1
|
Xiong F, Jiang X, Wu Y, Xiong J, Chen Y, Wang B, Ye X, Liang X. Fusion protein of FGF21 and elastin-like peptide improves wound healing in diabetic mice via inflammation modulation, collagen synthesis, and vascular network formation. Eur J Pharmacol 2024; 982:176953. [PMID: 39216743 DOI: 10.1016/j.ejphar.2024.176953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Chronic-healing skin wounds are a common complication in diabetic individuals. To alleviate patient suffering, there is a pressing demand for more effective strategies to expedite the repair of diabetic wounds. Fibroblast growth factor 21(FGF21) has been proven to accelerate wound healing, but its stability and ability to assist in the healing of diabetic ulcers have not met expectations. Therefore, we have fused FGF21 with an elastin-like peptide (ELP) to create a recombinant fusion protein (abbreviated as "ELF") to increase the bioactivity and stability in vitro or in vivo. Our results demonstrated that ELF significantly improved the efficiency of FGF21 purification due to the inverse temperature responsive phase transition property of ELP. Meanwhile, the fusion strategy did not impair the structure of FGF21 or diminish its activity, as demonstrated by the highly similar secondary structure of ELF and FGF21, and their considerable inhibitory activity in the glucose consumption experiment of Huh-7 cells. An in vitro migration assay revealed that ELF promoted healing more effectively than either free FGF21 or ELP. Further in vivo study revealed the ability of ELF to improve skin wound healing quality, manifested by lower levels of inflammatory factors, more collagen formation and deposition, and the formation of robust vascular networks, though there was no significant difference in healing rate among the ELF, FGF21, and ELP groups. In conclusion, our study indicated that FGF21 and ELP fusion molecules could be developed as more efficient and cost-effective therapeutic strategies for diabetic wound healing.
Collapse
Affiliation(s)
- Fengmin Xiong
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xuan Jiang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Zhongshan Road 457, Dalian, 116023, China
| | - Yuanyuan Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Jingjing Xiong
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yingli Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Bin Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Zhongshan Road 457, Dalian, 116023, China.
| |
Collapse
|
2
|
Zhuo SH, Wang TY, Zhao L, Su JY, Hu JJ, Zhao YF, Li YM. piSTING: A Pocket-Independent Agonist Based on Multivalency-Driven STING Oligomerization. Angew Chem Int Ed Engl 2024; 63:e202407037. [PMID: 38767062 DOI: 10.1002/anie.202407037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The stimulator of interferon genes (STING) pathway is a potent therapeutic target for innate immunity. Despite the efforts to develop pocket-dependent small-molecule STING agonists that mimic the endogenous STING ligand, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), most of these agonists showed disappointing results in clinical trials owing to the limitations of the STING pocket. In this study, we developed novel pocket-independent STING-activating agonists (piSTINGs), which act through multivalency-driven oligomerization to activate STING. Additionally, a piSTING-adjuvanted vaccine elicited a significant antibody response and inhibited tumour growth in therapeutic models. Moreover, a piSTING-based vaccine combination with aPD-1 showed remarkable potential to enhance the effectiveness of immune checkpoint blockade (ICB) immunotherapy. In particular, piSTING can strengthen the impact of STING pathway in immunotherapy and accelerate the clinical translation of STING agonists.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Tian-Yang Wang
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lang Zhao
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing-Yun Su
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Jian Hu
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu-Fen Zhao
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315221, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100069, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Gonzalez-Valdivieso J, Vallejo R, Rodriguez-Rojo S, Santos M, Schneider J, Arias FJ, Girotti A. CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer. BIOMATERIALS ADVANCES 2023; 154:213595. [PMID: 37639856 DOI: 10.1016/j.bioadv.2023.213595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
New strategies to develop drug-loaded nanocarriers with improved therapeutic efficacy are needed for cancer treatment. Herein we report a novel drug-delivery nanosystem comprising encapsulation of the chemotherapeutic drug docetaxel (DTX) and recombinant fusion of a small peptide inhibitor of Akt kinase within an elastin-like recombinamer (ELR) vehicle. This combined approach is also precisely targeted to colorectal cancer cells by means of a chemically conjugated DNA aptamer specific for the CD44 tumor marker. This 53 nm dual-approach nanosystem was found to selectively affect cell viability (2.5 % survival) and proliferation of colorectal cancer cells in vitro compared to endothelial cells (50 % survival), and to trigger both apoptosis- and necrosis-mediated cell death. Our findings also show that the nanohybrid particles remain stable under physiological conditions, trigger sustained drug release and possess an adequate pharmacokinetic profile after systemic intravenous administration. In vivo assays showed that these dual-approach nanohybrids significantly reduced the number of tumor polyps along the colorectal tract in a murine colorectal cancer model. Furthermore, systemic administration of advanced nanohybrids induced tissue recovery by improving the morphology of gastrointestinal crypts and the tissue architecture. Taken together, these findings indicate that our strategy of an advanced dual-approach nanosystem allows us to achieve successful controlled release of chemotherapeutics in cancer cells and may have a promising potential for colorectal cancer treatment.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain
| | - Reinaldo Vallejo
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Soraya Rodriguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Valladolid, Spain
| | - Jose Schneider
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Department of Obstetrics & Gynecology, University of Valladolid, School of Medicine, Valladolid, Spain
| | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| |
Collapse
|
4
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
5
|
Application of Bio-Active Elastin-like Polypeptide on Regulation of Human Mesenchymal Stem Cell Behavior. Biomedicines 2022; 10:biomedicines10051151. [PMID: 35625887 PMCID: PMC9138580 DOI: 10.3390/biomedicines10051151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine using stem cells offers promising strategies for treating a variety of degenerative diseases. Regulation of stem cell behavior and rejuvenate senescence are required for stem cells to be clinically effective. The extracellular matrix (ECM) components have a significant impact on the stem cell’s function and fate mimicking the local environment to maintain cells or generate a distinct phenotype. Here, human elastin-like polypeptide-based ECM-mimic biopolymer was designed by incorporating various cell-adhesion ligands, such as RGD and YIGSR. The significant effects of bioactive fusion ELPs named R-ELP, Y-ELP, and RY-ELP were analyzed for human bone-marrow-derived stem cell adhesion, proliferation, maintenance of stemness properties, and differentiation. Multivalent presentation of variable cell-adhesive ligands on RY-ELP polymers indeed promote efficient cell attachment and proliferation of human fibroblast cells dose-dependently. Similarly, surface modified with RY-ELP promoted strong mesenchymal stem cell (MSCs) attachment with greater focal adhesion (FA) complex formation at 6 h post-incubation. The rate of cell proliferation, migration, population doubling time, and collagen I deposition were significantly enhanced in the presence of RY-ELP compared with other fusion ELPs. Together, the expression of multipotent markers and differentiation capacity of MSCs remained unaffected, clearly demonstrating that stemness properties of MSCs were well preserved when cultured on a RY-ELP-modified surface. Hence, bioactive RY-ELP offers an anchorage support system and effectively induces stimulatory response to support stem cell proliferation.
Collapse
|
6
|
Han Y, Pan J, Ma Y, Zhou D, Xu W. Protein-based biomaterials for combating viral infections: current status and future prospects for development. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
7
|
Gonzalez-Valdivieso J, Garcia-Sampedro A, Hall AR, Girotti A, Arias FJ, Pereira SP, Acedo P. Smart Nanoparticles as Advanced Anti-Akt Kinase Delivery Systems for Pancreatic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55790-55805. [PMID: 34788541 DOI: 10.1021/acsami.1c14592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pancreatic cancer is one of the deadliest cancers partly due to late diagnosis, poor drug delivery to the target site, and acquired resistance to therapy. Therefore, more effective therapies are urgently needed to improve the outcome of patients. In this work, we have tested self-assembling genetically engineered polymeric nanoparticles formed by elastin-like recombinamers (ELRs), carrying a small peptide inhibitor of the protein kinase Akt, in both PANC-1 and patient-derived pancreatic cancer cells (PDX models). Nanoparticle cell uptake was measured by flow cytometry, and subcellular localization was determined by confocal microscopy, which showed a lysosomal localization of these nanoparticles. Furthermore, metabolic activity and cell viability were significantly reduced after incubation with nanoparticles carrying the Akt inhibitor in a time- and dose-dependent fashion. Self-assembling 73 ± 3.2 nm size nanoparticles inhibited phosphorylation and consequent activation of Akt protein, blocked the NF-κB signaling pathway, and triggered caspase 3-mediated apoptosis. Furthermore, in vivo assays showed that ELR-based nanoparticles were suitable devices for drug delivery purposes with long circulating time and minimum toxicity. Hence, the use of these smart nanoparticles could lead to the development of more effective treatment options for pancreatic cancer based on the inhibition of Akt.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Biodevices for NanoMed Group, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| | - Andrew R Hall
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, United Kingdom
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| |
Collapse
|
8
|
Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers (Basel) 2021; 13:polym13132086. [PMID: 34202828 PMCID: PMC8272167 DOI: 10.3390/polym13132086] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Some of thermo-responsive polysaccharides, namely, cellulose, xyloglucan, and chitosan, and protein-like gelatin or elastin-like polypeptides can exhibit temperature dependent sol–gel transitions. Due to their biodegradability, biocompatibility, and non-toxicity, such biomaterials are becoming popular for drug delivery and tissue engineering applications. This paper aims to review the properties of sol–gel transition, mechanical strength, drug release (bioavailability of drugs), and cytotoxicity of stimuli-responsive hydrogel made of thermo-responsive biopolymers in drug delivery systems. One of the major applications of such thermos-responsive biopolymers is on textile-based transdermal therapy where the formulation, mechanical, and drug release properties and the cytotoxicity of thermo-responsive hydrogel in drug delivery systems of traditional Chinese medicine have been fully reviewed. Textile-based transdermal therapy, a non-invasive method to treat skin-related disease, can overcome the poor bioavailability of drugs from conventional non-invasive administration. This study also discusses the future prospects of stimuli-responsive hydrogels made of thermo-responsive biopolymers for non-invasive treatment of skin-related disease via textile-based transdermal therapy.
Collapse
|
9
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
10
|
Cell-Penetrating Doxorubicin Released from Elastin-Like Polypeptide Kills Doxorubicin-Resistant Cancer Cells in In Vitro Study. Int J Mol Sci 2021; 22:ijms22031126. [PMID: 33498762 PMCID: PMC7865358 DOI: 10.3390/ijms22031126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Elastin-like polypeptides (ELPs) undergo a characteristic phase transition in response to ambient temperature. Therefore, it has been be used as a thermosensitive vector for the delivery of chemotherapy agents since it can be used to target hyperthermic tumors. This novel strategy introduces unprecedented options for treating cancer with fewer concerns about side effects. In this study, the ELP system was further modified with an enzyme-cleavable linker in order to release drugs within tumors. This system consists of an ELP, a matrix metalloproteinase (MMP) substrate, a cell-penetrating peptide (CPP), and a 6-maleimidocaproyl amide derivative of doxorubicin (Dox). This strategy shows up to a 4-fold increase in cell penetration and results in more death in breast cancer cells compared to ELP-Dox. Even in doxorubicin-resistant cells (NCI/ADR and MES-SA/Dx5), ELP-released cell-penetrating doxorubicin demonstrated better membrane penetration, leading to at least twice the killing of resistant cells compared to ELP-Dox and free Dox. MMP-digested CPP-Dox showed better membrane penetration and induced more cancer cell death in vitro. This CPP-complexed Dox released from the ELP killed even Dox-resistant cells more efficiently than both free doxorubicin and non-cleaved ELP-CPP-Dox.
Collapse
|
11
|
Sarangthem V, Seo BY, Yi A, Lee YJ, Cheon SH, Kim SK, Singh TD, Lee BH, Park RW. Effects of molecular weight and structural conformation of multivalent-based elastin-like polypeptides on tumor accumulation and tissue biodistribution. Nanotheranostics 2020; 4:57-70. [PMID: 32190533 PMCID: PMC7064738 DOI: 10.7150/ntno.39804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
In order to improve clinical outcomes for novel drug delivery systems, distinct optimization of size, shape, multifunctionality, and site-specificity are of utmost importance. In this study, we designed various multivalent elastin-like polypeptide (ELP)-based tumor-targeting polymers in which multiple copies of IL-4 receptor (IL-4R)-targeting ligand (AP1 peptide) were periodically incorporated into the ELP polymer backbone to enhance the affinity and avidity towards tumor cells expressing high levels of IL-4R. Several ELPs with different molecular sizes and structures ranging from unimer to micelle-forming polymers were evaluated for their tumor accumulation as well as in vivo bio-distribution patterns. Different percentages of cell binding and uptake were detected corresponding to polymer size, number of targeting peptides, or unimer versus micelle structure. As compared to low molecular weight polypeptides, high molecular weight AP1-ELP showed superior binding activity with faster entry and efficient processing in the IL-4R-dependent endocytic pathway. In addition, in vivo studies revealed that the high molecular weight micelle-forming AP1-ELPs (A86 and A100) displayed better tumor penetration and extensive retention in tumor tissue along with reduced non-specific accumulation in vital organs, when compared to low molecular weight non-micelle forming AP1-ELPs. It is suggested that the superior binding activities shown by A86 and A100 may depend on the multiple presentation of ligands upon transition to a micelle-like structure rather than a larger molecular weight. Thus, this study has significance in elucidating the different patterns underlying unimer and micelle-forming ELP-mediated tumor targeting as well as the in vivo biodistribution.
Collapse
Affiliation(s)
- Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea.,Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Bo-Yeon Seo
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Aena Yi
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Jin Lee
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Ha Cheon
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Cheombok, Daegu, 41061, Republic of Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Lab., All India Institute of Medical Sciences, New Delhi-110029, India
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
12
|
Gonzalez-Valdivieso J, Girotti A, Muñoz R, Rodriguez-Cabello JC, Arias FJ. Self-Assembling ELR-Based Nanoparticles as Smart Drug-Delivery Systems Modulating Cellular Growth via Akt. Biomacromolecules 2019; 20:1996-2007. [DOI: 10.1021/acs.biomac.9b00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Raquel Muñoz
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - J. Carlos Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - F. Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
13
|
van Oppen LMPE, Pille J, Stuut C, van Stevendaal M, van der Vorm LN, Smeitink JAM, Koopman WJH, Willems PHGM, van Hest JCM, Brock R. Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models. Eur J Pharm Biopharm 2019; 137:175-184. [PMID: 30776413 DOI: 10.1016/j.ejpb.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptide (ELP) nanoparticles are a versatile platform for targeted drug delivery. As for any type of nanocarrier system, an important challenge remains the ability of deep (tumor) tissue penetration. In this study, ELP particles with controlled surface density of the cell-penetrating peptide (CPP) octa-arginine (R8) were created by temperature-induced co-assembly. ELPs formed micellar nanoparticles with a diameter of around 60 nm. Cellular uptake in human skin fibroblasts was directly dependent on the surface density of R8 as confirmed by flow cytometry and confocal laser scanning microscopy. Remarkably, next to promoting cellular uptake, the presence of the CPP also enhanced penetration into spheroids generated from human glioblastoma U-87 cells. After 24 h, uptake into cells was observed in multiple layers towards the spheroid core. ELP particles not carrying any CPP did not penetrate. Clearly, a high CPP density exerted a dual benefit on cellular uptake and tissue penetration. At low nanoparticle concentration, there was evidence of a binding site barrier as observed for the penetration of molecules binding with high affinity to cell surface receptors. In conclusion, R8-functionalized ELP nanoparticles form an excellent delivery vehicle that combines tunability of surface characteristics with small and well-defined size.
Collapse
Affiliation(s)
- Lisanne M P E van Oppen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan Pille
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Christiaan Stuut
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Marleen van Stevendaal
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Lisa N van der Vorm
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan C M van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Fletcher EE, Yan D, Kosiba AA, Zhou Y, Shi H. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr Purif 2019; 153:114-120. [PMID: 30217600 DOI: 10.1016/j.pep.2018.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Proteins are essential throughout the biological and biomedical sciences and the purification strategies of proteins of interest have advanced over centuries. Elastin-like polypeptides (ELPs) are compound polymers that have recently been highlighted for their sharp and reversible phase transition property when heated above their lower critical solution temperature (LCST). ELPs preserve this behavior when fused to a protein, and as a result providing a simple method to isolate a recombinant ELP fusion protein from cell contaminants by taking the solution through the soluble and insoluble phase of the ELP fusion protein, a technique designated as the inverse transition cycle (ITC). ITC is considered an inexpensive and efficient way of purifying recombinant ELP fusion proteins. In addition, ELPs render recombinant fusion protein more stability and a longer clear time in blood stream, which give ELPs a lot of valuable applications in the biotechnological and pharmaceutical industry. This article reviews the modernizations of ELPs and briefly highlights on the possible use of technologies such as the automatic piston discharge (APD) centrifuges to improve the efficiency of the ITC in the pharmaceutical industry to obtain benefits.
Collapse
Affiliation(s)
- Emmanuella E Fletcher
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Dandan Yan
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China.
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China.
| |
Collapse
|
15
|
Raucher D, Dragojevic S, Ryu J. Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives. Front Oncol 2018; 8:624. [PMID: 30619758 PMCID: PMC6304427 DOI: 10.3389/fonc.2018.00624] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common, aggressive brain tumor, ranks among the least curable cancers-owing to its strong tendency for intracranial dissemination, high proliferation potential, and inherent tumor resistance to radiation and chemotherapy. Current glioblastoma treatment strategies are further hampered by a critical challenge: adverse, non-specific treatment effects in normal tissue combined with the inability of drugs to penetrate the blood brain barrier and reach the tumor microenvironment. Thus, the creation of effective therapies for glioblastoma requires development of targeted drug-delivery systems that increase accumulation of the drug in the tumor tissue while minimizing systemic toxicity in healthy tissues. As demonstrated in various preclinical glioblastoma models, macromolecular drug carriers have the potential to improve delivery of small molecule drugs, therapeutic peptides, proteins, and genes to brain tumors. Currently used macromolecular drug delivery systems, such as liposomes and polymers, passively target solid tumors, including glioblastoma, by capitalizing on abnormalities of the tumor vasculature, its lack of lymphatic drainage, and the enhanced permeation and retention (EPR) effect. In addition to passive targeting, active targeting approaches include the incorporation of various ligands on the surface of macromolecules that bind to cell surface receptors expressed on specific cancer cells. Active targeting approaches also utilize stimulus responsive macromolecules which further improve tumor accumulation by triggering changes in the physical properties of the macromolecular carrier. The stimulus can be an intrinsic property of the tumor tissue, such as low pH, or extrinsic, such as local application of ultrasound or heat. This review article explores current preclinical studies and future perspectives of targeted drug delivery to glioblastoma by macromolecular carrier systems, including polymeric micelles, nanoparticles, and biopolymers. We highlight key aspects of the design of diverse macromolecular drug delivery systems through a review of their preclinical applications in various glioblastoma animal models. We also review the principles and advantages of passive and active targeting based on various macromolecular carriers. Additionally, we discuss the potential disadvantages that may prevent clinical application of these carriers in targeting glioblastoma, as well as approaches to overcoming these obstacles.
Collapse
Affiliation(s)
- Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Sonja Dragojevic
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Jungsu Ryu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| |
Collapse
|
16
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
17
|
VerHeul R, Sweet C, Thompson DH. Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction. Biomater Sci 2018; 6:863-876. [PMID: 29488993 DOI: 10.1039/c8bm00124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Elastin-like polypeptides (ELP) are a well-known class of proteins that are being increasingly utilized in a variety of biomedical applications, due to their beneficial physicochemical properties. A unifying feature of ELP is their demonstration of a sequence tunable inverse transition temperature (Tt) that enables purification using a simple, straightforward process called inverse transition cycling (ITC). Despite the utility of ITC, the process is inherently limited to ELP with an experimentally accessible Tt. Since the underlying basis for the ELP Tt is related to its high overall hydrophobicity, we anticipated that ELP would be excellent candidates for purification by organic extraction. We report the first method for rapidly purifying ELP directly from whole E. coli cells or clarified lysates using pure organic solvents and solvent mixtures, followed by aqueous back extraction. Our results show that small ELP and a large ELP-fusion protein can be isolated in high yield from whole cells or cell lysates with greater than 95% purity in less than 30 min and with very low levels of LPS and DNA contamination.
Collapse
Affiliation(s)
- Ross VerHeul
- Department of Chemistry, Purdue Center for Cancer Research, Multi-disciplinary Cancer Research Facility, Purdue University, 1203 W State Street, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
18
|
Wang H, Paul A, Nguyen D, Enejder A, Heilshorn SC. Tunable Control of Hydrogel Microstructure by Kinetic Competition between Self-Assembly and Crosslinking of Elastin-like Proteins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21808-21815. [PMID: 29869869 DOI: 10.1021/acsami.8b02461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fabrication of three dimensional "bead-string" microstructured hydrogels is rationally achieved by controlling the relative timing of chemical crosslinking and physical self-assembly processes of an engineered protein. To demonstrate this strategy, an elastin-like protein (ELP) amino acid sequence was selected to enable site-specific chemical crosslinking and thermoresponsive physical self-assembly. This method allows the tuning of material microstructures without altering the ELP amino acid sequence but simply through controlling the chemical crosslinking extent before the thermally induced, physical coacervation of ELP. A loosely crosslinked network enables ELP to have greater chain mobility, resulting in phase segregation into larger beads. By contrast, a network with higher crosslinking density has restricted ELP chain mobility, resulting in more localized self-assembly into smaller beads. As a proof of concept application for this facile assembly process, we demonstrate one-pot, simultaneous, dual encapsulation of hydrophilic and hydrophobic model drugs within the microstructured hydrogel and differential release rates of the two drugs from the material.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Materials Science & Engineering , Stanford University , Stanford , California 94305 , United States
| | - Alexandra Paul
- Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE-412 96 , Sweden
| | - Duong Nguyen
- Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE-412 96 , Sweden
| | - Annika Enejder
- Department of Materials Science & Engineering , Stanford University , Stanford , California 94305 , United States
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
19
|
Isaacson KJ, Jensen MM, Watanabe AH, Green BE, Correa MA, Cappello J, Ghandehari H. Self-Assembly of Thermoresponsive Recombinant Silk-Elastinlike Nanogels. Macromol Biosci 2018; 18:10.1002/mabi.201700192. [PMID: 28869362 PMCID: PMC5806626 DOI: 10.1002/mabi.201700192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Indexed: 12/28/2022]
Abstract
Recombinant silk-elastinlike protein polymers (SELPs) combine the biocompatibility and thermoresponsiveness of human tropoelastin with the strength of silk. Direct control over structure of these monodisperse polymers allows for precise correlation of structure with function. This work describes the fabrication of the first SELP nanogels and evaluation of their physicochemical properties and thermoresponsiveness. Self-assembly of dilute concentrations of SELPs results in nanogels with enhanced stability over micelles due to physically crosslinked beta-sheet silk segments. The nanogels respond to thermal stimuli via size changes and aggregation. Modifying the ratio and sequence of silk to elastin in the polymer backbone results in alterations in critical gel formation concentration, stability, aggregation, size contraction temperature, and thermal reversibility. The nanogels sequester hydrophobic compounds and show promise in delivery of bioactive agents.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Mark Martin Jensen
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Alexandre H Watanabe
- College of Pharmacy, University of Utah, 30 2000 E., Salt Lake City, UT, 84112, USA
| | - Bryant E Green
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Marcelo A Correa
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S. 2000 E., Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S. 2000 E., Salt Lake City, UT, 84112, USA
| |
Collapse
|
20
|
Devalliere J, Dooley K, Hu Y, Kelangi SS, Uygun BE, Yarmush ML. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials 2017; 141:149-160. [DOI: 10.1016/j.biomaterials.2017.06.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/14/2023]
|
21
|
Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. J Control Release 2016; 240:93-108. [PMID: 26578439 PMCID: PMC5767577 DOI: 10.1016/j.jconrel.2015.11.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (Tt) but form amorphous coacervates above Tt. Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields.
Collapse
Affiliation(s)
- Jordan Despanie
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Kaur A, Jain K, Mehra NK, Jain NK. Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:414-425. [PMID: 27027686 DOI: 10.3109/21691401.2016.1160912] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we reported folate-conjugated polypropylene imine dendrimers (FA-PPI) as efficient carrier for model anticancer drug, methotrexate (MTX), for pH-sensitive drug release, selective targeting to cancer cells, and anticancer activity. In the in vitro drug release studies this nanoconjugate of MTX showed initial rapid release followed by gradual slow release, and the drug release was found to be pH sensitive with greater release at acidic pH. The ex vivo investigations with human breast cancer cell lines, MCF-7, showed enhanced cytotoxicity of MTX-FA-PPI with significantly enhanced intracellular uptake. The biofate of nanoconjugate was determined in Wistar rat where MTX-FA-PPI showed 37.79-fold increase in the concentration of MTX in liver after 24 h in comparison with free MTX formulation.
Collapse
Affiliation(s)
- Avleen Kaur
- a Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy , Moga , Punjab , India
| | - Keerti Jain
- a Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy , Moga , Punjab , India.,b National Institute of Pharmaceutical Education and Research (NIPER Raebareli) , Raebareli , Uttar Pradesh , India
| | - Neelesh Kumar Mehra
- a Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy , Moga , Punjab , India.,c Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A & M Health Science Center, Texas A & M University , Kingsville , TX , USA
| | - N K Jain
- a Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy , Moga , Punjab , India.,d School of Pharmaceutical Sciences, Rajiv Gandhi Technical University , Bhopal , Madhya Pradesh , India
| |
Collapse
|
23
|
Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy. Molecules 2015; 20:21750-69. [PMID: 26690101 PMCID: PMC6331894 DOI: 10.3390/molecules201219804] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 01/23/2023] Open
Abstract
The majority of anticancer drugs have poor aqueous solubility, produce adverse effects in healthy tissue, and thus impose major limitations on both clinical efficacy and therapeutic safety of cancer chemotherapy. To help circumvent problems associated with solubility, most cancer drugs are now formulated with co-solubilizers. However, these agents often also introduce severe side effects, thereby restricting effective treatment and patient quality of life. A promising approach to addressing problems in anticancer drug solubility and selectivity is their conjugation with polymeric carriers to form polymer-based prodrugs. These polymer-based prodrugs are macromolecular carriers, designed to increase the aqueous solubility of antitumor drugs, can enhance bioavailability. Additionally, polymer-based prodrugs approach exploits unique features of tumor physiology to passively facilitate intratumoral accumulation, and so improve chemodrug pharmacokinetics and pharmacological properties. This review introduces basic concepts of polymer-based prodrugs, provides an overview of currently emerging synthetic, natural, and genetically engineered polymers that now deliver anticancer drugs in preclinical or clinical trials, and highlights their major anticipated applications in anticancer therapies.
Collapse
|
24
|
Abstract
In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies.
Collapse
|