1
|
Biochanin A in murine Schistosoma mansoni infection: effects on inflammation, oxidative stress and fibrosis. J Helminthol 2023; 97:e16. [PMID: 36740983 DOI: 10.1017/s0022149x22000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biochanin A (BCA) is a multifunctional natural compound that possesses anti-infective, anti-inflammatory, anti-oxidative and hepatoprotective effects. The aim of the study was to assess the therapeutic efficacy of BCA on Schistosoma mansoni-infected mice. Fifty mice were divided into six different groups as non-infected, non-infected BCA-treated, infected untreated, early infected BCA-treated (seven days post-infection (dpi)), late infected BCA-treated 60 dpi and infected praziquantel (PZQ)-treated groups. Parasitological, histopathological examination and immunohistochemical staining of transforming growth factor (TGF)-β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were investigated in liver sections. Cytochrome P450 (CYP450) gene expression of S. mansoni was evaluated by quantitative real-time polymerase chain reaction (RT-qPCR). A single dose of BCA significantly reduced worm burden in early (82.14%) and late infection (77.74%), mean tissue egg load in early (7.27 ± 0.495) and late BCA administration (7.63 ± 0.435) and decreased granuloma size. CYP450 mRNA expression was significantly reduced in early BCA treatment as compared to late treatment which emphasizes that early administration of BCA had more pronounced effects on worms than late administration. Both early and late BCA administration led to significant reduction in inflammatory cytokines as TGF and iNOS. Although the reduction of TGF and iNOS in BCA-treated mice was superior to PZQ, no statistically significant differences were noted. However, a significant downregulation of COX2 was noted in hepatocytes as compared to both infected control and PZQ-treated mice. BCA has schistosomicidal, anti-inflammatory, antioxidant and anti-fibrotic effects and could be regarded as a potential drug in schistosomiasis treatment.
Collapse
|
2
|
Huang JM, Ko PJ, Huang CL, Wen PW, Chen CH, Shih MH, Lin WC, Huang FC. Cytochrome P450 monooxygenase of Acanthamoeba castellanii participates in resistance to polyhexamethylene biguanide treatment. Parasite 2021; 28:77. [PMID: 34762043 PMCID: PMC8582484 DOI: 10.1051/parasite/2021074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Acanthamoeba spp. are free-living parasites that can cause severe infections such as granulomatous amoebic encephalitis (GAE) and amoebic keratitis (AK). Polyhexamethylene biguanide (PHMB) is a topical application for AK treatment. However, PHMB is not entirely effective against all Acanthamoeba strains or isolates. The mechanisms by which Acanthamoeba protects itself against extreme drug conditions without encystation are still unknown. According to a previous study, cytochrome P450 monooxygenase (CYP450MO) plays an important role in the oxidative biotransformation of numerous drugs related to metabolism. In this study, a CYP450MO fragment was inserted into the pGAPDH-EGFP vector and transfected into Acanthamoeba castellanii. We found that CYP450MO-overexpressing Acanthamoeba had higher survival rates than those of the control cells after PHMB treatment. Moreover, we also found that encystation-related genes such as cellulose synthase I (CSI), encystation-mediating serine proteinase (EMSP), and autophagy-related protein 8 (ATG8) expression levels were not significantly different between Acanthamoeba transfected by pGAPDH-EGFP or pGAPDH-EGFP-CYP450MO. We suggest that Acanthamoeba transfected by pGAPDH-EGFP-CYP450MO may not induce encystation-related genes to resist PHMB treatment. In conclusion, these findings indicate that CYP450MO may be an additional target when PHMB is used for treatment of amoebic keratitis.
Collapse
Affiliation(s)
- Jian-Ming Huang
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Ju Ko
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao-Li Huang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Po-Wei Wen
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Hsien Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Min-Hsiu Shih
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan 701, Taiwan
| | - Wei-Chen Lin
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan - Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan - Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Fu-Chin Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan 701, Taiwan
| |
Collapse
|
3
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
5
|
Haduch A, Daniel WA. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: a possible role in mental disorders. Drug Metab Rev 2019; 50:415-429. [PMID: 30501426 DOI: 10.1080/03602532.2018.1554674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current state of knowledge indicates that the cerebral cytochrome P450 (CYP) plays an important role in the endogenous metabolism in the brain. Different CYP isoenzymes mediate metabolism of many endogenous substrates such as monoaminergic neurotransmitters, neurosteroids, cholesterol, vitamins and arachidonic acid. Therefore, these enzymes may affect brain development, susceptibility to mental and neurodegenerative diseases and may contribute to their pathophysiology. In addition, they can modify the therapeutic effects of psychoactive drugs at the place of their target action in the brain, where the drugs can act by affecting the metabolism of endogenous substrates. The article focuses on the role of cerebral CYP isoforms in the metabolism of neurotransmitters, neurosteroids, and cholesterol, and their possible involvement in animal behavior, as well as in stress, depression, schizophrenia, cognitive processes, learning, and memory. CYP-mediated alternative pathways of dopamine and serotonin synthesis may have a significant role in the local production of these neurotransmitters in the brain regions where the disturbances of these neurotransmitter systems are observed in depression and schizophrenia. The local alternative synthesis of neurotransmitters may be of great importance in the brain, since dopamine and serotonin do not pass the blood-brain barrier and cannot be supplied from the periphery. In vitro studies indicate that human CYP2D6 catalyzing dopamine and serotonin synthesis is more efficient in these reactions than the rat CYP2D isoforms. It suggests that these alternative pathways may have much greater significance in the human brain but confirmation of these assumptions requires further studies.
Collapse
Affiliation(s)
- Anna Haduch
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| | - Władysława Anna Daniel
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
6
|
Zhang X, Zhang T, Liu J, Li M, Fu Y, Xu J, Liu Q. Functional characterization of a unique cytochrome P450 in Toxoplasma gondii. Oncotarget 2017; 8:115079-115088. [PMID: 29383143 PMCID: PMC5777755 DOI: 10.18632/oncotarget.23023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023] Open
Abstract
The basic metabolic cytochrome P450 (CYP) proteins are essential for the biotransformation of sterols and xenobiotics. By contrast, the Toxoplasma gondii genome contains only one CYP gene, and the role of this enzyme in the physiology and biochemistry of apicomplexan parasites is unknown. Because it is a potential resistance gene, identifying the functionality of P450 in T. gondii is particularly important. Knocking out Tg-P450 had no significant effect on T. gondii survival, but mice infected with parasites overexpressing Tg-P450 exhibited significantly enhanced pathogenicity. Enzyme activity analyses demonstrated that this protein has mammalian CYP2B and CYP3A enzymatic activity. In addition, T. gondii lacking the P450 gene exhibited reduced resistance to quinine, mefloquine and clarithromycin compared with parasites overexpressing Tg-P450. These results suggest that P450 functions in T. gondii metabolism and detoxification is involved in vitally important processes in parasitic organisms, making this enzyme a potential drug target.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Taotao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Muzi Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yong Fu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianhai Xu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Park JE, Ryoo G, Lee W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS JOURNAL 2017; 19:1643-1655. [DOI: 10.1208/s12248-017-0150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 01/18/2023]
|
8
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism. Drug Metab Dispos 2017; 45:375-389. [DOI: 10.1124/dmd.116.073254] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
|
9
|
Ziniel PD, Karumudi B, Barnard AH, Fisher EMS, Thatcher GRJ, Podust LM, Williams DL. The Schistosoma mansoni Cytochrome P450 (CYP3050A1) Is Essential for Worm Survival and Egg Development. PLoS Negl Trop Dis 2015; 9:e0004279. [PMID: 26713732 PMCID: PMC4694641 DOI: 10.1371/journal.pntd.0004279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022] Open
Abstract
Schistosomiasis affects millions of people in developing countries and is responsible for more than 200,000 deaths annually. Because of toxicity and limited spectrum of activity of alternatives, there is effectively only one drug, praziquantel, available for its treatment. Recent data suggest that drug resistance could soon be a problem. There is therefore the need to identify new drug targets and develop drugs for the treatment of schistosomiasis. Analysis of the Schistosoma mansoni genome sequence for proteins involved in detoxification processes found that it encodes a single cytochrome P450 (CYP450) gene. Here we report that the 1452 bp open reading frame has a characteristic heme-binding region in its catalytic domain with a conserved heme ligating cysteine, a hydrophobic leader sequence present as the membrane interacting region, and overall structural conservation. The highest sequence identity to human CYP450s is 22%. Double stranded RNA (dsRNA) silencing of S. mansoni (Sm)CYP450 in schistosomula results in worm death. Treating larval or adult worms with antifungal azole CYP450 inhibitors results in worm death at low micromolar concentrations. In addition, combinations of SmCYP450-specific dsRNA and miconazole show additive schistosomicidal effects supporting the hypothesis that SmCYP450 is the target of miconazole. Treatment of developing S. mansoni eggs with miconazole results in a dose dependent arrest in embryonic development. Our results indicate that SmCYP450 is essential for worm survival and egg development and validates it as a novel drug target. Preliminary structure-activity relationship suggests that the 1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol moiety of miconazole is necessary for activity and that miconazole activity and selectivity could be improved by rational drug design. Over 600 million people in endemic countries are at risk of contracting schistosomiasis, which results in over 200,000 deaths each year and significant illness to most people that are infected. There are concerns that the drug widely used for the treatment of schistosomiasis, praziquantel, may be losing efficacy due to evolution of drug resistant worms. Since the disease mainly affects the poor in developing countries, pharmaceutical companies have little interest in developing new drugs and none are currently being tested. In this paper we focus on a novel parasite protein, cytochrome P450, which we propose to be a new drug target. Worms are unusual in having only one cytochrome P450 gene; humans have 57 cytochrome P450 genes. By using reverse genetic and chemical approaches we found that the schistosome cytochrome P450 is essential for worm survival and egg development and, therefore, is an essential and druggable target. Drugs that target fungal cytochrome P450s and are already in use for treating several human diseases were identified as potential hits for further development for schistosomiasis treatment.
Collapse
Affiliation(s)
- Peter D. Ziniel
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Bhargava Karumudi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andrew H. Barnard
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ethan M. S. Fisher
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Larissa M. Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - David L. Williams
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ménard V, Collin P, Margaillan G, Guillemette C. Modulation of the UGT2B7 Enzyme Activity by C-Terminally Truncated Proteins Derived from Alternative Splicing. Drug Metab Dispos 2013; 41:2197-205. [DOI: 10.1124/dmd.113.053876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
11
|
Abstract
Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
| | - Rachel F. Tyndale
- Correspondence to: R.F. Tyndale, Department of Pharmacology and Toxicology, 1 King’s College Circle, Toronto ON M5S 1A8;
| |
Collapse
|
12
|
Ravindranath V, Strobel HW. Cytochrome P450-mediated metabolism in brain: functional roles and their implications. Expert Opin Drug Metab Toxicol 2013; 9:551-8. [PMID: 23330950 DOI: 10.1517/17425255.2013.759208] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cytochromes P450 (P450) and associated monooxygenases are a family of heme proteins involved in metabolism of endogenous compounds (arachidonic acid, eicosanoids and prostaglandins) as also xenobiotics including drugs and environmental chemicals. Liver is the major organ involved in P450-mediated metabolism and hepatic enzymes have been characterized. Extrahepatic organs, such as lung, kidney and brain have the capability for biotransformation through P450 enzymes. Brain, including human brain, expresses P450 enzymes that metabolize xenobiotics and endogenous compounds. AREAS COVERED An overview of P450-mediated metabolism in brain is presented focusing on distinct differences seen in expression of P450 enzymes, generation of unique P450 enzymes in brain through alternate splicing and their consequences in terms of metabolism of psychoactive drugs and inflammatory prompts, such as leukotrienes, thus modulating inflammatory response. EXPERT OPINION The brain possesses unique P450s that metabolize drugs and endogenous compounds through pathways that are markedly different from that seen in liver indicating that extrapolation directly from liver to brain is not appropriate. It is therefore necessary to characterize the unique brain P450s and their ability to metabolize xenobiotics and endogenous compounds to better understand the functions of this important class of enzymes in brain, especially human brain.
Collapse
|
13
|
Heydel JM, Holsztynska EJ, Legendre A, Thiebaud N, Artur Y, Le Bon AM. UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metab Rev 2010; 42:74-97. [PMID: 20067364 DOI: 10.3109/03602530903208363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aims to review uridine diphosphate (UDP)-glucuronosyltransferase (UGT) expression and activities along different neuronal structures involved in the common physiological process of olfaction: olfactory epithelium, olfactory bulb, and olfactory cortex. For the first time, using high-throughput in situ hybridization data generated by the Allen Brain Atlas (ABA), we present quantitative analysis of spatial distribution of UGT genes in the mouse brain. The olfactory area is a central nervous system site with the highest expression of UGTs, including UGT isoforms not previously identified in the brain. Since there is evidence of the transfer of xenobiotics to the brain through the nasal pathway, circumventing the blood-brain barrier, olfactory UGTs doubtlessly share the common function of detoxification, but they are also involved in the metabolism and turnover of exogenous or endogenous compounds critical for physiological olfactory processing in these tissues. The function of olfactory UGTs will be discussed with a special focus on their participation in the perireceptor events involved in the modulation of olfactory perception.
Collapse
|
14
|
Extensive splicing of transcripts encoding the bile acid-conjugating enzyme UGT2B4 modulates glucuronidation. Pharmacogenet Genomics 2010; 20:195-210. [DOI: 10.1097/fpc.0b013e328336ef1c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Sathyanarayana Rao TS, Ramesh BN, Vasudevaraju P, Rao KSJ. Molecular biology research in neuropsychiatry: India's contribution. Indian J Psychiatry 2010; 52:S120-7. [PMID: 21836667 PMCID: PMC3146196 DOI: 10.4103/0019-5545.69223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropsychiatric disorders represent the second largest cause of morbidity worldwide. These disorders have complex etiology and patho-physiology. The major lacunae in the biology of the psychiatric disorders include genomics, biomarkers and drug discovery, for the early detection of the disease, and have great application in the clinical management of disease. Indian psychiatrists and scientists played a significant role in filling the gaps. The present annotation provides in depth information related to research contributions on the molecular biology research in neuropsychiatric disorders in India. There is a great need for further research in this direction as to understand the genetic association of the neuropsychiatric disorders; molecular biology has a tremendous role to play. The alterations in gene expression are implicated in the pathogenesis of several neuropsychiatric disorders, including drug addiction and depression. The development of transgenic neuropsychiatric animal models is of great thrust areas. No studies from India in this direction. Biomarkers in neuropsychiatric disorders are of great help to the clinicians for the early diagnosis of the disorders. The studies related to gene-environment interactions, DNA instability, oxidative stress are less studied in neuropsychiatric disorders and making efforts in this direction will lead to pioneers in these areas of research in India. In conclusion, we provided an insight for future research direction in molecular understanding of neuropsychiatry disorders.
Collapse
|
16
|
Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie 2008; 90:426-36. [DOI: 10.1016/j.biochi.2007.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/16/2007] [Indexed: 11/23/2022]
|