1
|
Belmonte B, Di Lorenzo G, Mangogna A, Bortot B, Bertolazzi G, Sammataro S, Merighi S, Martorana A, Zito G, Romano F, Giorgiutti A, Bottin C, Zanconati F, Romano A, Ricci G, Biffi S. PARP-1, EpCAM, and FRα as potential targets for intraoperative detection and delineation of endometriosis: a quantitative tissue expression analysis. Reprod Biol Endocrinol 2024; 22:92. [PMID: 39085882 PMCID: PMC11293020 DOI: 10.1186/s12958-024-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Endometriosis is a gynecological disease characterized by the presence of endometrial tissue in abnormal locations, leading to severe symptoms, inflammation, pain, organ dysfunction, and infertility. Surgical removal of endometriosis lesions is crucial for improving pain and fertility outcomes, with the goal of complete lesion removal. This study aimed to analyze the location and expression patterns of poly (ADP-ribose) polymerase 1 (PARP-1), epithelial cell adhesion molecule (EpCAM), and folate receptor alpha (FRα) in endometriosis lesions and evaluate their potential for targeted imaging. METHODS Gene expression analysis was performed using the Turku endometriosis database (EndometDB). By immunohistochemistry, we investigated the presence and distribution of PARP-1, EpCAM, and FRα in endometriosis foci and adjacent tissue. We also applied an ad hoc platform for the analysis of images to perform a quantitative immunolocalization analysis. Double immunofluorescence analysis was carried out for PARP-1 and EpCAM, as well as for PARP-1 and FRα, to explore the expression of these combined markers within endometriosis foci and their potential simultaneous utilization in surgical treatment. RESULTS Gene expression analysis revealed that PARP-1, EpCAM, and FOLR1 (FRα gene) are more highly expressed in endometriotic lesions than in the peritoneum, which served as the control tissue. The results of the immunohistochemical study revealed a significant increase in the expression levels of all three biomarkers inside the endometriosis foci compared to the adjacent tissues. Additionally, the double immunofluorescence analysis consistently demonstrated the presence of PARP-1 in the nucleus and the expression of EpCAM and FRα in the cell membrane and cytoplasm. CONCLUSION Overall, these three markers demonstrate significant potential for effective imaging of endometriosis. In particular, the results emphasize the importance of PARP-1 expression as a possible indicator for distinguishing endometriotic lesions from adjacent tissue. PARP-1, as a potential biomarker for endometriosis, offers promising avenues for further investigation in terms of both pathophysiology and diagnostic-therapeutic approaches.
Collapse
Affiliation(s)
- Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, 90127, Palermo, Italy
| | - Giovanni Di Lorenzo
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Alessandro Mangogna
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy.
| | - Barbara Bortot
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Giorgio Bertolazzi
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, 90127, Palermo, Italy
- Department of Economics, Business, and Statistics, University of Palermo, 90127, Palermo, Italy
| | - Selene Sammataro
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, 90127, Palermo, Italy
| | - Simona Merighi
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, 90127, Palermo, Italy
| | - Anna Martorana
- Pathology Unit, Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Gabriella Zito
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Federico Romano
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Anna Giorgiutti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Andrea Romano
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Giuseppe Ricci
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Stefania Biffi
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy.
| |
Collapse
|
2
|
Song X, Yi B, Chen Q, Zhou Y, Cho H, Hong Y, Chung S, You L, Li S, Hong J. Machine Learning-Powered Ultrahigh Controllable and Wearable Magnetoelectric Piezotronic Touching Device. ACS NANO 2024; 18:16648-16657. [PMID: 38888126 DOI: 10.1021/acsnano.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Recent advancements in nanomaterials have enabled the application of nanotechnology to the development of cutting-edge sensing and actuating devices. For instance, nanostructures' collective and predictable responses to various stimuli can be monitored to determine the physical environment of the nanomaterial, such as temperature or applied pressure. To achieve optimal sensing and actuation capabilities, the nanostructures should be controllable. However, current applications are limited by inherent challenges in controlling nanostructures that counteract many sensing mechanisms that are reliant on their area or spacing. This work presents a technique utilizing the piezo-magnetoelectric properties of nanoparticles to enable strain sensing and actuation in a flexible and wearable patch. The alignment of nanoparticles has been achieved using demagnetization fields with computational simulations confirming device characteristics under various types of deformation followed by experimental demonstrations. The device exhibits favorable piezoelectric performance, hydrophobicity, and body motion-sensing capabilities, as well as machine learning-powered touch-sensing/actuating features.
Collapse
Affiliation(s)
- Xingjuan Song
- School of Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Bao Yi
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qijun Chen
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| | - Yifei Zhou
- Department of Mechanical Engineering, UC-Riverside, Riverside, California 92507, United States
| | - Hyeon Cho
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Seungjun Chung
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Long You
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaofan Li
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| | - Jeongmin Hong
- School of Sciences, Hubei University of Technology, Wuhan 430068, China
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Mohammadi R, Ghani S, Arezumand R, Farhadi S, Khazaee-Poul Y, Kazemi B, Yarian F, Noruzi S, Alibakhshi A, Jalili M, Aghamiri S. Physicochemical Stimulus-Responsive Systems Targeted with Antibody Derivatives. Curr Mol Med 2024; 24:1250-1268. [PMID: 37594115 DOI: 10.2174/1566524023666230818093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023]
Abstract
The application of monoclonal antibodies and antibody fragments with the advent of recombinant antibody technology has made notable progress in clinical trials to provide a regulated drug release and extra targeting to the special conditions in the function site. Modification of antibodies has facilitated using mAbs and antibody fragments in numerous models of therapeutic and detection utilizations, such as stimuliresponsive systems. Antibodies and antibody derivatives conjugated with diverse stimuliresponsive materials have been constructed for drug delivery in response to a wide range of endogenous (electric, magnetic, light, radiation, ultrasound) and exogenous (temperature, pH, redox potential, enzymes) stimuli. In this report, we highlighted the recent progress on antibody-conjugated stimuli-responsive and dual/multi-responsive systems that affect modern medicine by improving a multitude of diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rezvan Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Advanced Technology, School of Medicine, North Khorasan University of Medical Sciences, North Khorasan, Iran
| | - Shohreh Farhadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Khazaee-Poul
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Jalili
- Preventive and Clinical Nutrition Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bortot B, Mangogna A, Di Lorenzo G, Stabile G, Ricci G, Biffi S. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies. J Nanobiotechnology 2023; 21:155. [PMID: 37202750 DOI: 10.1186/s12951-023-01926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Surgical resection is the cornerstone of solid tumour treatment. Current techniques for evaluating margin statuses, such as frozen section, imprint cytology, and intraoperative ultrasound, are helpful. However, an intraoperative assessment of tumour margins that is accurate and safe is clinically necessary. Positive surgical margins (PSM) have a well-documented negative effect on treatment outcomes and survival. As a result, surgical tumour imaging methods are now a practical method for reducing PSM rates and improving the efficiency of debulking surgery. Because of their unique characteristics, nanoparticles can function as contrast agents in image-guided surgery. While most image-guided surgical applications utilizing nanotechnology are now in the preclinical stage, some are beginning to reach the clinical phase. Here, we list the various imaging techniques used in image-guided surgery, such as optical imaging, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine imaging, and the most current developments in the potential of nanotechnology to detect surgical malignancies. In the coming years, we will see the evolution of nanoparticles tailored to specific tumour types and the introduction of surgical equipment to improve resection accuracy. Although the promise of nanotechnology for producing exogenous molecular contrast agents has been clearly demonstrated, much work remains to be done to put it into practice.
Collapse
Affiliation(s)
- Barbara Bortot
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Guglielmo Stabile
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
5
|
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP, Xiao ZY. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals (Basel) 2023; 16:249. [PMID: 37259396 PMCID: PMC9965384 DOI: 10.3390/ph16020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 04/06/2024] Open
Abstract
New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang-Ping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ze-Yu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Bortot B, Romani A, Ricci G, Biffi S. Exploiting Extracellular Vesicles Strategies to Modulate Cell Death and Inflammation in COVID-19. Front Pharmacol 2022; 13:877422. [PMID: 35668941 PMCID: PMC9164251 DOI: 10.3389/fphar.2022.877422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The coronavirus disease (COVID-19) is responsible for more than 5 million deaths worldwide, with respiratory failure being the most common clinical presentation. COVID-19 complications still present a considerable burden on healthcare systems, and signs of the post-COVID syndrome are concerns for potential long-term damages. An increasing body of evidence highlights extracellular vesicles’ (EVs) relevance in modulating inflammation and cell death in the diseases related to these processes. Several types of EVs-based investigational new drugs against COVID-19 have been approved by the US Food and Drug Administration to initiate a Phase I/II trial under an Investigational New Drug protocol. EVs can be employed as natural drug delivery nanoparticle-based systems due to their inherent potential in transferring material between cells, their natural origin, and their capability to encapsulate various biological molecules, offering an exciting alternative for administering drugs acting on the cell cycle control. In this context, small-molecule inhibitors of Mouse Double Minute 2 (MDM2) such as Nutlin-3 and Idasanutlin by promoting p53 survival and its antiviral activity might be helpful to modulate the IFN signalling pathway and reduce the overall pro-inflammatory burden.
Collapse
Affiliation(s)
- Barbara Bortot
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Arianna Romani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- *Correspondence: Stefania Biffi,
| |
Collapse
|
8
|
Bortot B, Apollonio M, Baj G, Andolfi L, Zupin L, Crovella S, di Giosia M, Cantelli A, Saporetti R, Ulfo L, Petrosino A, Di Lorenzo G, Romano F, Ricci G, Mongiat M, Danielli A, Calvaresi M, Biffi S. Advanced photodynamic therapy with an engineered M13 phage targeting EGFR: Mitochondrial localization and autophagy induction in ovarian cancer cell lines. Free Radic Biol Med 2022; 179:242-251. [PMID: 34808331 DOI: 10.1016/j.freeradbiomed.2021.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) is a potential synergistic approach to chemotherapy for treating ovarian cancer, the most lethal gynecologic malignancy. Here we used M13 bacteriophage as a targeted vector for the efficient photodynamic killing of SKOV3 and COV362 cells. The M13 phage was refactored (M13r) to display an EGFR binding peptide in its tip that is frequently overexpressed in ovarian cancer. The refactored phage was conjugated with chlorin e6 (Ce6), one of the most widely used photosensitizers (M13r-Ce6). The new platform, upon irradiation, generated ROS by type I mechanism and showed activity in killing SKOV3 and COV362 cells even at concentrations in which Ce6 alone was ineffective. A microscopy analysis demonstrated an enhanced cellular uptake of M13r-Ce6 compared to free Ce6 and its mitochondrial localization. Western blot analysis revealed significant downregulation in the expression of EGFR in cells exposed to M13r-Ce6 after PDT. Following PDT treatment, autophagy induction was supported by an increased expression of LC3II, along with a raised autophagic fluorescent signal, as observed by fluorescence microscopy analysis for autophagosome visualization. As a conclusion we have herein proposed a bacteriophage-based receptor targeted photodynamic therapy for EGFR-positive ovarian cancer.
Collapse
Affiliation(s)
- Barbara Bortot
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Maura Apollonio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriele Baj
- BRAIN Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Laura Andolfi
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali IOM-CNR, Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar
| | - Matteo di Giosia
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
9
|
Garcia-Carrasco M, Parra-Aguilar IF, Gutiérrez-Grijalva EP, Licea-Claverie A, Basilio Heredia J. Nano-formulations in drug delivery. FOOD, MEDICAL, AND ENVIRONMENTAL APPLICATIONS OF NANOMATERIALS 2022:473-491. [DOI: 10.1016/b978-0-12-822858-6.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
11
|
Murgia S, Biffi S, Fornasier M, Lippolis V, Picci G, Caltagirone C. Bioimaging Applications of Non-Lamellar Liquid Crystalline Nanoparticles. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2742-2759. [PMID: 33653441 DOI: 10.1166/jnn.2021.19064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembling processes of amphiphilic lipids in water give rise to complex architectures known as lyotropic liquid crystalline (LLC) phases. Particularly, bicontinuous cubic and hexagonal LLC phases can be dispersed in water forming colloidal nanoparticles respectively known as cubosomes and hexosomes. These non-lamellar LLC dispersions are of particular interest for pharmaceutical and biomedical applications as they are potentially non-toxic, chemically stable, and biocompatible, also allowing encapsulation of large amounts of drugs. Furthermore, conjugation of specific moieties enables their targeting, increasing therapeutic efficacies and reducing side effects by avoiding exposure of healthy tissues. In addition, as they can be easy loaded or functionalized with both hydrophobic and hydrophilic imaging probes, cubosomes and hexosomes can be used for the engineering of multifunctional/theranostic nanoplatforms. This review outlines recent advances in the applications of cubosomes and hexosomes for in vitro and in vivo bioimaging.
Collapse
Affiliation(s)
- Sergio Murgia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, s.s. 554 bivio Sestu, I-09042 Monserrato (CA), Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico Bo Garofolo, Trieste, 34137, Italy
| | - Marco Fornasier
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, s.s. 554 bivio Sestu, I-09042 Monserrato (CA), Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, s.s. 554 bivio Sestu, I-09042 Monserrato (CA), Italy
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, s.s. 554 bivio Sestu, I-09042 Monserrato (CA), Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, s.s. 554 bivio Sestu, I-09042 Monserrato (CA), Italy
| |
Collapse
|
12
|
Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications. Biomedicines 2021; 9:biomedicines9030288. [PMID: 34156393 PMCID: PMC8000024 DOI: 10.3390/biomedicines9030288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have played a pivotal role in the development of nanomedicine owing to their versatile functions at the nanoscale, which facilitates targeted delivery, high contrast imaging, and on-demand therapy. Some biomedical inadequacies of IONPs on their own, such as the poor resolution of IONP-based Magnetic Resonance Imaging (MRI), can be overcome by co-incorporating optical probes onto them, which can be either molecule- or nanoparticulate-based. Optical probe incorporated IONPs, together with two prominent non-ionizing radiation sources (i.e., magnetic field and light), enable a myriad of biomedical applications from early detection to targeted treatment of various diseases. In this context, many research articles are in the public domain on magneto-optical nanoparticles; discussed in detail are fabrication strategies for their application in the biomedical field; however, lacking is a comprehensive review on real-life applications in vivo, their toxicity, and the prospect of bench-to-bedside clinical studies. Therefore, in this review, we focused on selecting such important nanocomposites where IONPs become the magnetic component, conjugated with various types of optical probes; we clearly classified them into class 1 to class 6 categories and present only in vivo studies. In addition, we briefly discuss the potential toxicity of such nanocomposites and their respective challenges for clinical translations.
Collapse
|
13
|
Tiburcius S, Krishnan K, Yang JH, Hashemi F, Singh G, Radhakrishnan D, Trinh HT, Verrills NM, Karakoti A, Vinu A. Silica-Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. CHEM REC 2020; 21:1535-1568. [PMID: 33320438 DOI: 10.1002/tcr.202000104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers and is the fifth common cause of cancer-related mortality in men. Current methods for PCa treatment are insufficient owing to the challenges related to the non-specificity, instability and side effects caused by the drugs and therapy agents. These drawbacks can be mitigated by the design of a suitable drug delivery system that can ensure targeted delivery and minimise side effects. Silica based nanoparticles (SBNPs) have emerged as one of the most versatile materials for drug delivery due to their tunable porosities, high surface area and tremendous capacity to load various sizes and chemistry of drugs. This review gives a brief overview of the diagnosis and current treatment strategies for PCa outlining their existing challenges. It critically analyzes the design, development and application of pure, modified and hybrid SBNPs based drug delivery systems in the treatment of PCa, their advantages and limitations.
Collapse
Affiliation(s)
- Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Kannan Krishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Jae-Hun Yang
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Fatemeh Hashemi
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| |
Collapse
|
14
|
Zhang Y, Wang R, Feng Y, Ma F. The role of sialyltransferases in gynecological malignant tumors. Life Sci 2020; 263:118670. [PMID: 33121992 DOI: 10.1016/j.lfs.2020.118670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Sialylation is the addition of sialic acids to the terminus of various glycoconjugates, and it is involved in many essential biological processes, such as cell adhesion, signal transduction, immune regulation, etc. The levels of sialylation in a cell are tightly regulated by two groups of enzymes, sialyltransferases (STs, responsible for sialylation) and sialidases (responsible for desialylation). Many studies have reported that the occurrence, development, and survival rates of tumors are significantly associated with STs' abnormal changes. In recent years, the morbidity and mortality rates of gynecological malignant tumors have been continuously rising, which has caused great harm to women's reproduction and health. Abnormal changes of STs in gynecological malignant tumor cell membranes cause the changes of expression of sialic acids, promoting cell migration and, eventually, leading to tumor metastasis. In this review, we outlined the biological characteristics of STs and summarized the expression profiles of 20 STs in different tumors via transcriptome data from Gene Expression Profiling Interactive Analysis (GEPIA) database. Moreover, STs' functions in four common gynecological tumors (ovarian cancer, cervical cancer, endometrial cancer, and gestational trophoblast tumor) were reviewed.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruohan Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Bahador E, Einali A, Azizian-Shermeh O, Sangtarash MH. Metabolic responses of the green microalga Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105356. [PMID: 31733504 DOI: 10.1016/j.aquatox.2019.105356] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the biochemical responses and antioxidant enzymes activity of the Dunaliella salina, a green microalga, to the interaction of silver nanoparticles (AgNPs) and salicylic acid (SA) were investigated. Algal suspensions in the phase of logarithmic growth were subjected to the concentrations of 0, 5, 15, and 25 pM AgNPs with or without 1 mM SA. AgNPs level of 25 pM declined cell division but highly accumulated levels of chlorophyll, β-carotene, proteins, free amino acid, carbohydrates, and hydrogen peroxide, which was associated with enhanced the activity of proteolysis, lipid peroxidation, and antioxidant enzymes. SA-treated cells at 25 pM AgNPs improved cell growth but declined the activities of antioxidant enzymes and proteolytic along with a lower accumulation of metabolites except β-carotene relative to untreated controls. These results suggest that AgNPs treatment induce oxidative stress in D. salina cells, which tolerated by alga through the metabolic modifications and accumulating β-carotene, while SA induces AgNPs tolerance by the mechanisms that direct carbon flux to growth and β-carotene biosynthesis rather than the antioxidant enzymes or osmoprotectant metabolites.
Collapse
Affiliation(s)
- Elham Bahador
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Omid Azizian-Shermeh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
17
|
Fabrication of chitosan based magnetic nanocomposite by click reaction strategy; evaluation of nanometric and cytotoxic characteristics. Carbohydr Polym 2019; 224:115163. [DOI: 10.1016/j.carbpol.2019.115163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
|
18
|
Falahati M, Attar F, Sharifi M, Saboury AA, Salihi A, Aziz FM, Kostova I, Burda C, Priecel P, Lopez-Sanchez JA, Laurent S, Hooshmand N, El-Sayed MA. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim Biophys Acta Gen Subj 2019; 1864:129435. [PMID: 31526869 DOI: 10.1016/j.bbagen.2019.129435] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings. SCOPE OF REVIEW The chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed. MAJOR CONCLUSIONS AuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods. GENERAL SIGNIFICANCE This review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, Bulgaria
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Jose A Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8 B-6041 Gosselies, Belgium
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
19
|
Morales-Dalmau J, Vilches C, Sanz V, de Miguel I, Rodríguez-Fajardo V, Berto P, Martínez-Lozano M, Casanovas O, Durduran T, Quidant R. Quantification of gold nanoparticle accumulation in tissue by two-photon luminescence microscopy. NANOSCALE 2019; 11:11331-11339. [PMID: 31166337 DOI: 10.1039/c9nr01198f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomedicine has emerged as a promising strategy to address some of the limitations of traditional biomedical sensing, imaging and therapy modalities. Its applicability and efficacy are, in part, hindered by the difficulty in both controllably delivering nanoparticles to specific regions and accurately monitoring them in tissue. Gold nanoparticles are among the most extensively used inorganic nanoparticles which benefit from high biocompatibility, flexible functionalization, strong and tunable resonant absorption, and production scalability. Moreover, their capability to enhance optical fields at their plasmon resonance enables local boosting of non-linear optical processes, which are otherwise very inefficient. In particular, two-photon induced luminescence (TPL) in gold offers high signal specificity for monitoring gold nanoparticles in a biological environment. In this article, we demonstrate that TPL microscopy provides a robust sub-micron-resolution technique able to quantify accumulated gold nanorods (GNRs) both in cells and in tissues. First, the temporal accumulation of GNRs with two different surface chemistries was measured in 786-O cells during the first 24 hours of incubation, and at different nanoparticle concentrations. Subsequently, GNR accumulation in mice, 6 h and 24 hours after tail vein injection, was quantified by TPL microscopy in biopsied tissue from kidney, spleen, liver and clear cell renal cell carcinoma (ccRCC) tumors, in good agreement with inductively coupled mass spectroscopy. Our data suggest that TPL microscopy stands as a powerful tool to understand and quantify the delivery mechanisms of gold nanoparticles, highly relevant to the development of future theranostic medicines.
Collapse
Affiliation(s)
- Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin Drug Deliv 2019; 16:481-496. [DOI: 10.1080/17425247.2019.1604679] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery, Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Barbara Bortot
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery, Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery, Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Dong X, Liang J, Yang A, Qian Z, Kong D, Lv F. Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials 2019; 209:111-125. [PMID: 31034980 DOI: 10.1016/j.biomaterials.2019.04.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Accepted: 04/21/2019] [Indexed: 02/05/2023]
Abstract
As synergistic photothermal immunotherapy has developed as one of the most attractive strategies for cancer therapy, it is crucial to design an effective photothermal immunotherapy system to enhance the synergistic anti-tumor effect and reveal the essential role of each treatment. In this study, we designed CpG self-crosslinked nanoparticles-loaded IR820-conjugated hydrogel with dual self-fluorescence to exert the combined photothermal-immunotherapy. IR820-hydrogel can be effective for hyperthermia to eliminate the primary tumor based on its comprehensive coverage and generated photothermal-induced tumor antigens for assisted immunotherapy. CpG self-crosslinked nanoparticles improved the immune response of adjuvant against melanoma without extra nano-carriers. The synergistic photothermal immunotherapy was achieved by the merging of CpG self-crosslinked nanoparticles and IR820-hydrogel. A possible mechanism of combined antitumor effect was further revealed by analyzing immune cells including CD8 +T cells, DCs, B cells, Treg and MDSC in tumor microenvironment. The specific antitumor immunity was provoked to remove the tumor residues and ultimately the combined treatment mode achieved more effective systemic therapeutic effect than either photothermal therapy or immunotherapy alone. Furthermore, self-fluorescent IR820-hydrogel and CpG nanoparticles exerted the imaging-guided combined photothermal-immunotherapy by the dual fluorescence imaging method without additional fluorescent labeling. This visible combined photothermal-immunotherapy offers a potential for precise cancer treatment.
Collapse
Affiliation(s)
- Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Jie Liang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Afeng Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, West China Hospital, And Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Deling Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China.
| |
Collapse
|
22
|
Mireles M, Morales-Dalmau J, Johansson JD, Vidal-Rosas EE, Vilches C, Martínez-Lozano M, Sanz V, de Miguel I, Casanovas O, Quidant R, Durduran T. Non-invasive and quantitative in vivo monitoring of gold nanoparticle concentration and tissue hemodynamics by hybrid optical spectroscopies. NANOSCALE 2019; 11:5595-5606. [PMID: 30860518 DOI: 10.1039/c8nr08790c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to their unique combination of chemical and physical properties, inorganic nanoparticles show a great deal of potential as suitable agents for early diagnostics and less invasive therapies. Yet, their translation to the clinic has been hindered, in part, by the lack of non-invasive methods to quantify their concentration in vivo while also assessing their effect on the tissue physiology. In this work, we demonstrate that diffuse optical techniques, employing near-infrared light, have the potential to address this need in the case of gold nanoparticles which support localized surface plasmons. An orthoxenograft mouse model of clear cell renal cell carcinoma was non-invasively assessed by diffuse reflectance and correlation spectroscopies before and over several days following a single intravenous tail vein injection of polyethylene glycol-coated gold nanorods (AuNRs-PEG). Our platform enables to resolve the kinetics of the AuNR-PEG uptake by the tumor in quantitative agreement with ex vivo inductively coupled plasma mass spectroscopy. Furthermore, it allows for the simultaneous monitoring of local tissue hemodynamics, enabling us to conclude that AuNRs-PEG do not significantly alter the animal physiology. We note that the penetration depth of this current probe was a few millimeters but can readily be extended to centimeters, hence gaining clinical relevance. This study and the methodology presented here complement the nanomedicine toolbox by providing a flexible platform, extendable to other absorbing agents that can potentially be translated to human trials.
Collapse
Affiliation(s)
- Miguel Mireles
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Seca C, Ferraresi A, Phadngam S, Vidoni C, Isidoro C. Autophagy-dependent toxicity of amino-functionalized nanoparticles in ovarian cancer cells. J Mater Chem B 2019; 7:5376-5391. [DOI: 10.1039/c9tb00935c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polystyrene NH2-NPs induce toxicity through a differential impact on autophagy machinery in ovarian cancer cells with a different genetic background.
Collapse
Affiliation(s)
- Christian Seca
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Suratchanee Phadngam
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| |
Collapse
|
24
|
Sarcan ET, Silindir-Gunay M, Ozer AY. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int J Pharm 2018; 551:329-338. [DOI: 10.1016/j.ijpharm.2018.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
|
25
|
Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics 2018; 8:4279-4294. [PMID: 30214620 PMCID: PMC6134923 DOI: 10.7150/thno.26345] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Despite significant advances in cancer diagnostics and treatment, ovarian cancers (OC) continue to kill more than 150,000 women every year worldwide. Due to the relatively asymptomatic nature and the advanced stage of the disease at the time of diagnosis, OC is the most lethal gynecologic malignancy. The current treatment for advanced OC relies on the synergistic effect of combining surgical cytoreduction and chemotherapy; however, beside the fact that chemotherapy resistance is a major challenge in OC management, new imaging strategies are needed to target microscopic lesions and improve both cytoreductive surgery and patient outcomes. In this context, nanostructured probes are emerging as a new class of medical tool that can simultaneously provide imaging contrast, target tumor cells, and carry a wide range of medicines resulting in better diagnosis and therapeutic precision. Herein we summarize several exemplary efforts in nanomedicine for addressing unmet clinical needs.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
26
|
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Kang S, Wang Y“W, Xu X, Navarro E, Tichauer KM, Liu JT. Microscopic investigation of" topically applied nanoparticles for molecular imaging of fresh tissue surfaces. JOURNAL OF BIOPHOTONICS 2018; 11:e201700246. [PMID: 29227576 PMCID: PMC5903997 DOI: 10.1002/jbio.201700246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/07/2017] [Indexed: 05/04/2023]
Abstract
Previous studies have shown that functionalized nanoparticles (NPs) topically applied on fresh tissues are able to rapidly target cell-surface protein biomarkers of cancer. Furthermore, studies have shown that a paired-agent approach, in which an untargeted NP is co-administered with a panel of targeted NPs, controls for the nonspecific behavior of the NPs, enabling quantitative imaging of biomarker expression. However, given the complexities in nonspecific accumulation, diffusion, and chemical binding of targeted NPs in tissues, studies are needed to better understand these processes at the microscopic scale. Here, fresh tissues were stained with a paired-agent approach, frozen, and sectioned to image the depth-dependent accumulation of targeted and untargeted NPs. The ratio of targeted-to-untargeted NP concentrations-a parameter used to distinguish between tumor and benign tissues-was found to diminish with increasing NP diffusion depths due to nonspecific accumulation and poor washout. It was then hypothesized and experimentally demonstrated that larger NPs would exhibit less diffusion below tissue surfaces, enabling higher targeted-to-untargeted NP ratios. In summary, these methods and investigations have enabled the design of NP agents with improved sensitivity and contrast for rapid molecular imaging of fresh tissues.
Collapse
Affiliation(s)
- Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Yu “Winston” Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Xiaochun Xu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Eric Navarro
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Kenneth M. Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Jonathan T.C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Stewart TS, Nagesetti A, Guduru R, Liang P, Stimphil E, Hadjikhani A, Salgueiro L, Horstmyer J, Cai R, Schally A, Khizroev S. Magnetoelectric nanoparticles for delivery of antitumor peptides into glioblastoma cells by magnetic fields. Nanomedicine (Lond) 2018; 13:423-438. [PMID: 29345190 PMCID: PMC5810849 DOI: 10.2217/nnm-2017-0300] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
AIM We studied externally controlled anticancer effects of binding tumor growth inhibiting synthetic peptides to magnetoelectric nanoparticles (MENs) on treatment of glioblastomas. METHODS Hydrothermally synthesized 30-nm MENs had the core-shell composition of CoFe2O4@BaTiO3. Molecules of growth hormone-releasing hormone antagonist of the MIA class (MIA690) were chemically bound to MENs. In vitro experiments utilized human glioblastoma cells (U-87MG) and human brain microvascular endothelial cells. RESULTS The studies demonstrated externally controlled high-efficacy binding of MIA690 to MENs, targeted specificity to glioblastoma cells and on-demand release of the peptide by application of d.c. and a.c. magnetic fields, respectively. CONCLUSION The results support the use of MENs as an effective drug delivery carrier for growth hormone-releasing hormone antagonists in the treatment of human glioblastomas.
Collapse
Affiliation(s)
- Tiffanie S Stewart
- Center for Personalized Nanomedicine, Florida International University, Miami, FL, USA
- Center for Nano Science & Technology, University of Notre Dame, Notre Dame, IN, USA
| | - Abhignyan Nagesetti
- Center for Personalized Nanomedicine, Florida International University, Miami, FL, USA
| | - Rakesh Guduru
- Center for Personalized Nanomedicine, Florida International University, Miami, FL, USA
| | - Ping Liang
- Cellular Nanomed, Coral Springs, FL, USA
| | - Emmanuel Stimphil
- Center for Personalized Nanomedicine, Florida International University, Miami, FL, USA
| | - Ali Hadjikhani
- Center for Personalized Nanomedicine, Florida International University, Miami, FL, USA
| | - Luis Salgueiro
- Veterans Affairs Medical Center, University of Miami School of Medicine, Miami, FL, USA
| | | | - Renzhi Cai
- Veterans Affairs Medical Center, University of Miami School of Medicine, Miami, FL, USA
| | - Andrew Schally
- Veterans Affairs Medical Center, University of Miami School of Medicine, Miami, FL, USA
| | - Sakhrat Khizroev
- Center for Personalized Nanomedicine, Florida International University, Miami, FL, USA
- Brain Center, Miami, FL, USA
| |
Collapse
|
29
|
Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017; 9:E46. [PMID: 29036899 PMCID: PMC5750652 DOI: 10.3390/pharmaceutics9040046] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment-due to the hostile tumor microenvironment-that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as 'vascular targeting'), the tumor microenvironment ('tissue targeting') or the individual cancer cells ('cellular targeting'). Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines.
Collapse
Affiliation(s)
- Janel Kydd
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Rahul Jadia
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Praveena Velpurisiva
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Aniket Gad
- Confocal Imaging Core, Beth Israel Deaconess Medical Center, 330 Brookline Avenue Boston, MA 02215, USA.
| | - Shailee Paliwal
- Department of Chemical Engineering, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Prakash Rai
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
30
|
Zanganeh S, Spitler R, Hutter G, Ho JQ, Pauliah M, Mahmoudi M. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy 2017; 9:819-835. [DOI: 10.2217/imt-2017-0041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The success of any given cancer immunotherapy relies on several key factors. In particular, success hinges on the ability to stimulate the immune system in a controlled and precise fashion, select the best treatment options and appropriate therapeutic agents, and use highly effective tools to accurately and efficiently assess the outcome of the immunotherapeutic intervention. Furthermore, a deep understanding and effective utilization of tumor-associated macrophages (TAMs), nanomedicine and biomedical imaging must be harmonized to improve treatment efficacy. Additionally, a keen appreciation of the dynamic interplay that occurs between immune cells and the tumor microenvironment (TME) is also essential. New advances toward the modulation of the immune TME have led to many novel translational research approaches focusing on the targeting of TAMs, enhanced drug and nucleic acid delivery, and the development of theranostic probes and nanoparticles for clinical trials. In this review, we discuss the key cogitations that influence TME, TAM modulations and immunotherapy in solid tumors as well as the methods and resources of tracking the tumor response. The vast array of current nanomedicine technologies can be readily modified to modulate immune function, target specific cell types, deliver therapeutic payloads and be monitored using several different imaging modalities. This allows for the development of more effective treatments, which can be specifically designed for particular types of cancer or on an individual basis. Our current capacities have allowed for greater use of theranostic probes and multimodal imaging strategies that have led to better image contrast, real-time imaging capabilities leveraging targeting moieties, tracer kinetics and enabling more detailed response profiles at the cellular and molecular levels. These novel capabilities along with new discoveries in cancer biology should drive innovation for improved biomarkers for efficient and individualized cancer therapy.
Collapse
Affiliation(s)
- Saeid Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Ryan Spitler
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Gregor Hutter
- Department of Neurosurgery, Stanford University, Stanford, CA 94304, USA
| | - Jim Q Ho
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Mohan Pauliah
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology, Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155–6451, Iran
- Department of Anesthesiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Zhao MX, Zhu BJ, Yao WJ, Chen DF, Wang C. The delivery of doxorubicin of multifunctional β-cyclodextrin-modified CdSe/ZnS quantum dots for bioactivity and nano-probing. Chem Biol Drug Des 2017; 91:285-293. [PMID: 28791767 DOI: 10.1111/cbdd.13080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/30/2017] [Accepted: 07/27/2017] [Indexed: 01/04/2023]
Abstract
The modified quantum dots (QDs) have been used in intracellular probing and drug delivery because of their special chemical and physical properties. In this paper, two β-cyclodextrin (β-CD)-modified CdSe/ZnS QDs with strong optical emission properties were synthesized as drug carriers to induce apoptosis. The positively charged l-Arginine (l-Arg) and neutral l-Tryptophan (l-Trp) were selected as ligands to compare the effect of charge on bioactivity of QDs nanoparticles. The in vitro assays revealed that these modified QDs showed good Dox carrier ability and significantly high inhibition rate to cancer cells. Especially, the more positively charged β-CD-l-Arg-polyamine-coated CdSe/ZnS QDs could effectively deliver the doxorubicin (Dox) into cells and exhibit excellent cell selectivity in cancer versus normal cells. The Dox-loaded QDs could enter intracellular, which showed that the Dox can efficiently go through the membranes at the existence of β-CD. Several lines of evidence suggest that the Dox-loaded QDs can efficiently induce apoptosis likely related to the production of ROS. We expect that the modified QDs can enhance the amount of hydrophobic antitumor drugs in cells and can also be used as fluorescent imaging agents.
Collapse
Affiliation(s)
- Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng, China
| | - Bing-Jie Zhu
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng, China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng, China
| | - Di-Feng Chen
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng, China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng, China
| |
Collapse
|
32
|
Wang YW, Reder NP, Kang S, Glaser AK, Liu JTC. Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches. Nanotheranostics 2017; 1:369-388. [PMID: 29071200 PMCID: PMC5647764 DOI: 10.7150/ntno.21136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/08/2017] [Indexed: 12/18/2022] Open
Abstract
In recent decades, various classes of nanoparticles have been developed for optical imaging of cancers. Many of these nanoparticles are designed to specifically target tumor sites, and specific cancer biomarkers, to facilitate the visualization of tumors. However, one challenge for accurate detection of tumors is that the molecular profiles of most cancers vary greatly between patients as well as spatially and temporally within a single tumor mass. To overcome this challenge, certain nanoparticles and imaging systems have been developed to enable multiplexed imaging of large panels of cancer biomarkers. Multiplexed molecular imaging can potentially enable sensitive tumor detection, precise delineation of tumors during interventional procedures, and the prediction/monitoring of therapy response. In this review, we summarize recent advances in systems that have been developed for the imaging of optical nanoparticles that can be heavily multiplexed, which include surface-enhanced Raman-scattering nanoparticles (SERS NPs) and quantum dots (QDs). In addition to surveying the optical properties of these various types of nanoparticles, and the most-popular multiplexed imaging approaches that have been employed, representative preclinical and clinical imaging studies are also highlighted.
Collapse
Affiliation(s)
- Yu Winston Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nicholas P Reder
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
33
|
Bhattarai P, Dai Z. Cyanine based Nanoprobes for Cancer Theranostics. Adv Healthc Mater 2017; 6. [PMID: 28558146 DOI: 10.1002/adhm.201700262] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/16/2017] [Indexed: 01/07/2023]
Abstract
Cyanine dyes are greatly accredited in the development of non-invasive therapy that can "see" and "treat" tumor cells via imaging, photothermal and photodynamic treatment. However, these dyes suffer from poor pharmacokinetics inducing severe toxicity to normal cells, insufficient accumulation in tumor regions and rapid photobleaching when delivered in free forms. Nanoparticles engineered to encapsulate these compounds and delivering them into tumor regions have increased rapidly, however, so far, these nanoparticles (NPs) have not proved to be so effective to circumvent existing challenges. Newly designed multifunctional smart nanocarriers that can improve phototherapeutic properties of these dyes, co-encapsulate multiple potent therapeutic compounds, and simultaneously overcome limitations related to tumor recurrence, metastases, limited intracellular uptake, and tumor hypoxia have potential to revolutionize modern paradigm of cancer therapy. Such cyanine based multifunctional nanocarriers integrating imaging and therapy in a single platform can effectively produce better clinical outcomes in cancer treatment. This review briefly summarizes recent advancements of cyanine nanoprobes that are currently used as imaging/phototherapeutic agents in unimodal/bimodal/trimodal cancer theranostics. Finally, we conclude this review by addressing challenges of pre-existing therapeutic systems and designs adopted to overcome them with a brief insight assimilating future perspective of emerging cyanine-based NPs in cancer theranostics.
Collapse
Affiliation(s)
- Pravin Bhattarai
- Department of Biomedical Engineering; College of Engineering; Peking University; Beijing 100871 China
| | - Zhifei Dai
- Department of Biomedical Engineering; College of Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
34
|
Varache M, Escudé M, Laffont C, Rustique E, Couffin AC. Development and validation of an HPLC-fluorescence method for the quantification of IR780-oleyl dye in lipid nanoparticles. Int J Pharm 2017; 532:779-789. [PMID: 28619458 DOI: 10.1016/j.ijpharm.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
A reversed-phase (RP) high-performance liquid chromatography (HPLC) method for the content determination of IR780-oleyl (IRO) dye in lipid nanoparticles was developed and validated. Chromatographic separation was performed on a RP C18 column with a gradient program of water and acetonitrile both with 0.1% (v/v) TFA, at a flow rate of 1.0mL/min and a total run of 21min. IRO dye detection was made by fluorescence at emission wavelength of 773nm (excitation wavelength: 744nm). According to ICH guidelines, the developed method was shown to be specific, linear in the range 3-8μg/mL (R2=0.9998), precise at the intra-day and inter-day levels as reflected by the coefficient of variation (CV≤1.98%) at three different concentrations (4, 6 and 8 μg/mL) and accurate, with recovery rates between 98.2-101.6% and 99.2-100.5%. The detection and quantitation limits were 0.41 and 1.24μg/mL, respectively. Stability studies of sample processing showed that IRO dye was stable after 24h in the autosampler or after three freeze/thaw cycles. Combined with fluorescence measurements, the developed method was successfully applied to optimize the loading capacity of IRO dye in the core of lipid nanoparticles.
Collapse
Affiliation(s)
- Mathieu Varache
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Marie Escudé
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Corentin Laffont
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Emilie Rustique
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Anne-Claude Couffin
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
35
|
Falk M. Nanodiamonds and nanoparticles as tumor cell radiosensitizers-promising results but an obscure mechanism of action. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:18. [PMID: 28164103 DOI: 10.21037/atm.2016.12.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
36
|
Cox A, Venkatachalam P, Sahi S, Sharma N. Reprint of: Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:33-49. [PMID: 27569179 DOI: 10.1016/j.plaphy.2016.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 05/01/2023]
Abstract
Nanoparticles (NPs) have become widely used in recent years for many manufacturing and medical processes. Recent literature suggests that many metallic nanomaterials including those of silver (Ag) and titanium dioxide (TiO2) cause significant toxic effects in animal cell culture and animal models, however, toxicity studies using plant species are limited. This review examines current progress in the understanding of the effect of silver and titanium dioxide nanoparticles on plant species. There are many facets to this ongoing environmental problem. This review addresses the effects of NPs on oxidative stress-related gene expression, genotoxicity, seed germination, and root elongation. It is largely accepted that NP exposure results in the cellular generation of reactive oxygen species (ROS), leading to both positive and negative effects on plant growth. However, factors such as NP size, shape, surface coating and concentration vary greatly among studies resulting in conflicting reports of the effect at times. In addition, plant species tend to differ in their reaction to NP exposure, with some showing positive effects of NP augmentation while many others showing detrimental effects. Seed germination studies have shown to be less effective in gauging phytotoxicity, while root elongation studies have shown more promise. Given the large increase in nanomaterial applications in consumer products, agriculture and energy sectors, it is critical to understand their role in the environment and their effects on plant life. A closer look at nanomaterial-driven ecotoxicity is needed. Ecosystem-level studies are required to indicate how these nanomaterials transfer at the critical trophic levels affecting human health and biota.
Collapse
Affiliation(s)
- Ashley Cox
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA
| | - P Venkatachalam
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA; Plant Genetic Engineering and Molecular Biology Lab, Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - Shivendra Sahi
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA.
| |
Collapse
|
37
|
Ramazani A, Mandal T, Larson RG. Modeling the Hydrophobicity of Nanoparticles and Their Interaction with Lipids and Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13084-13094. [PMID: 27951703 DOI: 10.1021/acs.langmuir.6b01963] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a method of modeling nanoparticle (NP) hydrophobicity using coarse-grained molecular dynamics (CG MD) simulations, and apply this to the interaction of lipids with nanoparticles. To model at a coarse-grained level the wettability or hydrophobicity of a given material, we choose the MARTINI coarse-grained force field, and determine through simulation the contact angles of MARTINI water droplets residing on flat regular surfaces composed of various MARTINI bead types (C1, C2, etc.). Each surface is composed of a single bead type in each of three crystallographic symmetries (FCC, BCC, and HCP). While this method lumps together several atoms (for example, one cerium and two oxygens of CeO2) into a single CG bead, we can still capture the overall hydrophobicity of the actual material by choosing the MARTINI bead type that gives the best fit of the contact angle to that of the actual material, as determined by either experimental or all-atom simulations. For different MARTINI bead types, the macroscopic contact angle is obtained by extrapolating the microscopic contact angles of droplets of eight different sizes (containing Nw = 3224-22978 water molecules) to infinite droplet size. For each droplet, the contact angle was computed from a best fit of a circular curve to the droplet interface extrapolated to the first layer of the surface. We then examine how small nanoparticles of differing wettability interact with MARTINI dipalmitoylphosphotidylcholine (DPPC) lipids and SP-C peptides (a component of lung surfactant). The DPPC shows a transition from tails coating the nanoparticle to a hemimicelle coating the water-wet NP, as the contact angle of a water droplet on the surface is lowered below ∼60°. The results are relevant to developing a taxonomy describing the potential nanotoxicity of nanoparticle interactions with components in the lung.
Collapse
Affiliation(s)
- Ali Ramazani
- Department of Chemical Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan, United States
| | - Taraknath Mandal
- Department of Chemical Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan, United States
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan, United States
| |
Collapse
|
38
|
Han HD, Byeon Y, Jang JH, Jeon HN, Kim GH, Kim MG, Pack CG, Kang TH, Jung ID, Lim YT, Lee YJ, Lee JW, Shin BC, Ahn HJ, Sood AK, Park YM. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci Rep 2016; 6:38348. [PMID: 27910914 PMCID: PMC5133713 DOI: 10.1038/srep38348] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
Dentritic cell (DC)-based cancer immunotherapy faces challenges in both efficacy and practicality. However, DC-based vaccination requires multiple injections and elaborates ex vivo manipulation, which substantially limits their use. Therefore, we sought to develop a chitosan nanoparticle (CH-NP)-based platform for the next generation of vaccines to bypass the ex vivo manipulation and induce immune responses via active delivery of polyinosinic-polycytidylic acid sodium salt (poly I:C) to target Toll-like receptor 3 (TLR3) in endosomes. We developed CH-NPs encapsulating ovalbumin (OVA) as a model antigen and poly I:C as the adjuvant in an ionic complex. These CH-NPs showed increased in vivo intracellular delivery to the DCs in comparison with controls after injection into tumor-bearing mice, and promoted DC maturation, leading to emergence of antigen-specific cytotoxic CD8+ T cells. Finally, the CH-NPs showed significantly greater antitumor efficacy in EG.7 and TC-1 tumor-bearing mice compared to the control (p < 0.01). Taken together, these data show that the CH-NP platform can be used as an immune response modulatory vaccine for active cancer immunotherapy without ex vivo manipulation, thus resulting in increased anticancer efficacy.
Collapse
Affiliation(s)
- Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan 31962, South Korea
| | - Hat Nim Jeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Ga Hee Kim
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Min Gi Kim
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine &Asan Institute for Life Sciences, Asan Medical Center, Seoul 055-05, South Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - In Duk Jung
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 25-2, South Korea
| | - Young Joo Lee
- Department of Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul 143-747, South Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sunkyunkwan University School of Medicine, Seoul 06531, South Korea
| | - Byung Cheol Shin
- Bio/Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas M.D. Anderson Cancer Center, Texas, USA.,Department of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Texas, USA.,Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| |
Collapse
|
39
|
Cox A, Venkatachalam P, Sahi S, Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:147-163. [PMID: 27288991 DOI: 10.1016/j.plaphy.2016.05.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 05/20/2023]
Abstract
Nanoparticles (NPs) have become widely used in recent years for many manufacturing and medical processes. Recent literature suggests that many metallic nanomaterials including those of silver (Ag) and titanium dioxide (TiO2) cause significant toxic effects in animal cell culture and animal models, however, toxicity studies using plant species are limited. This review examines current progress in the understanding of the effect of silver and titanium dioxide nanoparticles on plant species. There are many facets to this ongoing environmental problem. This review addresses the effects of NPs on oxidative stress-related gene expression, genotoxicity, seed germination, and root elongation. It is largely accepted that NP exposure results in the cellular generation of reactive oxygen species (ROS), leading to both positive and negative effects on plant growth. However, factors such as NP size, shape, surface coating and concentration vary greatly among studies resulting in conflicting reports of the effect at times. In addition, plant species tend to differ in their reaction to NP exposure, with some showing positive effects of NP augmentation while many others showing detrimental effects. Seed germination studies have shown to be less effective in gauging phytotoxicity, while root elongation studies have shown more promise. Given the large increase in nanomaterial applications in consumer products, agriculture and energy sectors, it is critical to understand their role in the environment and their effects on plant life. A closer look at nanomaterial-driven ecotoxicity is needed. Ecosystem-level studies are required to indicate how these nanomaterials transfer at the critical trophic levels affecting human health and biota.
Collapse
Affiliation(s)
- Ashley Cox
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA
| | - P Venkatachalam
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA; Plant Genetic Engineering and Molecular Biology Lab, Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - Shivendra Sahi
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY, 42101, USA.
| |
Collapse
|
40
|
Biffi S, Petrizza L, Garrovo C, Rampazzo E, Andolfi L, Giustetto P, Nikolov I, Kurdi G, Danailov MB, Zauli G, Secchiero P, Prodi L. Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities. Int J Nanomedicine 2016; 11:4865-4874. [PMID: 27703352 PMCID: PMC5036595 DOI: 10.2147/ijn.s107479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The aim of the present study was to develop nanoprobes with theranostic features, including – at the same time – photoacoustic, near-infrared (NIR) optical imaging, and photothermal properties, in a versatile and stable core–shell silica-polyethylene glycol (PEG) nanoparticle architecture. Materials and methods We synthesized core–shell silica-PEG nanoparticles by a one-pot direct micelles approach. Fluorescence emission and photoacoustic and photothermal properties were obtained at the same time by appropriate doping with triethoxysilane-derivatized cyanine 5.5 (Cy5.5) and cyanine 7 (Cy7) dyes. The performances of these nanoprobes were measured in vitro, using nanoparticle suspensions in phosphate-buffered saline and blood, dedicated phantoms, and after incubation with MDA-MB-231 cells. Results We obtained core–shell silica-PEG nanoparticles endowed with very high colloidal stability in water and in biological environment, with absorption and fluorescence emission in the NIR field. The presence of Cy5.5 and Cy7 dyes made it possible to reach a more reproducible and higher doping regime, producing fluorescence emission at a single excitation wavelength in two different channels, owing to the energy transfer processes within the nanoparticle. The nanoarchitecture and the presence of both Cy5.5 and Cy7 dyes provided a favorable agreement between fluorescence emission and quenching, to achieve optical imaging and photoacoustic and photothermal properties. Conclusion We obtained rationally designed nanoparticles with outstanding stability in biological environment. At appropriate doping regimes, the presence of Cy5.5 and Cy7 dyes allowed us to tune fluorescence emission in the NIR for optical imaging and to exploit quenching processes for photoacoustic and photothermal capabilities. These nanostructures are promising in vivo theranostic tools for the near future.
Collapse
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Luca Petrizza
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| | - Chiara Garrovo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Enrico Rampazzo
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| | | | | | | | | | | | - Giorgio Zauli
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Luca Prodi
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| |
Collapse
|
41
|
Oksel C, Winkler DA, Ma CY, Wilkins T, Wang XZ. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches. Nanotoxicology 2016; 10:1001-12. [DOI: 10.3109/17435390.2016.1161857] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ceyda Oksel
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK,
| | - David A. Winkler
- CSIRO Manufacturing Flagship, Clayton South, MDC, Melbourne, Australia,
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia,
- Latrobe Institute for Molecular Science, Bundoora, Melbourne, Australia, and
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, Australia
| | - Cai Y. Ma
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK,
| | - Terry Wilkins
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK,
| | - Xue Z. Wang
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK,
| |
Collapse
|