1
|
Yang W, Lipert M, Nofsinger R. Current screening, design, and delivery approaches to address low permeability of chemically synthesized modalities in drug discovery and early clinical development. Drug Discov Today 2023; 28:103685. [PMID: 37356613 DOI: 10.1016/j.drudis.2023.103685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
A drug's permeability across biological membranes is a key property associated with the successful development of an orally absorbed drug candidate. Although a variety of methods are available for predicting and assessing permeability, some are more preferred than others at specific stages of drug discovery and development across the pharmaceutical industry. Permeability measurements may be interpreted differently depending on the chosen method. Herein, we present a refreshed perspective on the screening approaches and philosophy in permeability evaluation, from early drug discovery to early clinical development. Additionally, we review and discuss chemical design and drug delivery technologies that can be leveraged to overcome permeability challenges, which are increasingly being used with emerging modalities.
Collapse
Affiliation(s)
- Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA.
| | - Maya Lipert
- Molecular Profiling and Drug Delivery, Small Molecule CMC Development, AbbVie, Inc., North Chicago, IL, USA
| | | |
Collapse
|
2
|
Qattan MY, Khan MI, Alharbi SH, Verma AK, Al-Saeed FA, Abduallah AM, Al Areefy AA. Therapeutic Importance of Kaempferol in the Treatment of Cancer through the Modulation of Cell Signalling Pathways. Molecules 2022; 27:8864. [PMID: 36557997 PMCID: PMC9788613 DOI: 10.3390/molecules27248864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-derived flavonoids are considered natural nontoxic chemo-preventers and have been widely studied for cancer treatment in recent decades. Mostly all flavonoid compounds show significant anti-inflammatory, anticancer and antioxidant properties. Kaempferol (Kmp) is a well-studied compound and exhibits remarkable anticancer and antioxidant potential. Kmp can regulate various cancer-related processes and activities such as cell cycle, oxidative stress, apoptosis, proliferation, metastasis, and angiogenesis. The anti-cancer properties of Kmp primarily occur via modulation of apoptosis, MAPK/ERK1/2, P13K/Akt/mTOR, vascular endothelial growth factor (VEGF) signalling pathways. The anti-cancer property of Kmp has been recognized in several in-vivo and in-vitro studies which also includes numerous cell lines and animal models. This flavonoid possesses toxic activities against only cancer cells and have restricted toxicity on healthy cells. In this review, we present extensive research investigations about the therapeutic potential of Kmp in the management of different types of cancers. The anti-cancer properties of Kmp are discussed by concentration on its capability to target molecular-signalling pathway such as VEGF, STAT, p53, NF-κB and PI3K-AKT signalling pathways. The anti-cancer property of Kmf has gained a lot of attention, but the accurate action mechanism remains unclear. However, this natural compound has a great pharmacological capability and is now considered to be an alternative cancer treatment.
Collapse
Affiliation(s)
- Malak Yahia Qattan
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, KSA- 4545, Riyadh 11451, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Shudayyed Hasham Alharbi
- Pharmacy Department, Maternity and Children Hospital (MCH), Qassim Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi 110025, India
| | - Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Azza A. Al Areefy
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Nutrition & Food Science Department, Faculty of Home Economics, Helwan University, P.O. Box 11795, Cairo 11281, Egypt
| |
Collapse
|
3
|
Pepin XJH, Dressman J, Parrott N, Delvadia P, Mitra A, Zhang X, Babiskin A, Kolhatkar V, Seo P, Taylor LS, Sjögren E, Butler JM, Kostewicz E, Tannergren C, Koziolek M, Kesisoglou F, Dallmann A, Zhao Y, Suarez-Sharp S. In Vitro Biopredictive Methods: A Workshop Summary Report. J Pharm Sci 2020; 110:567-583. [PMID: 32956678 DOI: 10.1016/j.xphs.2020.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
Abstract
This workshop report summarizes the proceedings of Day 1 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls". Physiologically based biopharmaceutics models (PBBM) are tools which enable the drug product quality attributes to be linked to the in vivo performance. These tools rely on key quality inputs in order to provide reliable predictions. After introducing the objectives of the workshop and the expectations from the breakout sessions, Day 1 of the workshop focused on the best practices and challenges in measuring in vitro inputs needed for modeling, such as the drug solubility, the dissolution rate of the drug product, potential precipitation of the drug and drug permeability. This paper reports the podium presentations and summarizes breakout session discussions related to A) the best strategies for determining solubility, supersaturation and critical supersaturation; B) the best strategies for the development of biopredictive (clinically relevant) dissolution methods; C) the challenges associated with describing gastro-intestinal systems parameters such as mucus, liquid volume and motility; and D) the challenges with translating biopharmaceutical measures of drug permeability along the gastrointestinal tract to a meaningful model parameter.
Collapse
Affiliation(s)
- Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Jennifer Dressman
- Fraunhofer Institute for Molecular Biology and Applied Ecology and Goethe University, Frankfurt, Germany
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Poonam Delvadia
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amitava Mitra
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Xinyuan Zhang
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Paul Seo
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lynne S Taylor
- Purdue University, College of Pharmacy, West Lafayette, IN, USA
| | | | - James M Butler
- Biopharmaceutics, Drug Product Design & Dev, GlaxoSmithKline R&D, Ware, UK
| | - Edmund Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Christer Tannergren
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Mirko Koziolek
- University of Greifswald, Institute of Pharmacy, Greifswald, Germany; Current: NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - André Dallmann
- Clinical Pharmacometrics, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Yang Zhao
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sandra Suarez-Sharp
- Regulatory Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| |
Collapse
|
4
|
Volpe DA. Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert Opin Drug Discov 2020; 15:539-549. [DOI: 10.1080/17460441.2020.1735347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Donna A. Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
5
|
Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43:119-133. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
6
|
Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol Res 2015; 99:1-10. [PMID: 25982933 DOI: 10.1016/j.phrs.2015.05.002] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Dicson Sheeja Malar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395 5487, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBERobn (Physiopathology of Obesity and Nutrition), E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395 5487, Tehran, Iran.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
7
|
Abstract
The human colon adenocarcinoma Caco-2 and Madin–Darby canine kidney epithelial cell lines provide in vitro tools to assess a drug’s permeability and transporter interactions during discovery and development. The cells, when cultured on semiporous filters, form confluent monolayers that model the intestinal epithelial barrier for permeability, transporter and drug-interaction assays. The applications of these assays in pharmaceutical research include qualitative prediction and ranking of absorption, determining mechanism(s) of permeability, formulation effects on drug permeability, and the potential for transporter-mediated drug–drug interactions. This review focuses on recent examples of Caco-2 and Madin–Darby canine kidney cells assays for drug permeability including transfected and knock-down cells, miniaturization and automation, and assay combinations to better understand and predict intestinal drug absorption.
Collapse
|
8
|
Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 2011; 16:704-14. [PMID: 21624498 DOI: 10.1016/j.drudis.2011.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/04/2011] [Accepted: 05/11/2011] [Indexed: 01/04/2023]
Abstract
All cells necessarily contain tens, if not hundreds, of carriers for nutrients and intermediary metabolites, and the human genome codes for more than 1000 carriers of various kinds. Here, we illustrate using a typical literature example the widespread but erroneous nature of the assumption that the 'background' or 'passive' permeability to drugs occurs in the absence of carriers. Comparison of the rate of drug transport in natural versus artificial membranes shows discrepancies in absolute magnitudes of 100-fold or more, with the carrier-containing cells showing the greater permeability. Expression profiling data show exactly which carriers are expressed in which tissues. The recognition that drugs necessarily require carriers for uptake into cells provides many opportunities for improving the effectiveness of the drug discovery process.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
9
|
Wang J, Collis A. Maximizing the outcome of early ADMET models: strategies to win the drug-hunting battles? Expert Opin Drug Metab Toxicol 2011; 7:381-6. [DOI: 10.1517/17425255.2011.562199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|