widely used to perceive the accordant correlation between the antimalarial activity and property of the compounds to design novel dominant and discriminant molecules. These modeling methods will speed-up antimalarial drug discovery, selection of better drug candidates for synthesis and to achieve potent and safer drugs. In this work, we have extensively reviewed the literature pertaining to the use and applications of various ligand and structure-based computational methods for the design of antimalarial agents. Different classes of molecules are discussed along with their target interactions pattern, which is responsible for antimalarial activity. Communicated by Ramaswamy H. Sarma.
Collapse
|
3
|
Lima MNN, Cassiano GC, Tomaz KCP, Silva AC, Sousa BKP, Ferreira LT, Tavella TA, Calit J, Bargieri DY, Neves BJ, Costa FTM, Andrade CH. Integrative Multi-Kinase Approach for the Identification of Potent Antiplasmodial Hits. Front Chem 2019; 7:773. [PMID: 31824917 PMCID: PMC6881481 DOI: 10.3389/fchem.2019.00773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022] Open
Abstract
Malaria is a tropical infectious disease that affects over 219 million people worldwide. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new antimalarial drugs is a global health priority. Multi-target drug discovery is a promising and innovative strategy for drug discovery and it is currently regarded as one of the best strategies to face drug resistance. Aiming to identify new multi-target antimalarial drug candidates, we developed an integrative computational approach to select multi-kinase inhibitors for Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4) and protein kinase 6 (PK6). For this purpose, we developed and validated shape-based and machine learning models to prioritize compounds for experimental evaluation. Then, we applied the best models for virtual screening of a large commercial database of drug-like molecules. Ten computational hits were experimentally evaluated against asexual blood stages of both sensitive and multi-drug resistant P. falciparum strains. Among them, LabMol-171, LabMol-172, and LabMol-181 showed potent antiplasmodial activity at nanomolar concentrations (EC50 ≤ 700 nM) and selectivity indices >15 folds. In addition, LabMol-171 and LabMol-181 showed good in vitro inhibition of P. berghei ookinete formation and therefore represent promising transmission-blocking scaffolds. Finally, docking studies with protein kinases CDPK1, CDPK4, and PK6 showed structural insights for further hit-to-lead optimization studies.
Collapse
Affiliation(s)
- Marilia N N Lima
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Gustavo C Cassiano
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Kaira C P Tomaz
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Arthur C Silva
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Bruna K P Sousa
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Leticia T Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tatyana A Tavella
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Y Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno J Neves
- Laboratory of Cheminformatics, University Center of Anápolis/UniEVANGELICA, Anápolis, Brazil
| | - Fabio T M Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carolina Horta Andrade
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil.,Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Mefloquine exposure induces cell cycle delay and reveals stage-specific expression of the pfmdr1 gene. Antimicrob Agents Chemother 2012. [PMID: 23208721 DOI: 10.1128/aac.01006-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Drug-resistant Plasmodium falciparum malaria is a major public health problem. An elevated pfmdr1 gene copy number (CN) is known to decrease parasite sensitivity to the commonly used antimalarial mefloquine (MFQ). To understand the relationship between pfmdr1 CN and mefloquine resistance, we evaluated pfmdr1 transcript levels in three P. falciparum strains with different CNs in the presence and absence of MFQ. Parasite strains with multiple pfmdr1 gene copies exhibited higher relative transcript levels than single-copy parasites, and MFQ induced pfmdr1 expression above the levels without treatment in all three strains evaluated. Concomitant morphology analyses of the sampled cultures revealed that MFQ treatment of synchronized ring-stage parasites induced a delay in parasite maturation through the intraerythrocytic cycle. pfmdr1 expression peaks in the ring stage, and MFQ could be causing increased transcription by delaying parasite maturation. However, pretreatment with mefloquine did not affect the artemisinin in vitro half-maximal inhibitory concentration (IC(50)). These results suggest that MFQ-induced increases in pfmdr1 expression are the direct result of the maturation delay at the ring stage but that this change in expression does not affect the antimalarial activity of artemisinin.
Collapse
|
5
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cai H, Kuang R, Gu J, Wang Y. Proteases in malaria parasites - a phylogenomic perspective. Curr Genomics 2012; 12:417-27. [PMID: 22379395 PMCID: PMC3178910 DOI: 10.2174/138920211797248565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/17/2011] [Accepted: 07/20/2011] [Indexed: 12/21/2022] Open
Abstract
Malaria continues to be one of the most devastating global health problems due to the high morbidity and mortality it causes in endemic regions. The search for new antimalarial targets is of high priority because of the increasing prevalence of drug resistance in malaria parasites. Malarial proteases constitute a class of promising therapeutic targets as they play important roles in the parasite life cycle and it is possible to design and screen for specific protease inhibitors. In this mini-review, we provide a phylogenomic overview of malarial proteases. An evolutionary perspective on the origin and divergence of these proteases will provide insights into the adaptive mechanisms of parasite growth, development, infection, and pathogenesis.B
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
7
|
Micale N. Recent advances and perspectives on tropical diseases: Malaria. World J Transl Med 2012; 1:4-19. [DOI: 10.5528/wjtm.v1.i2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Malaria remains a major health problem in the world. It is a neglected disease because it occurs almost exclusively in poor developing countries, which offer negligible marketable and profitable opportunities. Malaria (together with Tuberculosis), is responsible for an unprecedented global health crisis with devastating effects in developing countries. The 2011 Word Malaria Report indicated that 106 countries showed endemic malaria. Malaria control depends mainly on drug treatment, which is increasingly difficult due to the spread of drug resistant parasites and requires expensive drug combinations. Part of the inability to combat this disease is attributed to an incomplete understanding of its pathogenesis and pathophysiology. Improving the knowledge of the underlying pathogenic mechanisms of malaria transmission and of the exclusive metabolic pathways of the parasites (protozoa of the genus Plasmodium), should promote efficient treatment of disease and help the identification of novel targets for potential therapeutic interventions. Moreover, the elucidation of determinants involved in the spread of malaria will provide important information for efficient planning of strategies for targeted control.
Collapse
|
8
|
Fernández MLS, Engels KK, Bender F, Gassel M, Marhöfer RJ, Mottram JC, Selzer PM. High-throughput screening with the Eimeria tenella CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a. MICROBIOLOGY-SGM 2012; 158:2262-2271. [PMID: 22723289 PMCID: PMC3542813 DOI: 10.1099/mic.0.059428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The poultry disease coccidiosis, caused by infection with Eimeria spp. apicomplexan parasites, is responsible for enormous economic losses to the global poultry industry. The rapid increase of resistance to therapeutic agents, as well as the expense of vaccination with live attenuated vaccines, requires the development of new effective treatments for coccidiosis. Because of their key regulatory function in the eukaryotic cell cycle, cyclin-dependent kinases (CDKs) are prominent drug targets. The Eimeria tenella CDC2-related kinase 2 (EtCRK2) is a validated drug target that can be activated in vitro by the CDK activator XlRINGO (Xenopus laevisrapid inducer of G2/M progression in oocytes). Bioinformatics analyses revealed four putative E. tenella cyclins (EtCYCs) that are closely related to cyclins found in the human apicomplexan parasite Plasmodium falciparum. EtCYC3a was cloned, expressed in Escherichia coli and purified in a complex with EtCRK2. Using the non-radioactive time-resolved fluorescence energy transfer (TR-FRET) assay, we demonstrated the ability of EtCYC3a to activate EtCRK2 as shown previously for XlRINGO. The EtCRK2/EtCYC3a complex was used for a combined in vitro and in silico high-throughput screening approach, which resulted in three lead structures, a naphthoquinone, an 8-hydroxyquinoline and a 2-pyrimidinyl-aminopiperidine-propane-2-ol. This constitutes a promising starting point for the subsequent lead optimization phase and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- María L Suárez Fernández
- Institute of Microbiology and Wine Research, Johannes-Gutenberg-Universität Mainz, Becherweg 15, 55099 Mainz, Germany.,Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Kristin K Engels
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Frank Bender
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Michael Gassel
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | | | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Paul M Selzer
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.,Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| |
Collapse
|
9
|
Kortagere S, Welsh WJ, Morrisey JM, Daly T, Ejigiri I, Sinnis P, Vaidya AB, Bergman LW. Structure-based design of novel small-molecule inhibitors of Plasmodium falciparum. J Chem Inf Model 2010; 50:840-9. [PMID: 20426475 DOI: 10.1021/ci100039k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malaria is endemic in most developing countries, with nearly 500 million cases estimated to occur each year. The need to design a new generation of antimalarial drugs that can combat the most drug-resistant forms of the malarial parasite is well recognized. In this study, we wanted to develop inhibitors of key proteins that form the invasion machinery of the malarial parasite. A critical feature of host-cell invasion by apicomplexan parasites is the interaction between the carboxy terminal tail of myosin A (MyoA) and the myosin tail interacting protein (MTIP). Using the cocrystal structure of the Plasmodium knowlesi MTIP and the MyoA tail peptide as input to the hybrid structure-based virtual screening approach, we identified a series of small molecules as having the potential to inhibit MTIP-MyoA interactions. Of the initial 15 compounds tested, a pyrazole-urea compound inhibited P. falciparum growth with an EC(50) value of 145 nM. We screened an additional 51 compounds belonging to the same chemical class and identified 8 compounds with EC(50) values less than 400 nM. Interestingly, the compounds appeared to act at several stages of the parasite's life cycle to block growth and development. The pyrazole-urea compounds identified in this study could be effective antimalarial agents because they competitively inhibit a key protein-protein interaction between MTIP and MyoA responsible for the gliding motility and the invasive features of the malarial parasite.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kumar A, Sen A, Das P. Microarray based gene expression: a novel approach for identification and development of potential drug and effective vaccine against visceral Leishmaniasis. ACTA ACUST UNITED AC 2010. [DOI: 10.5138/ijaps.2010.0976.1055.01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Lowell JE, Earl CD. Leveraging biotech's drug discovery expertise for neglected diseases. Nat Biotechnol 2009; 27:323-9. [DOI: 10.1038/nbt0409-323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Sahu NK, Sahu S, Kohli DV. Novel Molecular Targets for Antimalarial Drug Development. Chem Biol Drug Des 2008; 71:287-97. [DOI: 10.1111/j.1747-0285.2008.00640.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Peng Y, Keenan SM, Welsh WJ. Structural model of the Plasmodium CDK, Pfmrk, a novel target for malaria therapeutics. J Mol Graph Model 2008; 24:72-80. [PMID: 16046158 DOI: 10.1016/j.jmgm.2005.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 12/28/2022]
Abstract
Malaria, with 300-500 million clinical cases resulting in 1-3 million fatalities a year, is one of the most deadly tropical diseases. As current antimalarial therapeutics become increasingly ineffective due to parasitic resistance, there exists an urgent need to develop and pursue new therapeutic strategies. Recent genome sequencing and molecular cloning projects have identified several enzymes from Plasmodium (P.) falciparum that may represent novel drug targets, including a family of proteins that are homologous to the mammalian cyclin-dependent kinases (CDKs). CDKs are essential for the control of the mammalian cell cycle and, based on the conservation of the CDKs across species, the plasmodial CDKs are expected to play a crucial role in parasitic growth. Here we present a 3D structural model of Pfmrk, a putative human CDK activating kinase (CAK) homolog in P. falciparum. Notable features of the present structural model include: (1) parameterization of the Mg2+ hexacoordination system using ab initio quantum chemical calculations to accurately represent the ATP-kinase interaction; and (2) comparison between the docking scores and measured binding affinities for a series of oxindole-based Pfmrk inhibitors of known activity. Detailed analysis of inhibitor-Pfmrk binding interactions enabled us to identify specific residues (viz. Met66, Met75, Met91, Met94 and Phe143) within the Pfmrk binding pocket that may play an important role in inhibitor binding affinity and selectivity. The availability of this Pfmrk structural model, together with insights gained from analysis of ligand-receptor interactions, should promote the rational design of potent and selective Pfmrk inhibitors as antimalarial therapeutics.
Collapse
Affiliation(s)
- Youyi Peng
- Department of Pharmacology, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School (UMDNJ-RWJMS) and the Informatics Institute of UMDNJ, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
14
|
Woodard CL, Keenan SM, Gerena L, Welsh WJ, Geyer JA, Waters NC. Evaluation of broad spectrum protein kinase inhibitors to probe the architecture of the malarial cyclin dependent protein kinase Pfmrk. Bioorg Med Chem Lett 2007; 17:4961-6. [PMID: 17588749 DOI: 10.1016/j.bmcl.2007.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
We tested Pfmrk against several naphthalene and isoquinoline sulfonamides previously reported as protein kinase A (PKA) inhibitors. Pfmrk is a Cyclin Dependent protein Kinase (CDK) from Plasmodium falciparum, the causative parasite of the most lethal form of malaria. We find that the isoquinoline sulfonamides are potent inhibitors of Pfmrk and that substitution on the 5 position of the isoquinoline ring greatly influences the degree of potency. Molecular modeling studies suggest that the nitrogen atom in the isoquinoline ring plays a key role in ligand-receptor interactions. Structural analysis suggests that even subtle differences in amino acid composition within the active sites are responsible for conferring specificity of these inhibitors for Pfmrk over PKA.
Collapse
Affiliation(s)
- Cassandra L Woodard
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
15
|
Bhattacharjee AK. In silico three-dimensional pharmacophores for aiding the discovery of the Pfmrk (Plasmodium cyclin-dependent protein kinases) specific inhibitors for the therapeutic treatment of malaria. Expert Opin Drug Discov 2007; 2:1115-27. [PMID: 23484876 DOI: 10.1517/17460441.2.8.1115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The resurgence of malaria and lack of effective antimalarial drugs affect millions of people worldwide every year, causing several million deaths. With the emergence of structure-based drug design methodologies, a major thrust in drug discovery efforts has shifted towards targeting specific proteins in parasites that are involved in their metabolic pathways. Although cyclin-dependent kinases (CDKs), due to their direct role in cell cycle regulations, have been targeted for the development of cancer therapeutics, CDKs for Plasmodium falciparum have only been recently identified to be attractive for the discovery of antimalarials. One of the plasmodium CDK targets is Pfmrk. Being a putative homolog of Cdk7 and, thus, having the possibility of dual functions, both in cell cycle control and gene expression within the parasite, pfrmk has become an interesting antimalarial chemotherapeutic target. This review discusses how in silico methodologies, without the knowledge of the X-ray crystallographic structure of Pfmrk, particularly based on the development of pharmacophores on known inhibitors can aid the discovery and design of Pfmrk-specific inhibitors through virtual screening of compound databases and provides insights into the understanding of the mechanism of binding in the active site of this enzyme.
Collapse
Affiliation(s)
- Apurba K Bhattacharjee
- Walter Reed Army Institute of Research, Department of Medicinal Chemistry, Division of Experimental Therapeutics, Silver Spring, MD 20910-7500, USA +1 301 319 9043 ; +1 301 319 9449 ;
| |
Collapse
|
16
|
Philip N, Haystead TA. Characterization of a UBC13 kinase in Plasmodium falciparum. Proc Natl Acad Sci U S A 2007; 104:7845-50. [PMID: 17452636 PMCID: PMC1876535 DOI: 10.1073/pnas.0611601104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein kinases are generally recognized as attractive drug targets to treat a variety of human diseases. Recent analysis of the Plasmodium falciparum kinome identified several kinases that are entirely unique to Plasmodium species. The specific functions and targets of most of these enzymes remain largely unknown. Here, we have identified a P. falciparum kinase (PfPK9/PF13_0085 ORF) that does not cluster with any of the typical eukaryotic protein kinases. PfPK9 protein expression was induced approximately 18 h after red blood cell infection, and was mainly localized to the parasitophorous vacuolar membrane as well as the cytosol. Recombinant PfPK9 autophosphorylated in vitro and specifically phosphorylated the exogenous substrate histone H1, indicating that it is catalytically active. Phosphopeptide mapping studies showed that autophosphorylation occurred at three residues: T082, T265, and T269. We identified a P. falciparum homolog of the E2 ubiquitin-conjugating enzyme 13 (UBC13) as an endogenous substrate for PfPK9. PfPK9 phosphorylated UBC13 at S106, a highly conserved residue among eukaryotic E2s, and suppressed its ubiquitin-conjugating activity. Our findings not only describe a previously uncharacterized Plasmodium kinase and its likely in vivo target, but also suggest that modulation of UBC13 activity by phosphorylation may be a common regulatory mechanism in eukaryotes.
Collapse
Affiliation(s)
- Nisha Philip
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | - Timothy A. Haystead
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
- *To whom correspondence should be addressed at:
Duke University Medical Center, C119 LSRC Research Drive, Durham, NC 27710. E-mail:
| |
Collapse
|
17
|
Abstract
Protein kinases (PKs) are prime targets for drug discovery in a variety of diseases, including cancer and neurodegenerative pathologies. The characterisation of the kinome of the human malaria parasite Plasmodium falciparum has revealed profound divergences, at several levels, between PKs of the parasite and those of its host. Here, the authors review the major issues and recent advances regarding the development of Plasmodium-selective PK inhibitors, with emphasis on target identification and validation, and on structure-based design. The authors also discuss the possibility of interfering with: i) Plasmodium PKs regulating transmission to the mosquito vector; and ii) host PKs that may be required for parasite survival.
Collapse
Affiliation(s)
- Christian Doerig
- INSERM U609, Wellcome Centre for Molecular Parasitology, Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, UK.
| | | |
Collapse
|
18
|
Harris CJ, Stevens AP. Chemogenomics: structuring the drug discovery process to gene families. Drug Discov Today 2006; 11:880-8. [PMID: 16997137 DOI: 10.1016/j.drudis.2006.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 07/20/2006] [Accepted: 08/15/2006] [Indexed: 01/08/2023]
Abstract
In the post-genomic era, if all proteins in a gene family can putatively be identified, how can drug discovery effectively tackle so many novel targets that might lack structural and small-molecule inhibitory data? In response, chemogenomics, a new approach that guides drug discovery based on gene families, has been developed. By integrating all information available within a protein family (sequence, SAR data, protein structure), chemogenomics can efficiently enable cross-SAR exploitation, directed compound selection and early identification of optimum selectivity panel members. This review examines recent developments in chemogenomics technologies and illustrates their predictive capabilities with successful examples from two of the major protein families: protein kinases and G-protein-coupled receptors.
Collapse
Affiliation(s)
- C John Harris
- BioFocus DPI, Chesterford Research Park, Saffron Walden, Essex, CB10 1XL, UK
| | | |
Collapse
|
19
|
Chen Y, Jirage D, Caridha D, Kathcart AK, Cortes EA, Dennull RA, Geyer JA, Prigge ST, Waters NC. Identification of an effector protein and gain-of-function mutants that activate Pfmrk, a malarial cyclin-dependent protein kinase. Mol Biochem Parasitol 2006; 149:48-57. [PMID: 16737745 DOI: 10.1016/j.molbiopara.2006.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/06/2006] [Accepted: 04/18/2006] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) are key regulators of cell cycle control. In humans, CDK7 performs dual roles as the CDK activating kinase (CAK) responsible for regulating numerous CDKs and as the RNA polymerase II carboxyl-terminal domain (CTD) kinase involved in the regulation of transcription. Binding of an effector protein, human MAT1, stimulates CDK7 kinase activity and influences substrate specificity. In Plasmodium falciparum, CDKs and their roles in regulating growth and development are poorly understood. In this study, we characterized the regulatory mechanisms of Pfmrk, a putative homolog of human CDK7. We identified an effector, PfMAT1, which stimulates Pfmrk kinase activity in a cyclin-dependent manner. The addition of PfMAT1 stimulated RNA polymerase II CTD phosphorylation and had no effect on the inability of Pfmrk to phosphorylate PfPK5, a putative CDK1 homolog, which suggests that Pfmrk may be a CTD kinase rather than a CAK. In an attempt to abrogate the requirement for PfMAT1 stimulation, we mutated amino acids within the active site of Pfmrk. We found that two independent mutants, S138K and F143L, yielded a 4-10-fold increase in Pfmrk activity. Significant kinase activity of these mutants was observed in the absence of either cyclin or PfMAT1. Finally, we observed autophosphorylation of Pfmrk that is unaffected by the addition of either cyclin or PfMAT1.
Collapse
Affiliation(s)
- Yueqin Chen
- Department of Parasitology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Geyer JA, Prigge ST, Waters NC. Targeting malaria with specific CDK inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:160-70. [PMID: 16185941 DOI: 10.1016/j.bbapap.2005.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 01/02/2023]
Abstract
Cyclin-dependent protein kinases (CDKs) are attractive targets for drug discovery and efforts have led to the identification of novel CDK selective inhibitors in the development of treatments for cancers, neurological disorders, and infectious diseases. More recently, they have become the focus of rational drug design programs for the development of new antimalarial agents. CDKs are valid targets as they function as essential regulators of cell growth and differentiation. To date, several CDKs have been characterized from the genome of the malaria-causing protozoan Plasmodium falciparum. Our approach employs experimental and virtual screening methodologies to identify and refine chemical inhibitors of the parasite CDK Pfmrk, a sequence homologue of human CDK7. Chemotypes of Pfmrk inhibitors include the purines, quinolinones, oxindoles, and chalcones, which have sub-micromolar IC50 values against the parasite enzyme, but not the human CDKs. Additionally, we have developed and validated a pharmacophore, based on Pfmrk inhibitors, which contains two hydrogen bond acceptor functions and two hydrophobic sites, including one aromatic ring hydrophobic site. This pharmacophore has been exploited to identify additional compounds that demonstrate significant inhibitory activity against Pfmrk. A molecular model of Pfmrk designed using the crystal structure of human CDK7 highlights key amino acid substitutions in the ATP binding pocket. Molecular modeling and docking of the active site pocket with selective inhibitors has identified possible receptor-ligand interactions that may be responsible for inhibitor specificity. Overall, the unique biochemical characteristics associated with this protein, to include distinctive active site amino acid residues and variable inhibitor profiles, distinguishes the Pfmrk drug screen as a paradigm for CDK inhibitor analysis in the parasite.
Collapse
Affiliation(s)
- Jeanne A Geyer
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Ft. Detrick, MD 20910, USA.
| | | | | |
Collapse
|
21
|
Thapar MM, Gil JP, Björkman A. In vitro recrudescence of Plasmodium falciparum parasites suppressed to dormant state by atovaquone alone and in combination with proguanil. Trans R Soc Trop Med Hyg 2005; 99:62-70. [PMID: 15550263 DOI: 10.1016/j.trstmh.2004.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 01/14/2004] [Accepted: 01/14/2004] [Indexed: 11/26/2022] Open
Abstract
We studied the viability of Plasmodium falciparum parasites reappearing in long-term cultures after repetitive exposure to atovaquone and proguanil. Parasites (F32 and FCR3) exposed to 100-5000 nM atovaquone for 96 hours were reduced to <5% of initial parasitaemia but recrudesced after 9-15 days. Also, parasites exposed to 1000 nM atovaquone for 48, 72, 96 and 144 hours recrudesced after 9, 14, 21 and 23 days respectively. Immediately after removal of the drug, only 1-3 schizonts per 10000 red blood cells were found consistently, apparently unable to produce trophozoites and thus, possibly, adopting a "dormant state". Parasites (F32 and FCR3) exposed to 500 nM atovaquone for 72 hours reappeared after 14 days. These recrudescing parasites were then re-exposed and suppressed by atovaquone in three consecutive follow-up experiments. They reappeared after 12, 11 and 9 days respectively. No known point mutations in cytochrome b gene (cytb), associated with atovaquone resistance, were detected in any recrudescing parasites. Finally, parasites (F32) exposed to various concentrations of atovaquone and proguanil in combination for 72 hours reappeared after 9-17 days. The baseline susceptibilities of the parasites to individual drugs were similar before and after recrudescence in all experiments.
Collapse
Affiliation(s)
- Mita M Thapar
- Department of Medicine, Infectious Diseases Unit, Malaria Research Laboratory, M9/02, Karolinska University Hospital, Karolinska Institute, SE 171-76 Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
Bhattacharjee AK, Geyer JA, Woodard CL, Kathcart AK, Nichols DA, Prigge ST, Li Z, Mott BT, Waters NC. A three-dimensional in silico pharmacophore model for inhibition of Plasmodium falciparum cyclin-dependent kinases and discovery of different classes of novel Pfmrk specific inhibitors. J Med Chem 2004; 47:5418-26. [PMID: 15481979 DOI: 10.1021/jm040108f] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell division cycle is regulated by a family of cyclin-dependent protein kinases (CDKs) that are functionally conserved among many eukaryotic species. The characterization of plasmodial CDKs has identified them as a leading antimalarial drug target in our laboratory. We have developed a three-dimensional QSAR pharmacophore model for inhibition of a Plasmodium falciparum CDK, known as Pfmrk, from a set of fifteen structurally diverse kinase inhibitors with a wide range of activity. The model was found to contain two hydrogen bond acceptor functions and two hydrophobic sites including one aromatic-ring hydrophobic site. Although the model was not developed from X-ray structural analysis of the known CDK2 structure, it is consistent with the structure-functional requirements for binding of the CDK inhibitors in the ATP binding pocket. Using the model as a template, a search of the in-house three-dimensional multiconformer database resulted in the discovery of sixteen potent Pfmrk inhibitors. The predicted inhibitory activities of some of these Pfmrk inhibitors from the molecular model agree exceptionally well with the experimental inhibitory values from the in vitro CDK assay.
Collapse
Affiliation(s)
- Apurba K Bhattacharjee
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The ubiquitous ATP binding site offers a global target for protein kinase inhibitors. The corollary is that molecular selectivity with such agents may be difficult to achieve and ascertain. A relevant example is discussed in terms of design and biomedical rationale.
Collapse
Affiliation(s)
- Peter M Fischer
- Cyclacel Limited, James Lindsay Place, Dundee, DD1 5JJ, Scotland
| |
Collapse
|
24
|
Biagini GA, O'Neill PM, Nzila A, Ward SA, Bray PG. Antimalarial chemotherapy: young guns or back to the future? Trends Parasitol 2003; 19:479-87. [PMID: 14580958 DOI: 10.1016/j.pt.2003.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Giancarlo A Biagini
- Division of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | | | | |
Collapse
|
25
|
Woodard CL, Li Z, Kathcart AK, Terrell J, Gerena L, Lopez-Sanchez M, Kyle DE, Bhattacharjee AK, Nichols DA, Ellis W, Prigge ST, Geyer JA, Waters NC. Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. J Med Chem 2003; 46:3877-82. [PMID: 12930149 DOI: 10.1021/jm0300983] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclin dependent protein kinases (CDKs) have become attractive drug targets in an effort to identify effective inhibitors of the parasite Plasmodium falciparum, the causative agent of the most severe form of human malaria. We tested known CDK inhibitors for their ability to inhibit two malarial CDKs: Pfmrk and PfPK5. Many broad spectrum CDK inhibitors failed to inhibit Pfmrk suggesting that the active site differs from other CDKs in important ways. By screening compounds in the Walter Reed chemical database, we identified oxindole-based compounds as effective inhibitors of Pfmrk (IC(50) = 1.5 microM). These compounds have low cross-reactivity against PfPK5 and human CDK1 demonstrating selectivity for Pfmrk. Amino acid comparison of the active sites of Pfmrk and PfPK5 identified unique amino acid differences that may explain this selectivity and be exploited for further drug development efforts.
Collapse
Affiliation(s)
- Cassandra L Woodard
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|