1
|
Kumar N, Khurana B, Arora D. Nose-to-brain drug delivery for the treatment of glioblastoma multiforme: nanotechnological interventions. Pharm Dev Technol 2023; 28:1032-1047. [PMID: 37975846 DOI: 10.1080/10837450.2023.2285506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor with a short survival rate. Extensive research is underway for the last two decades to find an effective treatment for GBM but the tortuous pathophysiology, development of chemoresistance, and presence of BBB are the major challenges, prompting scientists to look for alternative targets and delivery strategies. Therefore, the nose to brain delivery emerged as an unorthodox and non-invasive route, which delivers the drug directly to the brain via the olfactory and trigeminal pathways and also bypasses the BBB and hepatic metabolism of the drug. However, mucociliary clearance, low administration volume, and less permeability of nasal mucosa are the obstacles retrenching the brain drug concentration. Thus, nanocarrier delivery through this route may conquer these limitations because of their unique surface characteristics and smaller size. In this review, we have emphasized the advantages and limitations of nanocarrier technologies such as polymeric, lipidic, inorganic, and miscellaneous nanoparticles used for nose-to-brain drug delivery against GBM in the past 10 years. Furthermore, recent advances, patents, and clinical trials are highlighted. However, most of these studies are in the early stages, so translating their outcomes into a marketed formulation would be a milestone in the better progression and survival of glioma patients.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Bharat Khurana
- Department of Pharmaceutics, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Daisy Arora
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
2
|
Shafique U, Din FU, Sohail S, Batool S, Almari AH, Lahiq AA, Fatease AA, Alharbi HM. Quality by design for sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine. Int J Pharm 2023; 646:123480. [PMID: 37797784 DOI: 10.1016/j.ijpharm.2023.123480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Migraine is a progressive neurological condition often accompanied by nausea and vomiting. Various drugs have recently been used in the treatment of migraine, including sumatriptan (SUT). However, SUT has poor pharmacological effects mainly due to its reduced permeability, blood brain barrier (BBB) effect, half-life and bioavailability. Herein, we developed SUT loaded nano-ethosomes (SUT-NEs) for intranasal (IN) delivery, after their incorporation into chitosan based mucoadhesive gel (SUT-NEsG). The observed mean particle size of SUT-NEs was 109.45 ± 4.03 nm with spherical morphology, mono dispersion (0.191 ± 0.001), negatively charged (-20.90 ± 1.98 mV) and with excellent entrapment efficiency (96.90 ± 1.85 %). Fourier-transform infrared (FTIR) spectra have depicted the compatibility of the components. Moreover, SUT-NEsG was homogeneous having suitable viscosity and mucoadhesive strength. In vitro release and ex vivo permeation analysis showed sustained release and improved permeation of the SUT-NEsG, respectively. Additionally, histopathological studies of nasal membrane affirmed the safety of SUT-NEsG after IN application. In vivo pharmacokinetic study demonstrated improved brain bioavailability of SUT-NEsG as compared to orally administered sumatriptan solution (SUT-SL). Furthermore, significantly enhanced pharmacological effect of SUT-NEsG was observed in behavioral and biochemical analysis, immunohistochemistry for NF-κB, and enzyme linked immuno assay (ELISA) for IL-1β and TNF-α in Nitroglycerin (NTG) induced migraine model. It can be concluded that migraine may be successfully managed through IN application of SUT-NEsG owing to the direct targeted delivery to the brain.
Collapse
Affiliation(s)
- Uswa Shafique
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66262, Saudi Arabi
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan M Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
3
|
Hydrogels: potential aid in tissue engineering—a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Ahmad MZ, Ahmad J, Alasmary MY, Akhter S, Aslam M, Pathak K, Jamil P, Abdullah M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Formulation and Evaluation of Hybrid Niosomal In Situ Gel for Intravesical Co-Delivery of Curcumin and Gentamicin Sulfate. Pharmaceutics 2022; 14:pharmaceutics14040747. [PMID: 35456581 PMCID: PMC9028379 DOI: 10.3390/pharmaceutics14040747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
The current study describes the elaboration of a hybrid drug delivery platform for an intravesical application based on curcumin/gentamicin sulfate simultaneously loaded niosomes incorporated into thermosensitive in situ gels. Series of niosomes were elaborated via the thin film hydration method, evaluating the impact of non-ionic surfactants’, cholesterol’s, and curcumin’s concentration. The formulation composed of equimolar ratio of Span 60, Tween 60, and 30 mol% cholesterol was selected as the optimal composition, due to the high entrapment efficiency values obtained for both drugs, and appropriate physicochemical parameters (morphology, size, PDI, and zeta potential), therefore, was further incorporated into Poloxamers (407/188) and Poloxamers and chitosan based in situ gels. The developed hybrid systems were characterized with sol to gel transition in the physiological range, suitable rheological and gelling characteristics. In addition, the formed gel structure at physiological temperatures determines the retarded dissolution of both drugs (vs. niosomal suspension) and sustained release profile. The conducted microbial studies of selected niosomal in situ gels revealed the occurrence of a synergetic effect of the two compounds when simultaneously loaded. The findings indicate that the elaborated thermosensitive niosomal in situ gels can be considered as a feasible platform for intravesical drug delivery.
Collapse
|
6
|
Vörös-Horváth B, Živković P, Bánfai K, Bóvári-Biri J, Pongrácz J, Bálint G, Pál S, Széchenyi A. Preparation and Characterization of ACE2 Receptor Inhibitor-Loaded Chitosan Hydrogels for Nasal Formulation to Reduce the Risk of COVID-19 Viral Infection. ACS OMEGA 2022; 7:3240-3253. [PMID: 35097308 PMCID: PMC8790824 DOI: 10.1021/acsomega.1c05149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The COVID-19 virus is spread by pulmonary droplets. Its high infectivity is caused by the high-affinity binding of the viral spike protein to the ACE2 receptors on the surface of respiratory epithelial cell membranes. The proper hydration of nasal mucosa plays an essential role in defense of bacterial and viral infections. Therefore, a nasal formulation, which can moisture the nasal mucosa and contains the ACE2 receptor inhibitor, can reduce the risk of COVID-19 infection. This article presents a systematic study of the preparation of chitosan hydrogels with dicarboxylic acids (malic and glutaric acid) and their detailed characterization (Fourier transform infrared spectroscopy, determination of cross-linking efficiency, rheological studies, thermal analysis, and swelling kinetics). The results confirm that chemically cross-linked chitosan hydrogels can be synthesized using malic or glutaric acid without additives or catalysts. The adsorption capacity of hydrogels for three different ACE2 inhibitors, as APIs, has also been investigated. The API content of hydrogels and their mucoadhesive property can provide an excellent basis to use the hydrogels for the development of a nasal formulation in order to reduce the risk of SARS-CoV 2 infection.
Collapse
Affiliation(s)
- Barbara Vörös-Horváth
- Institute
of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pecs, Rókus u. 2, 7624 Pécs, Hungary
| | - Pavo Živković
- Department
of Chemistry, Josip Juraj Strossmayer University
of Osijek, Ulica Cara
Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Krisztina Bánfai
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rókus u. 2, 7624 Pécs, Hungary
| | - Judit Bóvári-Biri
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rókus u. 2, 7624 Pécs, Hungary
| | - Judit Pongrácz
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rókus u. 2, 7624 Pécs, Hungary
| | - Gábor Bálint
- Institute
of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pecs, Rókus u. 2, 7624 Pécs, Hungary
| | - Szilárd Pál
- Institute
of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pecs, Rókus u. 2, 7624 Pécs, Hungary
| | - Aleksandar Széchenyi
- Institute
of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pecs, Rókus u. 2, 7624 Pécs, Hungary
- Department
of Chemistry, Josip Juraj Strossmayer University
of Osijek, Ulica Cara
Hadrijana 8/A, HR-31000 Osijek, Croatia
| |
Collapse
|
7
|
Joyce P, Wignall A, Peressin K, Wright L, Williams DB, Prestidge CA. Chitosan nanoparticles facilitate improved intestinal permeation and oral pharmacokinetics of the mast cell stabiliser cromoglycate. Int J Pharm 2022; 612:121382. [PMID: 34919999 DOI: 10.1016/j.ijpharm.2021.121382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023]
Abstract
Cromoglycate is a mast cell stabiliser typically administered via inhalation or intranasally for the treatment of allergy-based respiratory issues. Oral dosing of cromoglycate remains challenging due to its high solubility but low permeability across epithelial membranes in the gastrointestinal tract: effective formulation strategies are clearly needed. Here, we investigate and preclinically develop chitosan-cromoglycate complexes and associated nano/microparticle formulations with muco-adhesive and permeation enhancing capabilities to overcome the biopharmaceutical challenges for oral dosing.The synthesized complexes were optimized with respect to chitosan grade, particle size, and drug loading and demonstrated up to a 9.3-fold enhancement in permeability across a Caco-2 monolayer for chitosan-cromoglycate particles, compared to the pure drug. This increased intestinal permeability led to improved pharmacokinetic performance of cromoglycate, e.g. up to 1.82-fold increase in relative oral bioavailability when dosed to Sprague-Dawley rats in a fasted state. These findings confirm the potential for chitosan particles to serve as an effective oral delivery vehicle for cromoglycate, with additional formulation optimization presenting the opportunity to reduce dosing frequency for treatment of allergy-based respiratory ailments.
Collapse
Affiliation(s)
- Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Anthony Wignall
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Karl Peressin
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Leah Wright
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Desmond B Williams
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
8
|
Saddique A, Cheong IW. Recent advances in three-dimensional bioprinted nanocellulose-based hydrogel scaffolds for biomedical applications. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0926-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Malik S, Subramanian S, Hussain T, Nazir A, Ramakrishna S. Electrosprayed Nanoparticles as Drug Delivery systems for Biomedical Applications. Curr Pharm Des 2021; 28:368-379. [PMID: 34587881 DOI: 10.2174/1381612827666210929114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanotechnology is a tool being used intensely in the area of drug delivery systems in the biomedical field. Electrospraying is one of the nanotechnological methods, which is growing due to its importance in the development of nanoparticles comprising bioactive compounds. It is helpful in improving the efficacy, reducing side effects of active drug elements, and is useful in targeted drug delivery. When compared to other conventional methods like nanoprecipitation, emulsion diffusion, and double emulsification, electrospraying offers better advantages to produce micro/nanoparticles due to its simplicity, cost-effectiveness, and single-step process. OBJECTIVE The aim of this paper is to highlight the use of electrosprayed nanoparticles for biomedical applications. METHODS We conducted a literature review on the usage of natural and synthetic materials to produce nanoparticles, which can be used as a drug delivery system for medical purposes. RESULTS We summarized a possible key role of electrosprayed nanoparticles in different therapeutic applications (tissue regeneration, cancer). CONCLUSION The modest literature production denotes that further investigation is needed to assess and validate the promising role of drug-loaded nanoparticles through the electrospraying process as noninvasive materials in the biomedical field.
Collapse
Affiliation(s)
- Sairish Malik
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura road, 37610, Faisalabad . Pakistan
| | - Sundarrajan Subramanian
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 . Singapore
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura road, 37610, Faisalabad . Pakistan
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura road, 37610, Faisalabad . Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 . Singapore
| |
Collapse
|
10
|
Assessment of chitosan nanoparticles in improving the efficacy of nitazoxanide on cryptosporidiosis in immunosuppressed and immunocompetent murine models. J Parasit Dis 2021; 45:606-619. [PMID: 34475640 DOI: 10.1007/s12639-020-01337-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022] Open
Abstract
Cryptosporidiosis is one of the major causes of diarrhea in immunocompetent and immunocompromised patients. It is self-limited in immunocompetent individuals. However, in the immunocompromised it can cause life-threatening diarrhea and results in chronic malabsorption of fluids, vitamins and electrolytes resulting in wasting. Our study is concerned with assessing and comparing the efficacy of nitazoxanide (NTZ) alone and NTZ loaded chitosan nanoparticles (NTZ loaded CS NPs) in the treatment of experimental cryptosporidiosis using parasitological and histopathological parameters. One hundred mice were divided into 5 groups (20 mice each). Each group was divided into 2 subgroups according to the immune status [a-immunocompetent, b-immunosuppressed]. group 1: control (healthy), group 2: control infected by Cryptosporidium oocysts, group 3: infected treated by NTZ, group 4: infected then treated by NTZ loaded CS NPs and group 5: infected then treated by chitosan nanoparticles (CS NPs) alone. Treatment of Cryptosporidium infected mice with NTZ loaded on CS NPs resulted in the highest significant reduction in oocysts shedding in both immunocompetent and immunosuppressed groups followed by treatment with NTZ form then by treatment with CS NPs alone. The treatment with NTZ loaded CS NPs displayed a remarkable improvement of the histopathological changes of the intestine, liver and lung while NTZ treated group showed some improvement. Treatment with NTZ loaded CS NPs in murine cryptosporidiosis gave the best results as it caused marked reduction in fecal oocysts counts and improvement of histopathological changes in immunocompetent and immunosuppressed groups.
Collapse
|
11
|
Thakkar H, Vaghela D, Patel BP. Brain targeted intranasal in-situ gelling spray of paroxetine: Formulation, characterization and in-vivo evaluation". J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
13
|
Guo T, Guo Y, Gong Y, Ji J, Hao S, Deng J, Wang B. An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage. Int J Pharm 2019; 566:46-56. [PMID: 31121211 DOI: 10.1016/j.ijpharm.2019.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022]
Abstract
Intranasal drug delivery provided an alternative and effective approach for the intervention of an intracerebral hemorrhage (ICH). However, the short retention time at the absorption site and slow drug transport in intranasal gel influence the drug bioavailability and outcome of ICH. Herein, we fabricated a novel intranasal gel with oriented drug migration utilizing a charge-driven strategy to attenuate brain injury after ICH. Nicardipine hydrochloride (NCD) was entrapped in chitosan nanoparticles (CS NPs) and dispersed in an HAMC gel. Subsequently, one side of the gel was coated with a positively charged film. The oriented migration of CS NPs in the HAMC gel was determined, and the drug bioavailability was also enhanced. Furthermore, a blood-induced ICH rat model was established to evaluate the therapeutic effect of CS NPs + HAMC composites. Intranasal administration of the CS NPs + HAMC (+) composite showed a stronger neuroprotective effect in terms of brain edema reduction and neural apoptosis inhibition compared to the CS NPs + HAMC composite. These results suggested that the oriented and rapid drug transport from nose to brain can be achieved using the charge-driven strategy, and this intranasal drug delivery system has the potential to provide a new therapeutic strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuanyuan Guo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yuhua Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jingou Ji
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jia Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
14
|
In situ gel of lamotrigine for augmented brain delivery: development characterization and pharmacokinetic evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00436-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Gholizadeh H, Cheng S, Pozzoli M, Messerotti E, Traini D, Young P, Kourmatzis A, Ong HX. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv 2019; 16:453-466. [PMID: 30884987 DOI: 10.1080/17425247.2019.1597051] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The in-situ gelation of thermosensitive nasal formulations with desirable spray characteristics at room temperature and ability to undergo a phase change to a semi-solid state with mucoadhesive behavior at physiological temperature has the potential to efficiently deliver therapeutics to brain. However, their application in nasal spray generation with favorable characteristics has not been investigated. METHODS Thermosensitive chitosan (CS)-based formulations with different viscosities were prepared for intranasal delivery of ibuprofen using CS of various molecular weights. The formulation developed was optimized with regards to its physicochemical, rheological, biological properties and the generated aerosol characteristics. RESULTS The formulations showed rapid gelation (4-7 min) at 30-35°C, which lies in the human nasal cavity temperature spectrum. The decrease in CS molecular weight to 110-150 kDa led to generation of optimum spray with lower Dv50, wider spray area, and higher surface area coverage. This formulation also showed improved ibuprofen solubility that is approximately 100× higher than its intrinsic aqueous solubility, accelerated ibuprofen transport across human nasal epithelial cells and transient modulation of tight junctions. CONCLUSIONS A thermosensitive CS-based formulation has been successfully developed with suitable rheological properties, aerosol performance and biological properties that is beneficial for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- a School of Engineering , Macquarie University , Sydney , Australia.,b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Shaokoon Cheng
- a School of Engineering , Macquarie University , Sydney , Australia
| | - Michele Pozzoli
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Elisa Messerotti
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia.,c Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Daniela Traini
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Paul Young
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Agisilaos Kourmatzis
- d School of Aerospace, Mechanical and Mechatronic Engineering , The University of Sydney , Sydney , Australia
| | - Hui Xin Ong
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| |
Collapse
|
16
|
Yu S, Xu X, Feng J, Liu M, Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 2019; 560:282-293. [DOI: 10.1016/j.ijpharm.2019.02.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
|
17
|
Abruzzo A, Cerchiara T, Bigucci F, Zuccheri G, Cavallari C, Saladini B, Luppi B. Cromolyn-crosslinked chitosan nanoparticles for the treatment of allergic rhinitis. Eur J Pharm Sci 2019; 131:136-145. [PMID: 30771474 DOI: 10.1016/j.ejps.2019.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
The aim of this work was to prepare new mucoadhesive nasal decongestant nanoparticles obtained by direct crosslinking between the cationic polymer chitosan and the anionic drug cromolyn. Different chitosan/cromolyn molar ratios were used in order to obtain nanoparticles of suitable size, encapsulation efficiency/drug loading and mucoadhesion. Moreover, the ability of the nanoparticles to deliver cromolyn into and through the nasal mucosa was evaluated. The obtained positively charged nanoparticles, sized 180-400 nm, showed interesting properties in terms of yield, mucoadhesion, encapsulation efficiency and drug loading. Release and permeation/penetration data indicated the ability of the nanoparticles to retain a high amount of cromolyn inside the mucosa, which is rich in mast cells. These findings suggest developing decongestant nanoparticles for potential treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, Via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
| | - Cristina Cavallari
- Department of Pharmacy and Biotechnology, Via San Donato 15, University of Bologna, 40127 Bologna, Italy.
| | - Bruno Saladini
- PolyCrystalline s.r.l., Via F.S. Fabbri 127/1, 40059, Medicina, Bologna, Italy.
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
18
|
Aydınoğlu D, Ünal M. Evaluation of the influence of spirulina microalgae on the drug delivery characteristics of genipin cross-linked chitosan hydrogels. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Demet Aydınoğlu
- Armutlu Community College, Department of Food Process Technologies, Yalova University, Yalova, Turkey
| | - Merve Ünal
- Department of Polymer Engineering, Yalova University, Yalova, Turkey
| |
Collapse
|
19
|
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2018; 16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recently, the use of chitosan (CS) in the drug delivery has reached an acceptable maturity. Graphene-based drug delivery is also increasing rapidly due to its unique physical, mechanical, chemical, and electrical properties. Therefore, the combination of CS and graphene can provide a promising carrier for the loading and controlled release of therapeutic agents. AREAS COVERED In this review, we will outline the advantages of this new drug delivery system (DDS) in association with CS and graphene alone and will list the various forms of these carriers, which have been studied in recent years as DDSs. Finally, we will discuss the application of this hybrid composite in other fields. EXPERT OPINION The introducing the GO amends the mechanical characteristics of CS, which is a major problem in the use of CS-based carriers in drug delivery due to burst release in a CS-based controlled release system through the poor mechanical strength of CS. Many related research on this area are still not fully unstated and occasionally they seem inconsistent in spite of the intent to be complementary. Therefore, a sensitive review may be needed to understand the role of graphene in CS/graphene carriers for future drug delivery applications.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - M Reza Naimi-Jamal
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - Seyed Morteza Naghib
- b Nanotechnology Department, School of New Technologies , Iran University of Science and Technology (IUST) , Tehran , Iran
| |
Collapse
|
20
|
Liu J, Zeng Q, Ke X, Yang Y, Hu G, Zhang X. Influence of chitosan-based dressing on prevention of synechia and wound healing after endoscopic sinus surgery: A meta-analysis. Am J Rhinol Allergy 2018; 31:401-405. [PMID: 29122085 DOI: 10.2500/ajra.2017.31.4469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Endoscopic sinus surgery (ESS) has had many complications, e.g., synechia formation. This meta-analysis investigated the effect of a novel chitosan-based dressing on prevention of synechia and wound healing after ESS. METHODS We systematically searched various medical literature data bases and included the randomized controlled trials (RCT) regarding the effect of novel chitosan-based dressing on ESS. The study outcomes included synechia, granulations, hemostasis, crusting scores, and infection. RESULTS Six RCTs, which involved 337 patients, were included in the meta-analysis. Compared with control intervention after ESS, chitosan-based gel dressing substantially inhibited synechia (risk ratio [RR] 0.28 [95% confidence interval {CI}, 0.15-0.54]; p = 0.0001), improved granulations (RR 1.47 [95% CI, 1.07-2.03]; p = 0.02), and hemostasis (RR 1.47 [95% CI, 1.07-2.03]; p = 0.02) but demonstrated no effect on crusting scores (standard mean difference -0.41 [95% CI, -1.06 to 0.23]; p = 0.21) and infection (RR 0.88 [95% CI, 0.51-1.52]; p = 0.64). CONCLUSION Compared with control intervention, chitosan-based dressing was associated with significantly reduced synechia and with increased granulations and hemostasis but showed no influence on crusting and infection after ESS.
Collapse
Affiliation(s)
- Jie Liu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | | | | | | | | | | |
Collapse
|
21
|
Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 2018; 7:153-174. [PMID: 30182344 PMCID: PMC6173681 DOI: 10.1007/s40204-018-0095-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022] Open
Abstract
Hydrogels based on cellulose comprising many organic biopolymers including cellulose, chitin, and chitosan are the hydrophilic material, which can absorb and retain a huge proportion of water in the interstitial sites of their structures. These polymers feature many amazing properties such as responsiveness to pH, time, temperature, chemical species and biological conditions besides a very high-water absorption capacity. Biopolymer hydrogels can be manipulated and crafted for numerous applications leading to a tremendous boom in research during recent times in scientific communities. With the growing environmental concerns and an emergent demand, researchers throughout the globe are concentrating particularly on naturally derived hydrogels due to their biocompatibility, biodegradability and abundance. Cellulose-based hydrogels are considered as useful biocompatible materials to be used in medical devices to treat, augment or replace any tissue, organ, or help function of the body. These hydrogels also hold a great promise for applications in agricultural activity, as smart materials and some other useful industrial purposes. This review offers an overview of the recent and contemporary research regarding physiochemical properties of cellulose-based hydrogels along with their applications in multidisciplinary areas including biomedical fields such as drug delivery, tissue engineering and wound healing, healthcare and hygienic products as well as in agriculture, textiles and industrial applications as smart materials.
Collapse
Affiliation(s)
- S M Fijul Kabir
- Department of Textiles, Apparel Design and Merchandising, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Partha P Sikdar
- Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, 30602, USA
| | - B Haque
- College of Textile Engineering, University of Chittagong, Chittagong, 4331, Bangladesh
| | - M A Rahman Bhuiyan
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - A Ali
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - M N Islam
- Department of Chemistry, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| |
Collapse
|
22
|
Giuliani A, Balducci AG, Zironi E, Colombo G, Bortolotti F, Lorenzini L, Galligioni V, Pagliuca G, Scagliarini A, Calzà L, Sonvico F. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv 2018; 25:376-387. [PMID: 29382237 PMCID: PMC6058489 DOI: 10.1080/10717544.2018.1428242] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nasal administration has been proposed as a potential approach for the delivery of drugs to the central nervous system. Ribavirin (RBV), an antiviral drug potentially useful to treat viral infections both in humans and animals, has been previously demonstrated to attain several brain compartments after nasal administration. Here, a powder formulation in the form of agglomerates comprising micronized RBV and spray-dried microparticles containing excipients with potential absorption enhancing properties, i.e. mannitol, chitosan, and α-cyclodextrin, was developed for nasal insufflation. The agglomerates were characterized for particle size, agglomeration yield, and ex vivo RBV permeation across rabbit nasal mucosa as well as delivery from an animal dry powder insufflator device. Interestingly, permeation enhancers such as chitosan and mannitol showed a lower amount of RBV permeating across the excised nasal tissue, whereas α-cyclodextrin proved to outperform the other formulations and to match the highly soluble micronized RBV powder taken as a reference. In vivo nasal administration to rats of the agglomerates containing α-cyclodextrin showed an overall higher accumulation of RBV in all the brain compartments analyzed as compared with the micronized RBV administered as such without excipient microparticles. Hence, powder agglomerates are a valuable approach to obtain a nasal formulation potentially attaining nose-to-brain delivery of drugs with minimal processing of the APIs and improvement of the technological and biopharmaceutical properties of micronized API and excipients, as they combine optimal flow properties for handling and dosing, suitable particle size for nasal deposition, high surface area for drug dissolution, and penetration enhancing properties from excipients such as cyclodextrins.
Collapse
Affiliation(s)
- Alessandro Giuliani
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Anna Giulia Balducci
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| | - Elisa Zironi
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Gaia Colombo
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | - Fabrizio Bortolotti
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | | | - Viola Galligioni
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Giampiero Pagliuca
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Alessandra Scagliarini
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Laura Calzà
- e IRET Foundation , Ozzano , (BO) , Italy.,f Department of Pharmacy and Biotechnology , Ozzano , Italy
| | - Fabio Sonvico
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| |
Collapse
|
23
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
24
|
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Hamano N, Li SD, Chougule M, Shoyele SA, Gupta U, Ajazuddin, Alexander A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv 2018; 15:589-617. [DOI: 10.1080/17425247.2018.1471058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Swarnlata Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Shailendra Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
- Durg University, Govt. Vasudev Vaman Patankar Girls’ P.G. College Campus, Raipur Naka, Durg, Chhattisgarh, India
| | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio, 26510, Greece
- Department of Pharmacy, FORTH/ICE-HT, Institute of Chemical Engineering, Rio, Patras, 25104, Greece
| | - Nobuhito Hamano
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Mahavir Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer – 305817, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| |
Collapse
|
25
|
Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm 2018; 122:54-61. [DOI: 10.1016/j.ejpb.2017.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023]
|
26
|
Ma X, Sun X, Chen J, Lei Y. Natural or Natural-Synthetic Hybrid Polymer-Based Fluorescent Polymeric Materials for Bio-imaging-Related Applications. Appl Biochem Biotechnol 2017; 183:461-487. [DOI: 10.1007/s12010-017-2570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
27
|
Zhang L, Pan J, Dong S, Li Z. The application of polysaccharide-based nanogels in peptides/proteins and anticancer drugs delivery. J Drug Target 2017; 25:673-684. [PMID: 28462610 DOI: 10.1080/1061186x.2017.1326123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lin Zhang
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
| | - Jifei Pan
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
| | - Shibo Dong
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
- Shandong Provincial Engineering Research Center for Sustained-release Preparation of Chemical Drugs, Jinan, PR China
| | - Zhaoming Li
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
| |
Collapse
|
28
|
Zhou JC, Zhang JJ, Zhang W, Ke ZY, Zhang B. Efficacy of chitosan dressing on endoscopic sinus surgery: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2017; 274:3269-3274. [PMID: 28456847 DOI: 10.1007/s00405-017-4584-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/20/2017] [Indexed: 11/30/2022]
Abstract
Chitosan dressing might be promising to promote the recovery following endoscopic sinus surgery (ESS). However, the results remain controversial. We conducted a systematic review and meta-analysis to explore the influence of chitosan dressing on ESS. PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched. Randomized controlled trials (RCTs) assessing the effect of chitosan dressing on endoscopic sinus surgery were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcomes were synechia and hemostasis. Meta-analysis was performed using random-effect model. Four RCTs involving 268 patients were included in the meta-analysis. Overall following ESS, compared with control intervention, chitosan dressing significantly reduced synechia (RR = 0.25; 95% CI 0.13-0.49; P < 0.0001) and promoted hemostasis (RR = 1.70; 95% CI 1.37-2.11; P < 0.00001), but showed no impact on granulations (RR = 1.18; 95% CI 0.72-1.95; P = 0.52), mucosal edema (RR = 0.88; 95% CI 0.60-1.29; P = 0.51), crusting (RR = 0.85; 95% CI 0.48-1.53; P = 0.60), and infection (RR = 0.88; 95% CI 0.51-1.52; P = 0.64). Compared to control intervention, chitosan dressing could significantly decrease edema and improve hemostasis, but had no effect on granulations, mucosal edema, crusting and infection.
Collapse
Affiliation(s)
- Jing-Chun Zhou
- Department of Otorhinolaryngology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Jing-Jing Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Wei Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Zhao-Yang Ke
- Department of Otorhinolaryngology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Bo Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| |
Collapse
|
29
|
Cerchiara T, Abruzzo A, Parolin C, Vitali B, Bigucci F, Gallucci M, Nicoletta F, Luppi B. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 2016; 143:124-30. [DOI: 10.1016/j.carbpol.2016.02.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 02/06/2016] [Indexed: 01/26/2023]
|
30
|
Abruzzo A, Zuccheri G, Belluti F, Provenzano S, Verardi L, Bigucci F, Cerchiara T, Luppi B, Calonghi N. Chitosan nanoparticles for lipophilic anticancer drug delivery: Development, characterization and in vitro studies on HT29 cancer cells. Colloids Surf B Biointerfaces 2016; 145:362-372. [PMID: 27214786 DOI: 10.1016/j.colsurfb.2016.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Abstract
The aim of this study was to develop chitosan-based nanoparticles that could encapsulate lipophilic molecules and deliver them to cancer cells. Nanoparticles were prepared with different molar ratios of chitosan, hyaluronic acid and sulphobutyl-ether-β-cyclodextrin and with or without curcumin. The nanosystems were characterized in terms of their size, zeta potential, morphology, encapsulation efficiency and stability in different media. Intestinal epithelial and colorectal cancer cells were treated with unloaded nanoparticles in order to study their effect on cellular membrane organization and ROS production. Finally, in vitro assays on both cellular lines were performed in order to evaluate the ability of nanoparticles to promote curcumin internalization and to study their effect on cell proliferation and cell cycle. Results show that nanoparticles were positively charged and their size increased with the increasing amounts of the anionic excipient. Nanoparticles showed good encapsulation efficiency and stability in water. Unloaded nanoparticles led to a change in lipid organization in the cellular membrane of both cell lines, without inducing ROS generation. Confocal microscopy, cell proliferation and cell cycle studies allowed the selection of the best formulation to limit curcumin cytotoxicity in normal intestinal epithelial cells and to reduce cancer cell proliferation. The latter was the result of the increase of expression for genes involved in apoptosis.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna INSTM, Centro S3 of CNR-Istituto Nanoscienze, Via Irnerio 48, 40126 Bologna, Italy.
| | - Federica Belluti
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Simona Provenzano
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Laura Verardi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Luppi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
31
|
Chung YJ, An SY, Yeon JY, Shim WS, Mo JH. Effect of a Chitosan Gel on Hemostasis and Prevention of Adhesion After Endoscopic Sinus Surgery. Clin Exp Otorhinolaryngol 2016; 9:143-9. [PMID: 27090275 PMCID: PMC4881319 DOI: 10.21053/ceo.2015.00591] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Postoperative bleeding and adhesion formation are the two most common complications after endoscopic sinus surgery (ESS). The former sometimes can be life threatening and the latter is the most common reason requiring revision surgery. This study was designed to evaluate the effect of newly developed chitosan gel (8% carboxymethyl chitosan, Surgi shield) on hemostasis and wound healing after ESS. METHODS A prospective, randomized, double-blind controlled trial was conducted in 33 patients undergoing symmetric ESS. At the conclusion of the operation, Surgi shield was randomly applied on one side of the nasal cavity, with the opposite side acting as control and the bleeding quantity of the surgical field was evaluated every 2 minutes. And then, Merocel was placed in the ethmoidectomized areas of the both sides. Five milliliters of Surgi shield was applied to the Merocel of intervention side and saline was applied to the other side. Merocel in both nasal cavities was removed and 5 mL of Surgi shield was applied again to the intervention side on the second day after surgery. The nasal cavity was examined using a nasal endoscope and the degree of adhesion, crusting, mucosal edema, infection, and granulations were graded at 1, 2, and 4 weeks after surgery. RESULTS Complete hemostasis was rapidly achieved in the Surgi shield applied side compared with the control side at 2, 4, 6, 8, and 10 minutes after application of Surgi shield (P=0.007, P=0.004, P<0.001, P=0.001, and P<0.001, respectively). There were significantly less adhesions on the Surgi shield applied side at postoperative 1, 2, and 4 weeks (P=0.001, P<0.001, and P<0.001, respectively). The degree of mucosal edema, infection, crusting, or granulation formation assessed by the endoscopic features in the Surgi shield applied side was not significantly different from that of the control side (P>0.05). No adverse effects were noted in the patient series. CONCLUSION Surgi shield containing chitosan can be used safely to achieve rapid hemostasis immediately after ESS and to prevent adhesion formation.
Collapse
Affiliation(s)
- Young-Jun Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Se-Young An
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Je-Yeob Yeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Woo Sub Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ji-Hun Mo
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
32
|
Rassu G, Soddu E, Cossu M, Gavini E, Giunchedi P, Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Sonje AG, Mahajan HS. Nasal inserts containing ondansetron hydrochloride based on Chitosan-gellan gum polyelectrolyte complex: In vitro-in vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:329-335. [PMID: 27127060 DOI: 10.1016/j.msec.2016.03.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/09/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
The aim of this study was the production of ondansetron hydrochloride loaded lyophilized insert for nasal delivery. The nasal insert was prepared by the lyophilisation technique using Chitosan-gellan gum polyelectrolyte complex as the polymer matrix. The ondansetron loaded inserts were evaluated with respect to water uptake, bioadhesion, drug release kinetic study, ex vivo permeation study, and in vivo study. Lyophilised nasal inserts were characterized by differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study. Scanning electron microscopy confirmed the porous sponge like structure of inserts whereas release kinetic model revealed that drug release followed non-fickian case II diffusion. The nasal delivery showed improved bioavailability as compared to oral delivery. In conclusion, the ondansetron containing nasal inserts based on Chitosan-gellan gum complex with potential muco-adhesive potential is suitable for nasal delivery.
Collapse
Affiliation(s)
- Ashish G Sonje
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Hitendra S Mahajan
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India.
| |
Collapse
|
34
|
Abruzzo A, Cerchiara T, Bigucci F, Gallucci MC, Luppi B. Mucoadhesive Buccal Tablets Based on Chitosan/Gelatin Microparticles for Delivery of Propranolol Hydrochloride. J Pharm Sci 2015; 104:4365-4372. [DOI: 10.1002/jps.24688] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 11/12/2022]
|
35
|
Cerchiara T, Abruzzo A, di Cagno M, Bigucci F, Bauer-Brandl A, Parolin C, Vitali B, Gallucci M, Luppi B. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm 2015; 92:112-9. [DOI: 10.1016/j.ejpb.2015.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
|
36
|
|
37
|
Nagaonkar D, Gaikwad S, Rai M. Catharanthus roseus leaf extract-synthesized chitosan nanoparticles for controlled in vitro release of chloramphenicol and ketoconazole. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3538-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Witting M, Obst K, Friess W, Hedtrich S. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers. Biotechnol Adv 2015; 33:1355-69. [PMID: 25687276 DOI: 10.1016/j.biotechadv.2015.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022]
Abstract
Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances.
Collapse
Affiliation(s)
- Madeleine Witting
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Obst
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany
| | - Wolfgang Friess
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sarah Hedtrich
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany.
| |
Collapse
|
39
|
Bigucci F, Abruzzo A, Vitali B, Saladini B, Cerchiara T, Gallucci MC, Luppi B. Vaginal inserts based on chitosan and carboxymethylcellulose complexes for local delivery of chlorhexidine: Preparation, characterization and antimicrobial activity. Int J Pharm 2015; 478:456-63. [DOI: 10.1016/j.ijpharm.2014.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
40
|
Georgieva D, Kostova B, Ivanova S, Rachev D, Tzankova V, Kondeva-Burdina M, Christova D. pH-Sensitive cationic copolymers of different macromolecular architecture as potential dexamethasone sodium phosphate delivery systems. J Pharm Sci 2014; 103:2406-13. [PMID: 24961490 DOI: 10.1002/jps.24059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023]
Abstract
This paper describes the synthesis and characterization of cationic copolymers with different macromolecular architecture and drug delivery properties of the corresponding dexamethasone sodium phosphate (DSP)-loaded systems. Copolyelectrolytes comprising poly[2-(acryloyloxy)ethyl] trimethylammonium chloride (PAETMAC) and poly(ethylene glycol) blocks as well as a tri-arm star-shaped PAETMAC were synthesized using cerium(IV) ion-mediated polymerization method. The obtained copolyelectrolytes and corresponding ionic associates with DSP have been characterized by (1)H NMR, Fourier Transform Infrared spectroscopy, and differential scanning calorimetry. The average diameter, size distribution, and ζ-potential of the copolymers and DSP-copolymer ionic associates were determined by dynamic light scattering, and particles were visualized by scanning electron microscopy and transmission electron microscopy. The biocompatibility and cytotoxicity of obtained copolymers were determined. In vitro drug release experiments were carried out to estimate the ability of the obtained nanoparticles for sustained release of DSP for a period of 24 h.
Collapse
Affiliation(s)
- Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University - Sofia, 1000 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
41
|
Lv Q, Shen C, Li X, Shen B, Yu C, Xu P, Xu H, Han J, Yuan H. Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for Cucurbitacin B delivery. Drug Deliv 2014; 22:351-8. [DOI: 10.3109/10717544.2013.876459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Musumeci T, Pellitteri R, Spatuzza M, Puglisi G. Nose-to-brain delivery: evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake. J Pharm Sci 2014; 103:628-35. [PMID: 24395679 DOI: 10.1002/jps.23836] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Abstract
The nasal route has received a great deal of attention as a convenient and reliable method for the brain target on administration of drugs. When drugs are loaded into nanoparticles (NPs) the interaction with mucosa transports directly into the brain, skipping the blood-brain barrier and achieving rapid cerebrospinal fluid levels. Poly-lactic acid (PLA), poly-lactic-co-glycolic acid (PLGA), and chitosan (CS) were chosen to prepare NPs. After optimization of CS nanocarriers, our goal was to evaluate the different type of NPs uptake into olfactory ensheathing cells (OECs). We then correlated obtained biological data to zeta potential measurements of cells treated with NPs. Rodhamine-loaded NPs were used to study the uptake of OECs carried out by confocal microscopy at different times (1, 2, and 4 h). Our results showed that uptake of rodhamine-NPs by OECs was time dependent and it was influenced by the carrier charge. Confocal imaging of OECs demonstrated that NPPLGA showed a higher increase in uptake compared with NPPLA and NPCS after 1 h and it increased at 2-4 h. Zeta potential values of treated cells were more amplified with respect to untreated cells. The highest values were showed by unloaded NPPLGA, confirming microscopy data.
Collapse
Affiliation(s)
- Teresa Musumeci
- Department of Drug Science, University of Catania, Catania, 6-95125, Italy
| | | | | | | |
Collapse
|
43
|
Abstract
A significant number of research articles have focused on pulmonary delivery as an alternative administration route owing to no first-pass metabolism, low protease activity, thin epithelium barrier and large surface area in the lung system. Controlled release in the pulmonary delivery system further reduces loading dose, frequency of dosing and systemic side effects, and also increases duration of action and patient compliance. Compared with other microparticles used in controlled-release pulmonary administration, hydrogels (3D polymeric matrix networks) have recently been investigated due to their swelling and mucoadhesive properties that could help bypass pulmonary delivery barriers. This review introduces controlled-release drug delivery to the lung, followed by a summary of currently available approaches for controlled-release pulmonary drug delivery. Lastly, the origin, advantages, detailed applications and concerns of hydrogels in pulmonary delivery are discussed.
Collapse
|
44
|
Gaillard PJ, Visser CC, de Boer M, Appeldoorn CCM, Rip J. Blood-to-Brain Drug Delivery Using Nanocarriers. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-9105-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Should chitosan and tranexamic acid be combined for improved hemostasis after sinus surgery? Med Hypotheses 2013; 81:1036-8. [PMID: 24125578 DOI: 10.1016/j.mehy.2013.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
Abstract
Chitosan, a β-1,4-linked polymer of glucosamine with lesser amounts of N-acetylglucosamine, has well-recognized hemostatic properties. Chitosan is also able to open tight cellular junctions, facilitating paracellular drug transport and delivery. Chitosan, through topical application, facilitates the systemic delivery of analgesic drugs. Theoretically this ability could be used to enhance the local delivery of hemostatic drugs, such as tranexamic acid, improving chitosan's role as a topical dressing. Individually a chitosan-dextran gel and tranexamic acid have been shown to improve hemostasis after endoscopic sinus surgery. A combination of both should lead to improved hemostasis and better postsurgical outcomes. The use of a chitosan/tranexamic acid dressing could have a wide range of potential beneficial applications in a number of other clinical surgical settings. While the initial main application might be as an improved external hemostatic dressing, it should also be useful on a range of internal surgical wounds.
Collapse
|
46
|
Intranasal, siRNA Delivery to the Brain by TAT/MGF Tagged PEGylated Chitosan Nanoparticles. JOURNAL OF PHARMACEUTICS 2013; 2013:812387. [PMID: 26555995 PMCID: PMC4590831 DOI: 10.1155/2013/812387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/09/2013] [Indexed: 11/17/2022]
Abstract
Neurodegeneration is characterized by progressive loss of structure and function of neurons. Several therapeutic methods and drugs are available to alleviate the symptoms of these diseases. The currently used delivery strategies such as implantation of catheters, intracarotid infusions, surgeries, and chemotherapies are invasive in nature and pose a greater risk of postsurgical complications, which can have fatal side effects. The current study utilizes a peptide (TAT and MGF) tagged PEGylated chitosan nanoparticle formulation for siRNA delivery, administered intranasally, which can bypass the blood brain barrier. The study investigates the optimal dose, duration, biodistribution, and toxicity, of the nanoparticle-siRNA formulation, in-vivo. The results indicate that 0.5 mg/kg of siRNA is delivered successfully to the hippocampus, thalamus, hypothalamus, and Purkinje cells in the cerebellum after 4 hrs of post intranasal delivery. The results indicate maximum delivery to the brain in comparison to other tissues with no cellular toxic effects. This study shows the potential of peptide-tagged PEGylated chitosan nanoparticles to be delivered intranasally and target brain tissue for the treatment of neurological disorders.
Collapse
|
47
|
The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of BSA. Eur J Pharm Sci 2013; 50:312-22. [PMID: 23876823 DOI: 10.1016/j.ejps.2013.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/27/2013] [Accepted: 07/10/2013] [Indexed: 01/10/2023]
Abstract
This work describes the development of spray dried polymer coated liposomes composed of soy phosphatidylcholine (SPC) and phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated with alginate, chitosan or trimethyl chitosan (TMC), that are able to penetrate through the nasal mucosa and offer enhanced penetration over uncoated liposomes when delivered as a dry powder. All the liposome formulations, loaded with BSA as model antigen, were spray-dried to obtain powder size and liposome size in a suitable range for nasal delivery. Although coating resulted in some reduction in encapsulation efficiency, levels were still maintained between 60% and 69% and the structural integrity of the entrapped protein and its release characteristics were maintained. Coating with TMC gave the best product characteristics in terms of entrapment efficiency, glass transition (T(g)) and mucoadhesive strength, while penetration of nasal mucosal tissue was very encouraging when these liposomes were administered as dispersions although improved results were observed for the dry powders.
Collapse
|
48
|
Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target 2013; 21:611-29. [PMID: 23869879 DOI: 10.3109/1061186x.2013.805335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.
Collapse
Affiliation(s)
- Hairui Li
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
49
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 512] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
50
|
|