1
|
Casas-Rodríguez A, Medrano-Padial C, Jos A, Cameán AM, Campos A, Fonseca E. Characterization of NR1J1 Paralog Responses of Marine Mussels: Insights from Toxins and Natural Activators. Int J Mol Sci 2024; 25:6287. [PMID: 38928005 PMCID: PMC11204112 DOI: 10.3390/ijms25126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario 25, Espinardo, 30100 Murcia, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Elza Fonseca
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
2
|
Wang X, Dowty ME, Tripathy S, Le VH, Huh Y, Curto M, Winton JA, O'Gorman MT, Chan G, Malhotra BK. Assessment of the Effects of Abrocitinib on the Pharmacokinetics of Probe Substrates of Cytochrome P450 1A2, 2B6 and 2C19 Enzymes and Hormonal Oral Contraceptives in Healthy Individuals. Eur J Drug Metab Pharmacokinet 2024; 49:367-381. [PMID: 38554232 PMCID: PMC11052784 DOI: 10.1007/s13318-024-00893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Abrocitinib is an oral small-molecule Janus kinase (JAK)-1 inhibitor approved for the treatment of moderate-to-severe atopic dermatitis. In vitro studies indicated that abrocitinib is a weak time-dependent inhibitor of cytochrome P450 (CYP) 2C19/3A and a weak inducer of CYP1A2/2B6/2C19/3A. To assess the potential effect of abrocitinib on concomitant medications, drug-drug interaction (DDI) studies were conducted for abrocitinib with sensitive probe substrates of these CYP enzymes. The impact of abrocitinib on hormonal oral contraceptives (ethinyl estradiol and levonorgestrel), as substrates of CYP3A and important concomitant medications for female patients, was also evaluated. METHODS Three Phase 1 DDI studies were performed to assess the impact of abrocitinib 200 mg once daily (QD) on the probe substrates of: (1) 1A2 (caffeine), 2B6 (efavirenz) and 2C19 (omeprazole) in a cocktail study; (2) 3A (midazolam); and (3) 3A (oral contraceptives). RESULTS After multiple doses of abrocitinib 200 mg QD, there is a lack of effect on the pharmacokinetics of midazolam, efavirenz and contraceptives. Abrocitinib increased the area under the concentration time curve from 0 to infinity (AUCinf) and the maximum concentration (Cmax) of omeprazole by approximately 189 and 134%, respectively. Abrocitinib increased the AUCinf of caffeine by 40% with lack of effect on Cmax. CONCLUSIONS Based on the study results, abrocitinib is a moderate inhibitor of CYP2C19. Caution should be exercised when using abrocitinib concomitantly with narrow therapeutic index medicines that are primarily metabolized by CYP2C19 enzyme. Abrocitinib is a mild inhibitor of CYP1A2; however, the impact is not clinically relevant, and no general dose adjustment is recommended for CYP1A2 substrates. Abrocitinib does not inhibit CYP3A or induce CYP1A2/2B6/2C19/3A and does not affect the pharmacokinetics of contraceptives. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov registration IDs: NCT03647670, NCT05067439, NCT03662516.
Collapse
Affiliation(s)
| | | | | | - Vu H Le
- Pfizer Inc, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Bhalla D, van Noort V. Molecular Evolution of Aryl Hydrocarbon Receptor Signaling Pathway Genes. J Mol Evol 2023; 91:628-646. [PMID: 37392220 DOI: 10.1007/s00239-023-10124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
The Aryl hydrocarbon receptor is an ancient transcriptional factor originally discovered as a sensor of dioxin. In addition to its function as a receptor of environmental toxicants, it plays an important role in development. Although a significant amount of research has been carried out to understand the AHR signal transduction pathway and its involvement in species' susceptibility to environmental toxicants, none of them to date has comprehensively studied its evolutionary origins. Studying the evolutionary origins of molecules can inform ancestral relationships of genes. The vertebrate genome has been shaped by two rounds of whole-genome duplications (WGD) at the base of vertebrate evolution approximately 600 million years ago, followed by lineage-specific gene losses, which often complicate the assignment of orthology. It is crucial to understand the evolutionary origins of this transcription factor and its partners, to distinguish orthologs from ancient non-orthologous homologs. In this study, we have investigated the evolutionary origins of proteins involved in the AHR pathway. Our results provide evidence of gene loss and duplications, crucial for understanding the functional connectivity of humans and model species. Multiple studies have shown that 2R-ohnologs (genes and proteins that have survived from the 2R-WGD) are enriched in signaling components relevant to developmental disorders and cancer. Our findings provide a link between the AHR pathway's evolutionary trajectory and its potential mechanistic involvement in pathogenesis.
Collapse
Affiliation(s)
- Diksha Bhalla
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Lin W, Huber AD, Poudel S, Li Y, Seetharaman J, Miller DJ, Chen T. Structure-guided approach to modulate small molecule binding to a promiscuous ligand-activated protein. Proc Natl Acad Sci U S A 2023; 120:e2217804120. [PMID: 36848571 PMCID: PMC10013835 DOI: 10.1073/pnas.2217804120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 03/01/2023] Open
Abstract
Ligand-binding promiscuity in detoxification systems protects the body from toxicological harm but is a roadblock to drug development due to the difficulty in optimizing small molecules to both retain target potency and avoid metabolic events. Immense effort is invested in evaluating metabolism of molecules to develop safer, more effective treatments, but engineering specificity into or out of promiscuous proteins and their ligands is a challenging task. To better understand the promiscuous nature of detoxification networks, we have used X-ray crystallography to characterize a structural feature of pregnane X receptor (PXR), a nuclear receptor that is activated by diverse molecules (with different structures and sizes) to up-regulate transcription of drug metabolism genes. We found that large ligands expand PXR's ligand-binding pocket, and the ligand-induced expansion occurs through a specific unfavorable compound-protein clash that likely contributes to reduced binding affinity. Removing the clash by compound modification resulted in more favorable binding modes with significantly enhanced binding affinity. We then engineered the unfavorable ligand-protein clash into a potent, small PXR ligand, resulting in marked reduction in PXR binding and activation. Structural analysis showed that PXR is remodeled, and the modified ligands reposition in the binding pocket to avoid clashes, but the conformational changes result in less favorable binding modes. Thus, ligand-induced binding pocket expansion increases ligand-binding potential of PXR but is an unfavorable event; therefore, drug candidates can be engineered to expand PXR's ligand-binding pocket and reduce their safety liability due to PXR binding.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN38105
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN38105
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN38105
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN38105
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN38105
| | - Darcie J. Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN38105
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN38105
| |
Collapse
|
5
|
Gu Y, Li L, Yang M, Liu T, Song X, Qin X, Xu X, Liu J, Wang B, Cao H. Bile acid-gut microbiota crosstalk in irritable bowel syndrome. Crit Rev Microbiol 2022; 49:350-369. [PMID: 35389754 DOI: 10.1080/1040841x.2022.2058353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction with an increasing prevalence, and its precise aetiology remains unclear. Gut microbiota dysbiosis has been found to be associated with IBS pathogenesis. In addition, a high incidence of bile acid diarrhoea and disturbed bile acid metabolism has been observed in IBS patients. The abundant microorganisms inhabited in human gut have essential functions in bile acid biotransformation, and can immensely affect the size and constitution of bile acid pool. Meanwhile, the alterations of bile acid profile can inversely interfere with the gut microbiota. This review discussed the role of intricate correlations between bile acids and gut microbiota in IBS pathogenesis and delineated the possible molecular mechanisms, mainly the signalling induced by farnesoid X receptor and transmembrane G protein-coupled receptor 5. Besides, some biomarkers for identifying bile acid diarrhoea in IBS population were listed, assisting the diagnosis and classification of IBS. Moreover, it also assessed some therapeutic strategies for IBS that regulate the bile acid-gut microbiota axis, such as dietary modulation, probiotics/prebiotics, faecal microbiota transplantation, and antibiotics. Collectively, this article illustrated the relationship between bile acids and gut microbiota in IBS pathophysiology and might offer some novel therapeutic options for IBS.
Collapse
Affiliation(s)
- Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghua Liu
- Department of Gastroenterology, Tianjin TEDA hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Nuclear Receptors as Regulators of Pituitary Corticotroph Pro-Opiomelanocortin Transcription. Cells 2020; 9:cells9040900. [PMID: 32272677 PMCID: PMC7226830 DOI: 10.3390/cells9040900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in adaptive stress responses and maintaining organism homeostasis. The pituitary corticotroph is the central player in the HPA axis and is regulated by a plethora of hormonal and stress related factors that synergistically interact to activate and temper pro-opiomelanocortin (POMC) transcription, to either increase or decrease adrenocorticotropic hormone (ACTH) production and secretion as needed. Nuclear receptors are a family of highly conserved transcription factors that can also be induced by various physiologic signals, and they mediate their responses via multiple targets to regulate metabolism and homeostasis. In this review, we summarize the modulatory roles of nuclear receptors on pituitary corticotroph cell POMC transcription, describe the unique and complex role these factors play in hypothalamic–pituitary–adrenal axis (HPA) regulation and discuss potential therapeutic targets in disease states.
Collapse
|
8
|
Flora GD, Sahli KA, Sasikumar P, Holbrook LM, Stainer AR, AlOuda SK, Crescente M, Sage T, Unsworth AJ, Gibbins JM. Non-genomic effects of the Pregnane X Receptor negatively regulate platelet functions, thrombosis and haemostasis. Sci Rep 2019; 9:17210. [PMID: 31748641 PMCID: PMC6868193 DOI: 10.1038/s41598-019-53218-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 01/30/2023] Open
Abstract
The pregnane X receptor (PXR) is a nuclear receptor (NR), involved in the detoxification of xenobiotic compounds. Recently, its presence was reported in the human vasculature and its ligands were proposed to exhibit anti-atherosclerotic effects. Since platelets contribute towards the development of atherosclerosis and possess numerous NRs, we investigated the expression of PXR in platelets along with the ability of its ligands to modulate platelet activation. The expression of PXR in human platelets was confirmed using immunoprecipitation analysis. Treatment with PXR ligands was found to inhibit platelet functions stimulated by a range of agonists, with platelet aggregation, granule secretion, adhesion and spreading on fibrinogen all attenuated along with a reduction in thrombus formation (both in vitro and in vivo). The effects of PXR ligands were observed in a species-specific manner, and the human-specific ligand, SR12813, was observed to attenuate thrombus formation in vivo in humanised PXR transgenic mice. PXR ligand-mediated inhibition of platelet function was found to be associated with the inhibition of Src-family kinases (SFKs). This study identifies acute, non-genomic regulatory effects of PXR ligands on platelet function and thrombus formation. In combination with the emerging anti-atherosclerotic properties of PXR ligands, these anti-thrombotic effects may provide additional cardio-protective benefits.
Collapse
Affiliation(s)
- Gagan D Flora
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Khaled A Sahli
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,General Directorate of Medical Services, Ministry of Interior, Riyadh, Kingdom of Saudi Arabia
| | - Parvathy Sasikumar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,Centre for Haematology, Imperial College London, London, UK
| | - Lisa-Marie Holbrook
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Alexander R Stainer
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Sarah K AlOuda
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Marilena Crescente
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Amanda J Unsworth
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
9
|
Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int J Mol Sci 2018; 19:ijms19061785. [PMID: 29914136 PMCID: PMC6032247 DOI: 10.3390/ijms19061785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug–drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Collapse
Affiliation(s)
- Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Malek Azar
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Elfriede Friedmann
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Mathematikon, University Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| | - Martin Lanzendörfer
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Development of a common carp (Cyprinus carpio) pregnane X receptor (cPXR) transactivation reporter assay and its activation by azole fungicides and pharmaceutical chemicals. Toxicol In Vitro 2017; 41:114-122. [PMID: 28259787 PMCID: PMC5484788 DOI: 10.1016/j.tiv.2017.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/27/2022]
Abstract
In mammals, the pregnane X receptor (PXR) is a transcription factor with a key role in regulating expression of several genes involved in drug biotransformation. PXR is present in fish and some genes known to be under its control can be up-regulated by mammalian PXR ligands. Despite this, direct involvement of PXR in drug biotransformation in fish has yet to be established. Here, the full length PXR sequence was cloned from carp (Cyprinus carpio) and used in a luciferase reporter assay to elucidate its role in xenobiotic metabolism in fish. A reporter assay for human PXR (hPXR) was also established to compare transactivation between human and carp (cPXR) isoforms. Rifampicin activated hPXR as expected, but not cPXR. Conversely, clotrimazole (CTZ) activated both isoforms and was more potent on cPXR, with an EC50 within the range of concentrations of CTZ measured in the aquatic environment. Responses to other azoles tested were similar between both isoforms. A range of pharmaceuticals tested either failed to activate, or were very weakly active, on the cPXR or hPXR. Overall, these results indicate that the cPXR may differ from the hPXR in its responses and/or sensitivity to induction by different environmental chemicals, with implications for risk assessment because of species differences.
Collapse
|
11
|
Williamson B, Lorbeer M, Mitchell MD, Brayman TG, Riley RJ. Evaluation of a novel PXR-knockout in HepaRG ™ cells. Pharmacol Res Perspect 2016; 4:e00264. [PMID: 27713827 PMCID: PMC5045942 DOI: 10.1002/prp2.264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/10/2016] [Indexed: 11/08/2022] Open
Abstract
The nuclear pregnane X receptor (PXR) regulates the expression of genes involved in the metabolism, hepatobiliary disposition, and toxicity of drugs and endogenous compounds. PXR is a promiscuous nuclear hormone receptor (NHR) with significant ligand and DNA‐binding crosstalk with the constitutive androstane receptor (CAR); hence, defining the precise role of PXR in gene regulation is challenging. Here, utilising a novel PXR‐knockout (KO) HepaRG cell line, real‐time PCR analysis was conducted to determine PXR involvement for a range of inducers. The selective PXR agonist rifampicin, a selective CAR activator, 6‐(4‐chlorophenyl)imidazo[2,1‐b][1,3]thiazole‐5‐carbaldehyde O‐(3,4‐dichlorobenzyl)oxime (CITCO), and dual activators of CAR and PXR including phenobarbital (PB) were analyzed. HepaRG control cells (5F clone) were responsive to prototypical inducers of CYP2B6 and CYP3A4. No response was observed in the PXR‐KO cells treated with rifampicin. Induction of CYP3A4 by PB, artemisinin, and phenytoin was also much reduced in PXR‐KO cells, while the response to CITCO was maintained. This finding is in agreement with the abolition of functional PXR expression. The apparent EC50 values for PB were in agreement between the cell lines; however, CITCO was ~threefold (0.3 μmol/L vs. 1 μmol/L) lower in the PXR‐KO cells compared with the 5F cells for CYP2B6 induction. Results presented support the application of the novel PXR‐KO cells in the definitive assignment of PXR‐mediated CYP2B6 and CYP3A4 induction. Utilization of such cell lines will allow advancement in composing structure activity relationships rather than relying predominantly on pharmacological manipulations and provide in‐depth mechanistic evaluation.
Collapse
Affiliation(s)
- Beth Williamson
- Evotec (UK) Ltd 114 Innovation Drive Abingdon Oxfordshire OX14 4RZ United Kingdom
| | - Mathias Lorbeer
- Evotec (UK) Ltd 114 Innovation Drive Abingdon Oxfordshire OX14 4RZ United Kingdom
| | | | | | - Robert J Riley
- Evotec (UK) Ltd 114 Innovation Drive Abingdon Oxfordshire OX14 4RZ United Kingdom
| |
Collapse
|
12
|
Shehu AI, Li G, Xie W, Ma X. The pregnane X receptor in tuberculosis therapeutics. Expert Opin Drug Metab Toxicol 2015; 12:21-30. [PMID: 26592418 DOI: 10.1517/17425255.2016.1121381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Among the infectious diseases, tuberculosis (TB) remains the second most common cause of death after HIV. TB treatment requires the combination of multiple drugs including the rifamycin class. However, rifamycins are activators of human pregnane X receptor (PXR), a transcription factor that regulates drug metabolism, drug resistance, energy metabolism and immune response. Rifamycin-mediated PXR activation may affect the outcome of TB therapy. AREAS COVERED This review describes the role of PXR in modulating metabolism, efficacy, toxicity and resistance to anti-TB drugs; as well as polymorphisms of PXR that potentially affect TB susceptibility. EXPERT OPINION The wide range of PXR functions that mediate drug metabolism and toxicity in TB therapy are often underappreciated and thus understudied. Further studies are needed to determine the overall impact of PXR activation on the outcome of TB therapy.
Collapse
Affiliation(s)
- Amina I Shehu
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| | - Guangming Li
- b Department of Hepatology, the 6th People's Hospital of Zhengzhou , the Hospital for Infectious Diseases in Henan Province , Zhengzhou , China
| | - Wen Xie
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| | - Xiaochao Ma
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| |
Collapse
|
13
|
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology, VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat Commun 2015; 6:8089. [PMID: 26333997 PMCID: PMC4569708 DOI: 10.1038/ncomms9089] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
Humans are chronically exposed to multiple exogenous substances, including environmental pollutants, drugs and dietary components. Many of these compounds are suspected to impact human health, and their combination in complex mixtures could exacerbate their harmful effects. Here we demonstrate that a pharmaceutical oestrogen and a persistent organochlorine pesticide, both exhibiting low efficacy when studied separately, cooperatively bind to the pregnane X receptor, leading to synergistic activation. Biophysical analysis shows that each ligand enhances the binding affinity of the other, so the binary mixture induces a substantial biological response at doses at which each chemical individually is inactive. High-resolution crystal structures reveal the structural basis for the observed cooperativity. Our results suggest that the formation of ‘supramolecular ligands' within the ligand-binding pocket of nuclear receptors contributes to the synergistic toxic effect of chemical mixtures, which may have broad implications for the fields of endocrine disruption, toxicology and chemical risk assessment. Endocrine-disrupting chemicals act on nuclear hormone receptors, such as PXR. Here, Delfosse et al. show how two such chemicals interact with each other in the PXR ligand-binding pocket, forming a so-called supramolecular ligand that is a more potent PXR activator than each of the two chemicals alone.
Collapse
|
15
|
Ngo Sock ET, Farahnak Z, Lavoie JM. Exercise training decreases gene expression of endo- and xeno-sensors in rat small intestine. Appl Physiol Nutr Metab 2014; 39:1098-103. [PMID: 24933213 DOI: 10.1139/apnm-2013-0573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of the study was to test the hypothesis that gene expression of members of the nuclear receptor (NR) superfamily known to act as endo- and xeno-sensors is reduced in the ileum of exercise-trained (Tr) rats. Healthy female rats were either treadmill-trained for 8 weeks, 5 times/week, or remained sedentary (Sed). Training resulted in a significant (p < 0.05) decrease in plasma free fatty acid (0.18 ± 0.01 to 0.15 ± 0.01 mmol/L) and glycerol (24.8 ± 0.8 to 18.7 ± 0.8 mg/L) concentrations. Gene expressions of NRs farnesoid X receptor (FXR; p < 0.05), liver X receptor (LXR; p < 0.05), pregnane X receptor (PXR; p < 0.01), and retinoid X receptor (RXR; p < 0.06) were reduced in the ileum of Tr compared with Sed animals. Tr was also associated with a reduction (p < 0.05) in gene expression of FXR downstream heterodimeric organite solute transporters α (OSTα) and β (OSTβ) involved in the transport of bile acids, LXR downstream genes heterodimeric ATP-binding cassette transporters (ABCG5/G8) involved in transport of absorbed cholesterol back to the lumen, and Niemann-Pick C1-like 1 (NPC1L1) involved in cholesterol absorption. These data indicate that exercise training lowers the expression of molecules involved in the defense system of the ileum against endobiotic and xenobiotic insults under normal conditions, thus, suggesting that regular exercise contributes to the intestinal maintenance of cholesterol and bile acid homeostasis.
Collapse
Affiliation(s)
- Emilienne Tudor Ngo Sock
- Department of Kinesiology, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
16
|
Wolf RJ, Hilger RA, Hoheisel JD, Werner J, Holtrup F. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 2013; 8:e74555. [PMID: 24040280 PMCID: PMC3764110 DOI: 10.1371/journal.pone.0074555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/02/2013] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer is one of the leading cancer-related causes of death in the western world with an urgent need for new treatment strategies. Recently, hyperforin and nemorosone have been described as promising anti-cancer lead compounds. While hyperforin has been thoroughly investigated in vitro and in vivo, in vivo data for nemorosone are still missing. Thus, we investigated the growth-inhibitory potential of nemorosone on pancreatic cancer xenografts in NMRI nu/nu mice and determined basic pharmacokinetic parameters. Xenograft tumors were treated with nemorosone and gemcitabine, the current standard of care. Tumor sections were subjected to H&E as well as caspase 3 and Ki-67 staining. Nemorosone plasma kinetics were determined by HPLC and mass spectrometry. Induction of CYP3A4 and other metabolizing enzymes by nemorosone and hyperforin was tested on primary hepatocytes using qRT-PCR. At a dose of 50 mg/kg nemorosone per day, a significant growth-inhibitory effect was observed in pancreatic cancer xenografts. The compound was well tolerated and rapidly absorbed into the bloodstream with a half-life of approximately 30 min. Different metabolites were detected, possibly resembling CYP3A4-independent oxidation products. It is concluded that nemorosone is a potential anti-cancer lead compound with good bioavailability, little side-effects and promising growth-inhibitory effects, thus representing a valuable compound for a combination therapy approach.
Collapse
Affiliation(s)
- Robert J. Wolf
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ralf A. Hilger
- Department of Internal Medicine (Cancer Research), University Hospital of Essen, Essen, Germany
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Werner
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Frank Holtrup
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
17
|
Fernandes D, Dimastrogiovanni G, Blázquez M, Porte C. Metabolism of the polycyclic musk galaxolide and its interference with endogenous and xenobiotic metabolizing enzymes in the European sea bass (Dicentrarchus labrax). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:214-221. [PMID: 23274450 DOI: 10.1016/j.envpol.2012.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 11/23/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
This study investigates the metabolism and mode of action of galaxolide (HHCB) in the European sea bass -Dicentrarchus labrax- following a single intraperitoneal injection of 50 mg HHCB/kg body weight. In addition, a group of fish was injected with 50 mg/kg of ketoconazole (KCZ), a fungicide that is known to interfere with different Cyp isoenzymes. HHCB was actively metabolised by sea bass and acted as a weak inhibitor of the synthesis of oxyandrogens in gonads of male fish. Both, HHCB and a hydroxylated metabolite were detected in bile. The fungicide ketoconazole was a strong inhibitor of Cyp11β and Cyp3a-catalyzed activities. The work contributes to the better understanding of the impact of synthetic musks on fish and proposes the determination of HHCB and/or its hydroxylated metabolite in bile as a tool to assess environmental exposure in wild fish.
Collapse
Affiliation(s)
- Denise Fernandes
- Enviromental Chemistry Department, IDAEA-CSIC, C/ Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Corcoran J, Lange A, Winter MJ, Tyler CR. Effects of pharmaceuticals on the expression of genes involved in detoxification in a carp primary hepatocyte model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6306-6314. [PMID: 22559005 DOI: 10.1021/es3005305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish in many surface freshwaters are exposed to a range of pharmaceuticals via wastewater treatment works effluent discharges. In mammals the pregnane X receptor (PXR) plays a key role in the regulation of a suite of genes involved in drug biotransformation, but information on the role of this response pathway in fish is limited. Here we investigated the effects of exposure of carp (Cyprinus carpio) primary hepatocytes to the human PXR agonist rifampicin (RIF) on expression of target genes involved in phase I (cyp2k, cyp3a) and phase II (gstα, gstπ) drug metabolism and drug transporters mdr1 and mrp2. RIF induced expression of all target genes measured and the PXR antagonist ketoconazole (KET) inhibited responses of cyp2k and cyp3a. Exposure of the primary carp hepatocytes to the pharmaceuticals ibuprofen (IBU), clotrimazole (CTZ), clofibric acid (CFA) and propranolol (PRP), found responses to IBU and CFA, but not CTZ or PRP. This is in contrast with mammals, where CTZ is a potent PXR-agonist. Collectively our data indicate potential PXR involvement in regulating selected genes involved in drug metabolism in fish, but suggest some divergence in the regulation pathways with those in mammals. The carp primary hepatocyte model serves as a useful system for screening for responses in these target genes involved in drug metabolism.
Collapse
Affiliation(s)
- Jenna Corcoran
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, United Kingdom
| | | | | | | |
Collapse
|
19
|
Mathäs M, Burk O, Qiu H, Nusshag C, Gödtel-Armbrust U, Baranyai D, Deng S, Römer K, Nem D, Windshügel B, Wojnowski L. Evolutionary history and functional characterization of the amphibian xenosensor CAR. Mol Endocrinol 2011; 26:14-26. [PMID: 22074953 DOI: 10.1210/me.2011-1235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The xenosensing constitutive androstane receptor (CAR) is widely considered to have arisen in early mammals via duplication of the pregnane X receptor (PXR). We report that CAR emerged together with PXR and the vitamin D receptor from an ancestral NR1I gene already in early vertebrates, as a result of whole-genome duplications. CAR genes were subsequently lost from the fish lineage, but they are conserved in all taxa of land vertebrates. This contrasts with PXR, which is found in most fish species, whereas it is lost from Sauropsida (reptiles and birds) and plays a role unrelated to xenosensing in Xenopus. This role is fulfilled in Xenopus by CAR, which exhibits low basal activity and pronounced responsiveness to activators such as drugs and steroids, altogether resembling mammalian PXR. The constitutive activity typical for mammalian CAR emerged first in Sauropsida, and it is thus common to all fully terrestrial land vertebrates (Amniota). The constitutive activity can be achieved by humanizing just two amino acids of the Xenopus CAR. Taken together, our results provide a comprehensive reconstruction of the evolutionary history of the NR1I subfamily of nuclear receptors. They identify CAR as the more conserved and remarkably plastic NR1I xenosensor in land vertebrates. Nonmammalian CAR should help to dissect the specific functions of PXR and CAR in the metabolism of xeno- and endobiotics in humans. Xenopus CAR is a first reported amphibian xenosensor, which opens the way to toxicogenomic and bioaugmentation studies in this critically endangered taxon of land vertebrates.
Collapse
Affiliation(s)
- Marianne Mathäs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
BACKGROUND Drug repositioning is a current strategy to find new uses for existing drugs, patented or not, and for late-stage candidates that failed for lack of efficacy. RESULTS In silico profiling of several marketed drugs (methadone, rapamycin, saquinavir and telmisartan) was performed, exploiting a vast amount of published information. Similar compounds were assessed in terms of target-activity profiles for major drug-target families. In silico profiles were visualized within an interactive heat map and detailed analysis was performed associated with the accessible current knowledge. CONCLUSION Based on a basic principle assuming that similar molecules share similar target activity, new potential targets and, therefore, opportunities of potential new indications have been identified and discussed.
Collapse
|
21
|
Krasowski MD, Ni A, Hagey LR, Ekins S. Evolution of promiscuous nuclear hormone receptors: LXR, FXR, VDR, PXR, and CAR. Mol Cell Endocrinol 2011; 334:39-48. [PMID: 20615451 PMCID: PMC3033471 DOI: 10.1016/j.mce.2010.06.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/28/2010] [Accepted: 06/29/2010] [Indexed: 12/17/2022]
Abstract
Nuclear hormone receptors (NHRs) are transcription factors that work in concert with co-activators and co-repressors to regulate gene expression. Some examples of ligands for NHRs include endogenous compounds such as bile acids, retinoids, steroid hormones, thyroid hormone, and vitamin D. This review describes the evolution of liver X receptors α and β (NR1H3 and 1H2, respectively), farnesoid X receptor (NR1H4), vitamin D receptor (NR1I1), pregnane X receptor (NR1I2), and constitutive androstane receptor (NR1I3). These NHRs participate in complex, overlapping transcriptional regulation networks involving cholesterol homeostasis and energy metabolism. Some of these receptors, particularly PXR and CAR, are promiscuous with respect to the structurally wide range of ligands that act as agonists. A combination of functional and computational analyses has shed light on the evolutionary changes of NR1H and NR1I receptors across vertebrates, and how these receptors may have diverged from ancestral receptors that first appeared in invertebrates.
Collapse
Affiliation(s)
- Matthew D Krasowski
- Department of Pathology, University of Iowa Hospitals and Clinics, RCP 6233, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
22
|
Krasowski MD, Ai N, Hagey LR, Kollitz EM, Kullman SW, Reschly EJ, Ekins S. The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species. BMC BIOCHEMISTRY 2011; 12:5. [PMID: 21291553 PMCID: PMC3042382 DOI: 10.1186/1471-2091-12-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/03/2011] [Indexed: 12/23/2022]
Abstract
Background The farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D receptor (VDR) are three closely related nuclear hormone receptors in the NR1H and 1I subfamilies that share the property of being activated by bile salts. Bile salts vary significantly in structure across vertebrate species, suggesting that receptors binding these molecules may show adaptive evolutionary changes in response. We have previously shown that FXRs from the sea lamprey (Petromyzon marinus) and zebrafish (Danio rerio) are activated by planar bile alcohols found in these two species. In this report, we characterize FXR, PXR, and VDR from the green-spotted pufferfish (Tetraodon nigriviridis), an actinopterygian fish that unlike the zebrafish has a bile salt profile similar to humans. We utilize homology modelling, docking, and pharmacophore studies to understand the structural features of the Tetraodon receptors. Results Tetraodon FXR has a ligand selectivity profile very similar to human FXR, with strong activation by the synthetic ligand GW4064 and by the primary bile acid chenodeoxycholic acid. Homology modelling and docking studies suggest a ligand-binding pocket architecture more similar to human and rat FXRs than to lamprey or zebrafish FXRs. Tetraodon PXR was activated by a variety of bile acids and steroids, although not by the larger synthetic ligands that activate human PXR such as rifampicin. Homology modelling predicts a larger ligand-binding cavity than zebrafish PXR. We also demonstrate that VDRs from the pufferfish and Japanese medaka were activated by small secondary bile acids such as lithocholic acid, whereas the African clawed frog VDR was not. Conclusions Our studies provide further evidence of the relationship between both FXR, PXR, and VDR ligand selectivity and cross-species variation in bile salt profiles. Zebrafish and green-spotted pufferfish provide a clear contrast in having markedly different primary bile salt profiles (planar bile alcohols for zebrafish and sterically bent bile acids for the pufferfish) and receptor selectivity that matches these differences in endogenous ligands. Our observations to date present an integrated picture of the co-evolution of bile salt structure and changes in the binding pockets of three nuclear hormone receptors across the species studied.
Collapse
Affiliation(s)
- Matthew D Krasowski
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta Mol Basis Dis 2011; 1812:956-63. [PMID: 21295138 DOI: 10.1016/j.bbadis.2011.01.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR, NR1I2) is a ligand activated transcription factor that belongs to the nuclear hormone receptor (NR) superfamily. PXR is highly expressed in the liver and intestine, but low levels of expression have also been found in many other tissues. PXR plays an integral role in xenobiotic and endobiotic metabolism by regulating the expression of drug-metabolizing enzymes and transporters, as well as genes implicated in the metabolism of endobiotics. PXR exerts its transcriptional regulation by binding to its DNA response elements as a heterodimer with the retinoid X receptor (RXR) and recruitment of a host of coactivators. The biological and physiological implications of PXR activation are broad, ranging from drug metabolism and drug-drug interactions to the homeostasis of numerous endobiotics, such as glucose, lipids, steroids, bile acids, bilirubin, retinoic acid, and bone minerals. The purpose of this article is to provide an overview on the transcriptional circuits and metabolic relevance controlled by PXR. This article is part of a Special Issue entitled: Translating Nuclear Receptors from Health to Disease.
Collapse
|
24
|
Chen JT, Chen RM. Mechanisms of ketamine-involved regulation of cytochrome P450 gene expression. Expert Opin Drug Metab Toxicol 2010; 6:273-81. [DOI: 10.1517/17425250903505108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Zhang YY, Yang L. Interactions between human cytochrome P450 enzymes and steroids: physiological and pharmacological implications. Expert Opin Drug Metab Toxicol 2009; 5:621-9. [DOI: 10.1517/17425250902967648] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
27
|
Zhang B, Xie W, Krasowski MD. PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics 2009; 9:1695-709. [PMID: 19018724 DOI: 10.2217/14622416.9.11.1695] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolic enzymes and transporters involved in the responses of mammals to their chemical environment. The same enzyme and transporter systems are also involved in the homeostasis of numerous endogenous chemicals. The regulatory function of PXR is implicated in normal physiology and diseases, such as drug-drug interactions, hepatic steatosis, vitamin D homeostasis, bile acids homeostasis, steroid hormones homeostasis and inflammatory bowel diseases. As such, any genetic variations of this receptor could potentially have widespread effects on the disposition of xenobiotics and endobiotics. Knowledge concerning the genetic polymorphisms of PXR may help to understand the variations in human drug response and ensure safe drug use. The correlation of PXR genetic polymorphisms with several disease conditions also suggests that this receptor may represent a valid therapeutic for hepato-intestinal disorders such as inflammatory bowel disease and primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Bin Zhang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
28
|
Ma X, Idle JR, Gonzalez FJ. The pregnane X receptor: from bench to bedside. Expert Opin Drug Metab Toxicol 2008; 4:895-908. [PMID: 18624678 DOI: 10.1517/17425255.4.7.895] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, regulates the expression of metabolic enzymes and transporters involved in the response of mammals to their chemical environment. OBJECTIVE To summarize the functions and clinical implications of PXR. METHODS In the current review, the clinical implications of PXR are discussed, and the use of genetically engineered PXR mouse models is highlighted. RESULTS/CONCLUSION Recent advances in mouse models, including Pxr-null and PXR-humanized mice, provide in vivo tools for evaluating the physiological functions of PXR and its role in controlling xenobiotic metabolism and transport. By using the PXR knockout and humanized mouse models, PXR was found to influence drug-drug interactions, hepatic steatosis, and the homeostasis of vitamin D, bile acids, and steroid hormones. PXR was also shown to influence inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xiaochao Ma
- National Cancer Institute, Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
29
|
Paris M, Pettersson K, Schubert M, Bertrand S, Pongratz I, Escriva H, Laudet V. An amphioxus orthologue of the estrogen receptor that does not bind estradiol: insights into estrogen receptor evolution. BMC Evol Biol 2008; 8:219. [PMID: 18655705 PMCID: PMC2529310 DOI: 10.1186/1471-2148-8-219] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 07/25/2008] [Indexed: 12/21/2022] Open
Abstract
Background The origin of nuclear receptors (NRs) and the question whether the ancestral NR was a liganded or an unliganded transcription factor has been recently debated. To obtain insight into the evolution of the ligand binding ability of estrogen receptors (ER), we comparatively characterized the ER from the protochordate amphioxus (Branchiostoma floridae), and the ER from lamprey (Petromyzon marinus), a basal vertebrate. Results Extensive phylogenetic studies as well as signature analysis allowed us to confirm that the amphioxus ER (amphiER) and the lamprey ER (lampER) belong to the ER group. LampER behaves as a "classical" vertebrate ER, as it binds to specific DNA Estrogen Responsive Elements (EREs), and is activated by estradiol (E2), the classical ER natural ligand. In contrast, we found that although amphiER binds EREs, it is unable to bind E2 and to activate transcription in response to E2. Among the 7 natural and synthetic ER ligands tested as well as a large repertoire of 14 cholesterol derivatives, only Bisphenol A (an endocrine disruptor with estrogenic activity) bound to amphiER, suggesting that a ligand binding pocket exists within the receptor. Parsimony analysis considering all available ER sequences suggest that the ancestral ER was not able to bind E2 and that this ability evolved specifically in the vertebrate lineage. This result does not support a previous analysis based on ancestral sequence reconstruction that proposed the ancestral steroid receptor to bind estradiol. We show that biased taxonomic sampling can alter the calculation of ancestral sequence and that the previous result might stem from a high proportion of vertebrate ERs in the dataset used to compute the ancestral sequence. Conclusion Taken together, our results highlight the importance of comparative experimental approaches vs ancestral reconstructions for the evolutionary study of endocrine systems: comparative analysis of extant ERs suggests that the ancestral ER did not bind estradiol and that it gained the ability to be regulated by estradiol specifically in the vertebrate lineage, before lamprey split.
Collapse
Affiliation(s)
- Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, Molecular Zoology team, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, INRA, Institut Fédératif 128 Biosciences Gerland Lyon Sud, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
New predictive models for blood-brain barrier permeability of drug-like molecules. Pharm Res 2008; 25:1836-45. [PMID: 18415049 DOI: 10.1007/s11095-008-9584-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/27/2008] [Indexed: 01/16/2023]
Abstract
PURPOSE The goals of the present study were to apply a generalized regression model and support vector machine (SVM) models with Shape Signatures descriptors, to the domain of blood-brain barrier (BBB) modeling. MATERIALS AND METHODS The Shape Signatures method is a novel computational tool that was used to generate molecular descriptors utilized with the SVM classification technique with various BBB datasets. For comparison purposes we have created a generalized linear regression model with eight MOE descriptors and these same descriptors were also used to create SVM models. RESULTS The generalized regression model was tested on 100 molecules not in the model and resulted in a correlation r2 = 0.65. SVM models with MOE descriptors were superior to regression models, while Shape Signatures SVM models were comparable or better than those with MOE descriptors. The best 2D shape signature models had 10-fold cross validation prediction accuracy between 80-83% and leave-20%-out testing prediction accuracy between 80-82% as well as correctly predicting 84% of BBB+ compounds (n = 95) in an external database of drugs. CONCLUSIONS Our data indicate that Shape Signatures descriptors can be used with SVM and these models may have utility for predicting blood-brain barrier permeation in drug discovery.
Collapse
|
31
|
Ekins S, Reschly EJ, Hagey LR, Krasowski MD. Evolution of pharmacologic specificity in the pregnane X receptor. BMC Evol Biol 2008; 8:103. [PMID: 18384689 PMCID: PMC2358886 DOI: 10.1186/1471-2148-8-103] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 04/02/2008] [Indexed: 12/25/2022] Open
Abstract
Background The pregnane X receptor (PXR) shows the highest degree of cross-species sequence diversity of any of the vertebrate nuclear hormone receptors. In this study, we determined the pharmacophores for activation of human, mouse, rat, rabbit, chicken, and zebrafish PXRs, using a common set of sixteen ligands. In addition, we compared in detail the selectivity of human and zebrafish PXRs for steroidal compounds and xenobiotics. The ligand activation properties of the Western clawed frog (Xenopus tropicalis) PXR and that of a putative vitamin D receptor (VDR)/PXR cloned in this study from the chordate invertebrate sea squirt (Ciona intestinalis) were also investigated. Results Using a common set of ligands, human, mouse, and rat PXRs share structurally similar pharmacophores consisting of hydrophobic features and widely spaced excluded volumes indicative of large binding pockets. Zebrafish PXR has the most sterically constrained pharmacophore of the PXRs analyzed, suggesting a smaller ligand-binding pocket than the other PXRs. Chicken PXR possesses a symmetrical pharmacophore with four hydrophobes, a hydrogen bond acceptor, as well as excluded volumes. Comparison of human and zebrafish PXRs for a wide range of possible activators revealed that zebrafish PXR is activated by a subset of human PXR agonists. The Ciona VDR/PXR showed low sequence identity to vertebrate VDRs and PXRs in the ligand-binding domain and was preferentially activated by planar xenobiotics including 6-formylindolo-[3,2-b]carbazole. Lastly, the Western clawed frog (Xenopus tropicalis) PXR was insensitive to vitamins and steroidal compounds and was activated only by benzoates. Conclusion In contrast to other nuclear hormone receptors, PXRs show significant differences in ligand specificity across species. By pharmacophore analysis, certain PXRs share similar features such as human, mouse, and rat PXRs, suggesting overlap of function and perhaps common evolutionary forces. The Western clawed frog PXR, like that described for African clawed frog PXRs, has diverged considerably in ligand selectivity from fish, bird, and mammalian PXRs.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Inc., Jenkintown, PA, USA.
| | | | | | | |
Collapse
|
32
|
Liu FJ, Song X, Yang D, Deng R, Yan B. The far and distal enhancers in the CYP3A4 gene co-ordinate the proximal promoter in responding similarly to the pregnane X receptor but differentially to hepatocyte nuclear factor-4alpha. Biochem J 2008; 409:243-50. [PMID: 17764444 PMCID: PMC4114763 DOI: 10.1042/bj20070613] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CYP3A4 (cytochrome P450 3A4) is involved in the metabolism of more than 50% of drugs and other xenobiotics. The expression of CYP3A4 is induced by many structurally dissimilar compounds. The PXR (pregnane X receptor) is recognized as a key regulator for the induction, and the PXR-directed transactivation of the CYP3A4 gene is achieved through a co-ordinated mechanism of the distal module with the proximal promoter. Recently, a far module was found to support constitutive expression of CYP3A4. The far module, like the distal module, is structurally clustered by a PXR response element (F-ER6) and elements recognized by HNF-4alpha (hepatocyte nuclear receptor-4alpha). We hypothesized that the far module supports PXR transactivation of the CYP3A4 gene. Consistent with the hypothesis, fusion of the far module to the proximal promoter of CYP3A4 markedly increased rifampicin-induced reporter activity. The increase was synergistically enhanced when both the far and distal modules were fused to the proximal promoter. The increase, however, was significantly reduced when the F-ER6 was disrupted. Chromatin immunoprecipitation detected the presence of PXR in the far module. Interestingly, HNF-4alpha increased the activity of the distal-proximal fused promoter, but decreased the activity of the far-proximal fused promoter. Given the fact that induction of CYP3A4 represents an important detoxification mechanism, the functional redundancy and synergistic interaction in supporting PXR transactivation suggest that the far and distal modules ensure the induction of CYP3A4 during chemical insults. The difference in responding to HNF-4alpha suggests that the magnitude of the induction is under control through various transcriptional networks.
Collapse
|
33
|
Reschly EJ, Bainy ACD, Mattos JJ, Hagey LR, Bahary N, Mada SR, Ou J, Venkataramanan R, Krasowski MD. Functional evolution of the vitamin D and pregnane X receptors. BMC Evol Biol 2007; 7:222. [PMID: 17997857 PMCID: PMC2263054 DOI: 10.1186/1471-2148-7-222] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 11/12/2007] [Indexed: 01/13/2023] Open
Abstract
Background The vitamin D receptor (VDR) and pregnane X receptor (PXR) are nuclear hormone receptors of the NR1I subfamily that show contrasting patterns of cross-species variation. VDR and PXR are thought to have arisen from duplication of an ancestral gene, evident now as a single gene in the genome of the chordate invertebrate Ciona intestinalis (sea squirt). VDR genes have been detected in a wide range of vertebrates including jawless fish. To date, PXR genes have not been found in cartilaginous fish. In this study, the ligand selectivities of VDRs were compared in detail across a range of vertebrate species and compared with those of the Ciona VDR/PXR. In addition, several assays were used to search for evidence of PXR-mediated hepatic effects in three model non-mammalian species: sea lamprey (Petromyzon marinus), zebrafish (Danio rerio), and African clawed frog (Xenopus laevis). Results Human, mouse, frog, zebrafish, and lamprey VDRs were found to have similar ligand selectivities for vitamin D derivatives. In contrast, using cultured primary hepatocytes, only zebrafish showed evidence of PXR-mediated induction of enzyme expression, with increases in testosterone 6β-hydroxylation activity (a measure of cytochrome P450 3A activity in other species) and flurbiprofen 4-hydroxylation activity (measure of cytochrome P450 2C activity) following exposure to known PXR activators. A separate assay in vivo using zebrafish demonstrated increased hepatic transcription of another PXR target, multidrug resistance gene (ABCB5), following injection of the major zebrafish bile salt, 5α-cyprinol 27-sulfate. The PXR target function, testosterone hydroxylation, was detected in frog and sea lamprey primary hepatocytes, but was not inducible in these two species by a wide range of PXR activators in other animals. Analysis of the sea lamprey draft genome also did not show evidence of a PXR gene. Conclusion Our results show tight conservation of ligand selectivity of VDRs across vertebrate species from Agnatha to mammals. Using a functional approach, we demonstrate classic PXR-mediated effects in zebrafish, but not in sea lamprey or African clawed frog liver cells. Using a genomic approach, we failed to find evidence of a PXR gene in lamprey, suggesting that VDR may be the original NR1I gene.
Collapse
Affiliation(s)
- Erica J Reschly
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hernandez JP, Huang W, Chapman LM, Chua S, Moore DD, Baldwin WS. The environmental estrogen, nonylphenol, activates the constitutive androstane receptor. Toxicol Sci 2007; 98:416-26. [PMID: 17483497 PMCID: PMC1995745 DOI: 10.1093/toxsci/kfm107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nonylphenol (NP) and its parent compounds, the nonylphenol ethoxylates are some of the most prevalent chemicals found in U.S. waterways. NP is also resistant to biodegradation and is a known environmental estrogen, which makes NP a chemical of concern. Our data show that NP also activates the constitutive androstane receptor (CAR), an orphan nuclear receptor important in the induction of detoxification enzymes, including the P450s. Transactivation assays demonstrate that NP increases murine CAR (mCAR) transcriptional activity, and NP treatment can overcome the inhibitory effects of the inverse agonist, androstanol, on mCAR activation. Treatment of wild-type (CAR +/+) mice with NP at 50 or 75 mg/kg/day increases Cyp2b protein expression in a dose-dependent manner as demonstrated by Western blotting, and was confirmed by quantitative reverse transcription-PCR of Cyp2b10 transcript levels. CAR-null (CAR -/-) mice show no increased expression of Cyp2b following NP treatment, indicating that CAR is required for NP-mediated Cyp2b induction. In addition, NP increases the translocation of CAR into the nucleus, which is the key step in the commencement of CAR's transcriptional activity. NP also induced CYP2B6 in primary human hepatocytes, and increased Cyp2b10 messenger RNA and protein expression in humanized CAR mice, indicating that NP is an activator of human CAR as well. In conclusion, NP is a CAR activator, and this was demonstrated in vitro with transactivation assays and in vivo with transgenic CAR mouse models.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aryl Hydrocarbon Hydroxylases/biosynthesis
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B6
- Cytochrome P450 Family 2
- Endocrine Disruptors/toxicity
- Estrogens/toxicity
- Female
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Humans
- Liver/drug effects
- Liver/enzymology
- Mice
- Mice, Transgenic
- Middle Aged
- Muscle Relaxants, Central/pharmacology
- Oxidoreductases, N-Demethylating/biosynthesis
- Phenols/toxicity
- Pregnane X Receptor
- Rats
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Steroid Hydroxylases/biosynthesis
- Transcription Factors/agonists
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/drug effects
- Zoxazolamine/pharmacology
Collapse
Affiliation(s)
- Juan P Hernandez
- Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hernandez JP, Huang W, Chapman LM, Chua S, Moore DD, Baldwin WS. The environmental estrogen, nonylphenol, activates the constitutive androstane receptor. Toxicol Sci 2007; 98:416-426. [PMID: 17483497 DOI: 10.1017/s1368980009991996.validation] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Nonylphenol (NP) and its parent compounds, the nonylphenol ethoxylates are some of the most prevalent chemicals found in U.S. waterways. NP is also resistant to biodegradation and is a known environmental estrogen, which makes NP a chemical of concern. Our data show that NP also activates the constitutive androstane receptor (CAR), an orphan nuclear receptor important in the induction of detoxification enzymes, including the P450s. Transactivation assays demonstrate that NP increases murine CAR (mCAR) transcriptional activity, and NP treatment can overcome the inhibitory effects of the inverse agonist, androstanol, on mCAR activation. Treatment of wild-type (CAR +/+) mice with NP at 50 or 75 mg/kg/day increases Cyp2b protein expression in a dose-dependent manner as demonstrated by Western blotting, and was confirmed by quantitative reverse transcription-PCR of Cyp2b10 transcript levels. CAR-null (CAR -/-) mice show no increased expression of Cyp2b following NP treatment, indicating that CAR is required for NP-mediated Cyp2b induction. In addition, NP increases the translocation of CAR into the nucleus, which is the key step in the commencement of CAR's transcriptional activity. NP also induced CYP2B6 in primary human hepatocytes, and increased Cyp2b10 messenger RNA and protein expression in humanized CAR mice, indicating that NP is an activator of human CAR as well. In conclusion, NP is a CAR activator, and this was demonstrated in vitro with transactivation assays and in vivo with transgenic CAR mouse models.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aryl Hydrocarbon Hydroxylases/biosynthesis
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B6
- Cytochrome P450 Family 2
- Endocrine Disruptors/toxicity
- Estrogens/toxicity
- Female
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Humans
- Liver/drug effects
- Liver/enzymology
- Mice
- Mice, Transgenic
- Middle Aged
- Muscle Relaxants, Central/pharmacology
- Oxidoreductases, N-Demethylating/biosynthesis
- Phenols/toxicity
- Pregnane X Receptor
- Rats
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Steroid Hydroxylases/biosynthesis
- Transcription Factors/agonists
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/drug effects
- Zoxazolamine/pharmacology
Collapse
Affiliation(s)
- Juan P Hernandez
- Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | | | | | | | | | | |
Collapse
|