1
|
Sanchez-Gonzalez E, Naranjo-Alcazar R, Tort-Ausina I, Donato MT, Salmeron-Sanchez M, Tolosa L, Gallego-Ferrer G. Injectable cell-laden gelatin-chondroitin sulphate hydrogels for liver in vitro models. Int J Biol Macromol 2024; 288:138693. [PMID: 39672443 DOI: 10.1016/j.ijbiomac.2024.138693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Liver extracellular matrix-based models that precisely reproduce liver physiology and functions are required as 3D culture microenvironments for multiple applications in toxicology and metabolism, or for understanding the mechanisms implicated in liver disease. We introduced injectable gelatin-chondroitin sulphate (Gel/CS) hydrogels for culturing HepG2 cells, and evaluated the mechanical properties and functionality of cells in different Gel/CS compositions. The Gel/CS hydrogels exhibited soft mechanical properties and allowed the HepG2 culture. The characterisation and comparison of 3D cultures to standard monolayer systems revealed the regulation of key hepatic markers (i.e. CYP3A4, GSTA1) when cells were cultured in the Gel/CS hydrogels compared to 2D cultures, and also enhanced urea and albumin production, which would indicate increased cells functionality. This study underpins 3D in vitro models based on the Gel/CS hydrogels that can be used for different hepatology applications by offering increased predictivity and physiological relevance compared to current in vitro models.
Collapse
Affiliation(s)
- E Sanchez-Gonzalez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia 46022, Spain
| | - R Naranjo-Alcazar
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - I Tort-Ausina
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia 46022, Spain
| | - M T Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia 46010, Spain; Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute, 28029 Madrid, Spain
| | - M Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia 46022, Spain; Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - L Tolosa
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia 46022, Spain; Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain.
| | - G Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia 46022, Spain.
| |
Collapse
|
2
|
Goldar S, Gachumi G, Siciliano SD, Hogan NS. The role of efflux transporters in cytotoxicity and intracellular concentration of chlorpyrifos and chlorpyrifos oxon in human cell lines. Toxicol In Vitro 2024; 101:105942. [PMID: 39284535 DOI: 10.1016/j.tiv.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
In this study, we investigated the role of two efflux transporters, p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in the cytotoxicity and intracellular accumulation of the organophosphate pesticide chlorpyrifos (CPF) and its active metabolite, CPF-oxon (CPFO), in a human-derived liver cell line (HepG2) and kidney epithelial cell line (HK-2). The cytotoxicity to CPF and CPFO differed between cell lines where HK-2 had lower IC50 values which could be attributed to lower basal expression and inducibility of metabolizing enzymes, transporters, and nuclear receptors in HK-2 cells. In HepG2 cells, co-exposure of CPF with a specific inhibitor of either P-gp or BCRP enhanced the cytotoxicity of CPF while co-exposure of CPFO with VRP enhanced the cytotoxicity of CPFO, suggesting the role of these transporters in the elimination CPF and CPFO. Inhibition of efflux transporters did not affect the cytotoxicity of CPF and CPFO in HK-2 cells. Co-incubation of CPF with P-gp and BCRP inhibitors increased the intracellular concentration of CPF in HepG2 cells suggesting that both transporters play a role in limiting the cellular accumulation of CPF in HepG2 cells. Our results provide evidence that inhibition of efflux transporters can enhance CPF-induced toxicity through enhanced cellular accumulation and raises additional questions regarding how pesticide-transporter interactions may influence toxicity of mixtures containing pesticides and other environmental chemicals.
Collapse
Affiliation(s)
- Samira Goldar
- Toxicology Graduate Program, Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - George Gachumi
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
3
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
4
|
Zerdoug A, Le Vée M, Le Mentec H, Carteret J, Jouan E, Jamin A, Lopez B, Uehara S, Higuchi Y, Yoneda N, Chesné C, Suemizu H, Fardel O. Induction of drug metabolizing enzyme and drug transporter expression by antifungal triazole pesticides in human HepaSH hepatocytes. CHEMOSPHERE 2024; 366:143474. [PMID: 39369742 DOI: 10.1016/j.chemosphere.2024.143474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Triazole pesticides are widely used fungicides, to which humans are rather highly exposed. They are known to activate drug-sensing receptors regulating expression of hepatic drug metabolizing enzymes and drug transporters, thus suggesting that the hepatic drug detoxification system is modified by these agrochemicals. To investigate this hypothesis, the effects of 9 triazole fungicides towards expression of drug metabolizing enzymes and transporters were characterized in cultured human HepaSH cells, that are human hepatocytes deriving from chimeric humanized liver TK-NOG mice. Most of triazoles used at 10 μM were found to act as inducers of cytochrome P-450 (CYP) 1A1, CYP1A2, CYP2B6, CYP3A4 and UDP-glucuronosyltransferase 1A1 mRNA levels and of CYP3A4 protein; some triazoles also enhanced mRNA expression of the canalicular transporters P-glycoprotein/MDR1, multidrug resistance-associated protein 2 and breast cancer resistance protein. Triazoles however concomitantly inhibited CYP2B6 and CYP3A4 activities and thus appeared as dual regulators of these CYPs, being both inducers of their expression and inhibitors of their activity. The inducing effect however predominated, at least for bromuconazole, propiconazole and tebuconazole. Bromuconazole was moreover predicted to enhance CYP2B6 and CYP3A4 expression in humans exposed to this fungicide in a chronic, acute or occupational context. These data demonstrate that key-actors of the human hepatic detoxification system are impacted by triazole pesticides, which may have to be considered for the risk assessment of these agrochemicals. They additionally highlight that the use of human HepaSH cells as surrogates to primary human hepatocytes represents an attractive and promising way for studying hepatic effects of environmental chemicals.
Collapse
Affiliation(s)
- Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; Biopredic International, F-35760, Saint Grégoire, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Agnès Jamin
- Biopredic International, F-35760, Saint Grégoire, France
| | - Béatrice Lopez
- Biopredic International, F-35760, Saint Grégoire, France
| | - Shotaro Uehara
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | | | - Hiroshi Suemizu
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
5
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
6
|
Ueyama-Toba Y, Tong Y, Yokota J, Murai K, Hikita H, Eguchi H, Takehara T, Mizuguchi H. Development of a hepatic differentiation method in 2D culture from primary human hepatocyte-derived organoids for pharmaceutical research. iScience 2024; 27:110778. [PMID: 39280628 PMCID: PMC11401167 DOI: 10.1016/j.isci.2024.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Human liver organoids derived from primary human hepatocytes (PHHs) are expected to be a hepatocyte source for preclinical in vitro studies of drug metabolism and disposition. Because hepatic functions of these organoids remain low, it is necessary to enhance the hepatic functions. Here, we develop a novel method for two dimensional (2D)-cultured hepatic differentiation from PHH-derived organoids by screening several compounds, cytokines, and growth factors. Hepatic gene expressions in the hepatocyte-like cells differentiated from PHH-derived organoids (Org-HEPs) were greatly increased, compared to those in PHH-derived organoids. The metabolic activities of cytochrome P450 (CYP) 1A2, CYP2C8, CYP2C19, CYP2E1, and CYP3A4 were at levels comparable to those in PHHs. The cell viability of Org-HEPs treated with hepatotoxic drugs was almost the same as that of PHHs. Thus, PHH-derived organoids could be differentiated into highly functional hepatocytes in 2D culture. Thus, Org-HEPs will be useful for pharmaceutical research, including hepatotoxicity tests.
Collapse
Affiliation(s)
- Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yanran Tong
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hayato Hikita
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Jiao D, Xie L, Xing W. A pumpless liver-on-a-chip for drug hepatotoxicity analysis. Analyst 2024; 149:4675-4686. [PMID: 39086194 DOI: 10.1039/d4an00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study presents the development and validation of an innovative microfluidic liver-on-a-chip device utilizing gravity-driven perfusion for the evaluation of drug hepatotoxicity. This research involved the construction of a hydrogel-based coculture chip that integrates liver parenchymal and stellate cells within a tri-channel configuration. The assembly and operation of the liver-on-a-chip and its accompanying custom rocker were straightforward. The cells in the chip maintained high viability and continuously synthesized liver albumin over extended culture durations. Acetaminophen (APAP), a hepatic injury-inducing drug, was utilized as a positive control in hepatic toxicity assays on the chip. The liver chip exhibited hepatotoxic responses comparable to those observed in 2D models. Furthermore, in this study we evaluated the effects of two plant-derived natural compounds, aristolochic acid I (AA) and its analog aristolactam AII (AL), in both 2D cell models and the liver-on-a-chip system. AA, known for its hepatorenal toxicity, was observed to cause hepatotoxicity in both the 2D models and on the chip. The flow cytometry and mRNA sequencing results confirmed the propensity of these compounds to induce liver cell apoptosis. Notably, AL, previously considered nontoxic, provoked a significant decrease in the hepatic functionality marker albumin exclusively in the liver chip but not in 2D models, indicating the liver chip's enhanced sensitivity to toxic substances. In summary, this pumpless liver-on-a-chip is a simple yet powerful tool for drug hepatotoxicity studies.
Collapse
Affiliation(s)
- Dian Jiao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Wanli Xing
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| |
Collapse
|
8
|
De Vos K, Mavrogiannis A, Wolters JC, Schlenner S, Wierda K, Cortés Calabuig Á, Chinnaraj R, Dermesrobian V, Armoudjian Y, Jacquemyn M, Corthout N, Daelemans D, Annaert P. Tankyrase1/2 inhibitor XAV-939 reverts EMT and suggests that PARylation partially regulates aerobic activities in human hepatocytes and HepG2 cells. Biochem Pharmacol 2024; 227:116445. [PMID: 39053638 DOI: 10.1016/j.bcp.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/β-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.
Collapse
Affiliation(s)
- Kristof De Vos
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Adamantios Mavrogiannis
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands
| | - Susan Schlenner
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Reena Chinnaraj
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vera Dermesrobian
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | | | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; VIB Bio Imaging Core, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Pieter Annaert
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; BioNotus GCV, 2845 Niel, Belgium.
| |
Collapse
|
9
|
Park SY, Koh WG, Lee HJ. Enhanced hepatotoxicity assessment through encapsulated HepG2 spheroids in gelatin hydrogel matrices: Bridging the gap from 2D to 3D culture. Eur J Pharm Biopharm 2024; 202:114417. [PMID: 39013493 DOI: 10.1016/j.ejpb.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Conventional 2D drug screening often fails to accurately predict clinical outcomes. We present an innovative approach to improve hepatotoxicity assessment by encapsulating HepG2 spheroids in gelatin hydrogel matrices with different mechanical properties. Encapsulated spheroids exhibit sustained liver-specific functionality, enhanced expression of drug-metabolizing enzymes, and increased drug sensitivity compared to 2D cultures. The platform detects critical variations in drug response, with significant differences in IC50 values between 2D and spheroid cultures ranging from 1.3-fold to > 13-fold, particularly for acetaminophen. Furthermore, drug-metabolizing enzyme expression varies across hydrogel concentrations, suggesting a role for matrix mechanical properties in modulating hepatocyte function. This novel spheroid-hydrogel platform offers a transformative approach to hepatotoxicity assessment, providing increased sensitivity, improved prediction, and a more physiologically relevant environment. The use of such advanced in vitro models can accelerate drug development, reduce animal testing, and contribute to improved patient safety and clinical outcomes.
Collapse
Affiliation(s)
- Se Yeon Park
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
10
|
Chiabotto G, Semnani A, Ceccotti E, Guenza M, Camussi G, Bruno S. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Reversing Hepatic Fibrosis in 3D Liver Spheroids. Biomedicines 2024; 12:1849. [PMID: 39200313 PMCID: PMC11351945 DOI: 10.3390/biomedicines12081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Hepatic fibrosis, arising from prolonged liver injury, entails the activation of hepatic stellate cells (HSCs) into myofibroblast-like cells expressing alpha-smooth muscle actin (α-SMA), thereby driving extracellular matrix deposition and fibrosis progression. Strategies targeting activated HSC reversal and hepatocyte regeneration show promise for fibrosis management. Previous studies suggest that extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) can suppress HSC activation, but ensuring EV purity is essential for clinical use. This study investigated the effects of MSC-derived EVs cultured in chemically defined conditions on liver spheroids and activated HSCs. Umbilical cord- and bone marrow-derived MSCs were expanded in chemically defined media, and EVs were isolated using filtration and differential ultracentrifugation. The impact of MSC-EVs was evaluated on liver spheroids generated in Sphericalplate 5D™ and on human HSCs, both activated by transforming growth factor beta 1 (TGF-β1). MSC-EVs effectively reduced the expression of profibrotic markers in liver spheroids and activated HSCs induced by TGF-β1 stimulation. These results highlight the potential of MSC-EVs collected under chemically defined conditions to mitigate the activated phenotype of HSCs and liver spheroids, suggesting MSC-EVs as a promising treatment for hepatic fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Bruno
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (G.C.); (A.S.); (E.C.); (G.C.)
| |
Collapse
|
11
|
Djordjevic Aleksic J, Kolarević S, Jovanović Marić J, Kračun-Kolarević M, Žegura B, Štern A, Sladić D, Novaković I, Vuković-Gačić B. Influence of alkylthio and arylthio derivatives of tert-butylquinone on the induction of DNA damage in a human hepatocellular carcinoma cell line (HepG2). Toxicol In Vitro 2024; 99:105882. [PMID: 38936441 DOI: 10.1016/j.tiv.2024.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The aim of this study was to investigate the effects of tert-butylquinone (TBQ) and its alkylthio and arylthio derivatives on DNA in vitro, using acellular and cellular test systems. Direct interaction with DNA was studied using the plasmid pUC19. Cytotoxic (MTS assay) and genotoxic (comet assay and γH2AX focus assays) effects, and their influence on the cell cycle were studied in the HepG2 cell line. Our results show that TBQ and its derivatives did not directly interact with DNA. The strongest cytotoxic effect on the HepG2 cells was observed for the derivative 2-tert-butyl-5,6-(ethylenedithio)-1,4-benzoquinone (IC50 64.68 and 55.64 μM at 24-h and 48-h treatment, respectively). The tested derivatives did not significantly influence the cell cycle distribution in the exposed cellular populations. However, all derivatives showed a genotoxic activity stronger than that of TBQ in the comet assay, with 2-tert-butyl-5,6-(ethylenedithio)-1,4-benzoquinone producing the strongest effect. The same derivative also induced DNA double-strand breaks in the γH2AX focus assay.
Collapse
Affiliation(s)
| | - Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Jovana Jovanović Marić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Dušan Sladić
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | - Irena Novaković
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department for Chemistry, Belgrade, Serbia
| | - Branka Vuković-Gačić
- University of Belgrade, Centre for Genotoxicology and Ecogenotoxicology, Faculty of Biology, Belgrade, Serbia
| |
Collapse
|
12
|
Mickols E, Meyer A, Handin N, Stüwe M, Eriksson J, Rudfeldt J, Blom K, Fryknäs M, Sellin ME, Lauschke VM, Karlgren M, Artursson P. OCT1 (SLC22A1) transporter kinetics and regulation in primary human hepatocyte 3D spheroids. Sci Rep 2024; 14:17334. [PMID: 39068198 PMCID: PMC11283471 DOI: 10.1038/s41598-024-67192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
3D spheroids of primary human hepatocytes (3D PHH) retain a differentiated phenotype with largely conserved metabolic function and proteomic fingerprint over weeks in culture. As a result, 3D PHH are gaining importance as a model for mechanistic liver homeostasis studies and in vitro to in vivo extrapolation (IVIVE) in drug discovery. However, the kinetics and regulation of drug transporters have not yet been assessed in 3D PHH. Here, we used organic cation transporter 1 (OCT1/SLC22A1) as a model to study both transport kinetics and the long-term regulation of transporter activity via relevant signalling pathways. The kinetics of the OCT1 transporter was studied using the fluorescent model substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) and known OCT1 inhibitors in individual 3D PHH. For long-term studies, 3D PHH were treated with xenobiotics for seven days, after which protein expression and OCT1 function were assessed. Global proteomic analysis was used to track hepatic phenotypes as well as prototypical changes in other regulated proteins, such as P-glycoprotein and Cytochrome P450 3A4. ASP+ kinetics indicated a fully functional OCT1 transporter with a Km value of 14 ± 4.0µM as the mean from three donors. Co-incubation with known OCT1 inhibitors decreased the uptake of ASP+ in the 3D PHH spheroids by 35-52%. The long-term exposure studies showed that OCT1 is relatively stable upon activation of nuclear receptor signalling or exposure to compounds that could induce inflammation, steatosis or liver injury. Our results demonstrate that 3D PHH spheroids express physiologically relevant levels of fully active OCT1 and that its transporter kinetics can be accurately studied in the 3D PHH configuration. We also confirm that OCT1 remains stable and functional during the activation of key metabolic pathways that alter the expression and function of other drug transporters and drug-metabolizing enzymes. These results will expand the range of studies that can be performed using 3D PHH.
Collapse
Affiliation(s)
| | - Alina Meyer
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Malin Stüwe
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Centre of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Tong Y, Ueyama-Toba Y, Yokota J, Matsui H, Kanai M, Mizuguchi H. Efficient hepatocyte differentiation of primary human hepatocyte-derived organoids using three dimensional nanofibers (HYDROX) and their possible application in hepatotoxicity research. Sci Rep 2024; 14:10846. [PMID: 38736008 PMCID: PMC11089038 DOI: 10.1038/s41598-024-61544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024] Open
Abstract
Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.
Collapse
Affiliation(s)
- Yanran Tong
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Hayato Matsui
- Bio-Industry Unit, Technology Research Laboratory, Shimadzu Corporation, Kyoto, 619-0237, Japan
- Cell Business Unit, Diagnostics Management Department, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, 619-0237, Japan
| | - Masaki Kanai
- Bio-Industry Unit, Technology Research Laboratory, Shimadzu Corporation, Kyoto, 619-0237, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Niemeijer M, Więcek W, Fu S, Huppelschoten S, Bouwman P, Baze A, Parmentier C, Richert L, Paules RS, Bois FY, van de Water B. Mapping Interindividual Variability of Toxicodynamics Using High-Throughput Transcriptomics and Primary Human Hepatocytes from Fifty Donors. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37005. [PMID: 38498338 PMCID: PMC10947137 DOI: 10.1289/ehp11891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Understanding the variability across the human population with respect to toxicodynamic responses after exposure to chemicals, such as environmental toxicants or drugs, is essential to define safety factors for risk assessment to protect the entire population. Activation of cellular stress response pathways are early adverse outcome pathway (AOP) key events of chemical-induced toxicity and would elucidate the estimation of population variability of toxicodynamic responses. OBJECTIVES We aimed to map the variability in cellular stress response activation in a large panel of primary human hepatocyte (PHH) donors to aid in the quantification of toxicodynamic interindividual variability to derive safety uncertainty factors. METHODS High-throughput transcriptomics of over 8,000 samples in total was performed covering a panel of 50 individual PHH donors upon 8 to 24 h exposure to broad concentration ranges of four different toxicological relevant stimuli: tunicamycin for the unfolded protein response (UPR), diethyl maleate for the oxidative stress response (OSR), cisplatin for the DNA damage response (DDR), and tumor necrosis factor alpha (TNF α ) for NF- κ B signaling. Using a population mixed-effect framework, the distribution of benchmark concentrations (BMCs) and maximum fold change were modeled to evaluate the influence of PHH donor panel size on the correct estimation of interindividual variability for the various stimuli. RESULTS Transcriptome mapping allowed the investigation of the interindividual variability in concentration-dependent stress response activation, where the average of BMCs had a maximum difference of 864-, 13-, 13-, and 259-fold between different PHHs for UPR, OSR, DDR, and NF- κ B signaling-related genes, respectively. Population modeling revealed that small PHH panel sizes systematically underestimated the variance and gave low probabilities in estimating the correct human population variance. Estimated toxicodynamic variability factors of stress response activation in PHHs based on this dataset ranged between 1.6 and 6.3. DISCUSSION Overall, by combining high-throughput transcriptomics and population modeling, improved understanding of interindividual variability in chemical-induced activation of toxicity relevant stress pathways across the human population using a large panel of plated cryopreserved PHHs was established, thereby contributing toward increasing the confidence of in vitro-based prediction of adverse responses, in particular hepatotoxicity. https://doi.org/10.1289/EHP11891.
Collapse
Affiliation(s)
- Marije Niemeijer
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, The Netherlands
| | | | - Shuai Fu
- Simcyp Division, CERTARA, Sheffield, UK
| | - Suzanna Huppelschoten
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, The Netherlands
| | | | | | | | - Richard S. Paules
- Division of the National Toxicology Program, NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | | | - Bob van de Water
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
Harris JM, Magri A, Faria AR, Tsukuda S, Balfe P, Wing PAC, McKeating JA. Oxygen-dependent histone lysine demethylase 4 restricts hepatitis B virus replication. J Biol Chem 2024; 300:105724. [PMID: 38325742 PMCID: PMC10914488 DOI: 10.1016/j.jbc.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Mammalian cells have evolved strategies to regulate gene expression when oxygen is limited. Hypoxia-inducible factors (HIF) are the major transcriptional regulators of host gene expression. We previously reported that HIFs bind and activate hepatitis B virus (HBV) DNA transcription under low oxygen conditions; however, the global cellular response to low oxygen is mediated by a family of oxygenases that work in concert with HIFs. Recent studies have identified a role for chromatin modifiers in sensing cellular oxygen and orchestrating transcriptional responses, but their role in the HBV life cycle is as yet undefined. We demonstrated that histone lysine demethylase 4 (KDM4) can restrict HBV, and pharmacological or oxygen-mediated inhibition of the demethylase increases viral RNAs derived from both episomal and integrated copies of the viral genome. Sequencing studies demonstrated that KDM4 is a major regulator of the hepatic transcriptome, which defines hepatocellular permissivity to HBV infection. We propose a model where HBV exploits cellular oxygen sensors to replicate and persist in the liver. Understanding oxygen-dependent pathways that regulate HBV infection will facilitate the development of physiologically relevant cell-based models that support efficient HBV replication.
Collapse
Affiliation(s)
- James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ana Rita Faria
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Beirow K, Schmidt C, Jürgen B, Schlüter R, Schweder T, Bednarski PJ. Investigation of TGF-α-overexpressing mouse hepatocytes (TAMH) cultured as spheroids for use in hepatotoxicity screening of drug candidates. J Appl Toxicol 2024; 44:272-286. [PMID: 37655636 DOI: 10.1002/jat.4538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
The immortalized mouse liver cell line TAMH has been described as a valuable tool for studying hepatotoxic mechanisms, but until now, it has only been reported to grow as a monolayer in culture. However, culturing hepatocytes as three-dimensional (3D) spheroids has been shown to result in improved liver-specific functions (e.g., metabolic capacity) by better mimicking the in vivo environment. This approach may lead to more reliable detection of drug-induced liver injury (DILI) in the early phase of drug discovery, preventing post-marketing drug withdrawals. Here, we investigated the cultivation of TAMH as 3D spheroids, characterizing them with optical and transmission electron microscopy as well as analyzing their gene expression at mRNA level (especially drug-metabolizing enzymes) compared to TAMH monolayer. In addition, comparisons were made with spheroids grown from the human hepatoblastoma cell line HepG2, another current spheroid model. The results indicate that TAMH spheroids express hepatic structures and show elevated levels of some of the key phase I and II drug-metabolizing enzymes, in contrast to TAMH monolayer. The in vitro hepatotoxic potencies of the drugs acetaminophen and flupirtine maleate were found to be very similar between TAMH spheroidal and the monolayer cultures. Both the advantages and disadvantages of TAMH spheroids as an in vitro hepatotoxicity model compared to monolayer model are discussed.
Collapse
Affiliation(s)
- Kristin Beirow
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Christian Schmidt
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Britta Jürgen
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Zhang GH, Liu H, Liu MH, Liu YC, Wang JQ, Wang Y, Wang X, Xiang Z, Liu W. Network Toxicology Prediction and Molecular Docking-based Strategy to Explore the Potential Toxicity Mechanism of Metformin Chlorination Byproducts in Drinking Water. Comb Chem High Throughput Screen 2024; 27:101-117. [PMID: 37170985 DOI: 10.2174/1386207326666230426105412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Metformin (MET), a worldwide used drug for treating type 2 diabetes but not metabolized by humans, has been found with the largest amount in the aquatic environment. Two MET chlorination byproducts, including Y and C, were transformed into drinking water during chlorination. However, the potential toxicity of the byproducts in hepatotoxicity and reproduction toxicity remains unclear. METHODS The TOPKAT database predicted the toxicological properties of metformin disinfection by-products. The targets of metformin disinfection by-products were mainly obtained from the PharmMapper database, and then the targets of hepatotoxicity and reproductive toxicity were screened from GeneCards. The overlapping targets of toxic component targets and the hepatotoxicity or reproduction toxicity targets were regarded as the key targets. Then, the STRING database analyzed the key target to construct a protein-protein interaction network (PPI) and GO, and KEGG analysis was performed by the DAVID platform. Meanwhile, the PPI network and compound- target network were constructed by Cytoscape 3.9.1. Finally, Discovery Studio 2019 software was used for molecular docking verification of the two toxic compounds and the core genes. RESULTS Y and C exhibited hepatotoxicity, carcinogenicity, and mutagenicity evaluated by TOPKAT. There were 22 potential targets relating to compound Y and hepatotoxicity and reproduction toxicity and 14 potential targets relating to compound C and hepatotoxicity and reproduction toxicity. PPI network analysis showed that SRC, MAPK14, F2, PTPN1, IL2, MMP3, HRAS, and RARA might be the key targets; the KEGG analysis indicated that compounds Y and C caused hepatotoxicity through Hepatitis B, Pathways in cancer, Chemical carcinogenesis-reactive oxygen species, Epstein-Barr virus infection; compound Y and C caused reproduction toxicity through GnRH signaling pathway, Endocrine resistance, Prostate cancer, Progesterone-mediated oocyte maturation. Molecular docking results showed that 2 compounds could fit in the binding pocket of the 7 hub genes. CONCLUSION This study preliminarily revealed the potential toxicity and possible toxicity mechanism of metformin disinfection by-products and provided a new idea for follow-up research.
Collapse
Affiliation(s)
- Gui-Hong Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Mei-Hua Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Yang-Cheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Jia-Qi Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Yang Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Xin Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| |
Collapse
|
18
|
Dortaj H, Azarpira N, Pakbaz S. Insight to Biofabrication of Liver Microtissues for Disease Modeling: Challenges and Opportunities. Curr Stem Cell Res Ther 2024; 19:1303-1311. [PMID: 37846577 DOI: 10.2174/011574888x257744231009071810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
In the last decade, liver diseases with high mortality rates have become one of the most important health problems in the world. Organ transplantation is currently considered the most effective treatment for compensatory liver failure. An increasing number of patients and shortage of donors has led to the attention of reconstructive medicine methods researchers. The biggest challenge in the development of drugs effective in chronic liver disease is the lack of a suitable preclinical model that can mimic the microenvironment of liver problems. Organoid technology is a rapidly evolving field that enables researchers to reconstruct, evaluate, and manipulate intricate biological processes in vitro. These systems provide a biomimetic model for studying the intercellular interactions necessary for proper organ function and architecture in vivo. Liver organoids, formed by the self-assembly of hepatocytes, are microtissues and can exhibit specific liver characteristics for a long time in vitro. Hepatic organoids are identified as an impressive tool for evaluating potential cures and modeling liver diseases. Modeling various liver diseases, including tumors, fibrosis, non-alcoholic fatty liver, etc., allows the study of the effects of various drugs on these diseases in personalized medicine. Here, we summarize the literature relating to the hepatic stem cell microenvironment and the formation of liver Organoids.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
20
|
Ge Y, Yang S, Zhang T, Wan X, Zhu Y, Yang F, Yin L, Pu Y, Liang G. The hepatotoxicity assessment of micro/nanoplastics: A preliminary study to apply the adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165659. [PMID: 37517720 DOI: 10.1016/j.scitotenv.2023.165659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Plastic pollution has become a significant global problem over the years, leading to the continuous decomposition and accumulation of micro/nanoplastics (MNPLs) in the environment. As a result, human exposure to these MNPLs is inevitable. The liver, in particular, is highly susceptible to potential MNPL toxicity. In this study, we systematically reviewed the current literature on MNPLs-induced hepatotoxicity and collected data on toxic events occurring at different biological levels. Then, to better understand the cause-mechanism causality, we developed an Adverse Outcome Pathway (AOP) framework for MNPLs-induced hepatotoxicity. The AOP framework provided insights into the mechanism of MNPL-induced hepatotoxicity and highlighted potential health risks such as liver dysfunction and inflammation, metabolism disorders and liver fibrosis. Moreover, we discussed the potential application of emerging toxicological models in the hepatotoxicity study. Liver organoids and liver-on-chips, which can simulate the structure and function of the liver in vitro, offer a promising alternative platform for toxicity testing and risk assessment. We proposed combining the AOP framework with these emerging toxicological models to improve our understanding of the hepatotoxic effects of MNPLs. Overall, this study performed a preliminary exploration of novel toxicological methodologies to assess the hepatotoxicity of MNPLs, providing a deeper understanding of environmental toxicology.
Collapse
Affiliation(s)
- Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| |
Collapse
|
21
|
Farhan F, Trivedi M, Di Wu P, Cui W. Extracellular matrix modulates the spatial hepatic features in hepatocyte-like cells derived from human embryonic stem cells. Stem Cell Res Ther 2023; 14:314. [PMID: 37907977 PMCID: PMC10619266 DOI: 10.1186/s13287-023-03542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) can provide a valuable in vitro model for disease modelling and drug development. However, generating HLCs with characteristics comparable to hepatocytes in vivo is challenging. Extracellular matrix (ECM) plays an important role in supporting liver development and hepatocyte functions, but their impact on hepatocyte differentiation and maturation during hPSC differentiation remains unclear. Here, we investigate the effects of two ECM components-Matrigel and type I collagen on hepatic differentiation of human embryonic stem cells (hESCs). METHODS hESC-derived HLCs were generated through multistage differentiation in two-dimensional (2D) and three-dimensional (3D) cultures, incorporating either type I collagen or Matrigel during hepatic specification and maturation. The resulting HLCs was characterized for their gene expression and functionality using various molecular and cellular techniques. RESULTS Our results showed that HLCs cultured with collagen exhibited a significant increase in albumin and alpha-1 anti-trypsin expression with reduced AFP compared to HLCs cultured with Matrigel. They also secreted more urea than Matrigel cultures. However, these HLCs exhibited lower CYP3A4 activity and glycogen storage than those cultured with Matrigel. These functional differences in HLCs between collagen and Matrigel cultures closely resembled the hepatocytes of periportal and pericentral zones, respectively. CONCLUSION Our study demonstrates that Matrigel and collagen have differential effects on the differentiation and functionality of HLCs, which resemble, to an extent, hepatic zonation in the liver lobules. Our finding has an important impact on the generation of hPSC-HLCs for biomedical and medical applications.
Collapse
Affiliation(s)
- Faiza Farhan
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Manjari Trivedi
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Priscilla Di Wu
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
22
|
Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals subgroups of primary human hepatocytes with heterogeneous responses to drug challenge. Genome Biol 2023; 24:234. [PMID: 37848949 PMCID: PMC10583437 DOI: 10.1186/s13059-023-03075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Xenobiotics are primarily metabolized by hepatocytes in the liver, and primary human hepatocytes are the gold standard model for the assessment of drug efficacy, safety, and toxicity in the early phases of drug development. Recent advances in single-cell genomics demonstrate liver zonation and ploidy as main drivers of cellular heterogeneity. However, little is known about the impact of hepatocyte specialization on liver function upon metabolic challenge, including hepatic metabolism, detoxification, and protein synthesis. RESULTS Here, we investigate the metabolic capacity of individual human hepatocytes in vitro. We assess how chronic accumulation of lipids enhances cellular heterogeneity and impairs the metabolisms of drugs. Using a phenotyping five-probe cocktail, we identify four functional subgroups of hepatocytes responding differently to drug challenge and fatty acid accumulation. These four subgroups display differential gene expression profiles upon cocktail treatment and xenobiotic metabolism-related specialization. Notably, intracellular fat accumulation leads to increased transcriptional variability and diminishes the drug-related metabolic capacity of hepatocytes. CONCLUSIONS Our results demonstrate that, upon a metabolic challenge such as exposure to drugs or intracellular fat accumulation, hepatocyte subgroups display different and heterogeneous transcriptional responses.
Collapse
Affiliation(s)
- Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Lucia Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany.
| | - Celia Pilar Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich (TUM), 80333, Munich, Germany.
| |
Collapse
|
23
|
Mahapatra D, Maronpot R. Translational Relevance of Rodent Models to Predict Human Liver Disease. Toxicol Pathol 2023; 51:482-486. [PMID: 38494947 DOI: 10.1177/01926233241230543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Animals models are essential to understand the complex pathobiology of human diseases. George Box's aphorism based on statistics "All models are wrong, but some are useful" certainly applies to animal models of disease. In this session, the translational relevance of various animal models applicable to human liver disease was explored starting with a historic overview of the rodent cancer bioassay with emphasis on hepatocarcinogenesis from early work at the National Cancer Institute, refinement by the National Toxicology Program and contemporary efforts to identify potential mechanisms and their relevance to human cancer risk. Subsequently, recently elucidated understanding of the molecular drivers and signaling mechanisms of liver pathophysiology and liver cancer, including factors associated with liver regeneration, metabolic hepatocellular zonation, and the role of macrophages and their crosstalk with stellate cells in understanding human liver disease was discussed. Next, our contemporary understanding of the role of nuclear receptors in hepatic homeostasis and drug response highlighting nuclear receptor activation and crosstalk in modulating biological responses associated with liver damage and neoplastic response were discussed. Finally, an overview and translational relevance of different drug-induced liver injury (DILI) rodent model systems focused on pathology and mechanisms with commentary on current relevant Food and Drug Administration (FDA) perspective were summarized with closing remarks.
Collapse
|
24
|
Rodriguez-Fernandez J, Garcia-Legler E, Villanueva-Badenas E, Donato MT, Gomez-Ribelles JL, Salmeron-Sanchez M, Gallego-Ferrer G, Tolosa L. Primary human hepatocytes-laden scaffolds for the treatment of acute liver failure. BIOMATERIALS ADVANCES 2023; 153:213576. [PMID: 37566937 DOI: 10.1016/j.bioadv.2023.213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Cell-based liver therapies based on retrieving and steadying failed metabolic function(s) for acute and chronic diseases could be a valuable substitute for liver transplants, even though they are limited by the low engraftment capability and reduced functional quality of primary human hepatocytes (PHH). In this paper we propose the use of gelatin-hyaluronic acid (Gel-HA) scaffolds seeded with PHH for the treatment of liver failure. We first optimized the composition using Gel-HA hydrogels, looking for the mechanical properties closer to the human liver and determining HepG2 cells functionality. Gel-HA scaffolds with interconnected porosity (pore size 102 μm) were prepared and used for PHH culture and evaluation of key hepatic functions. PHH cultured in Gel-HA scaffolds exhibited increased albumin and urea secretion and metabolic capacity (CYP and UGT activity levels) compared to standard monolayer cultures. The transplant of the scaffold containing PHH led to an improvement in liver function (transaminase levels, necrosis) and ameliorated damage in a mouse model of acetaminophen (APAP)-induced liver failure. The study provided a mechanistic understanding of APAP-induced liver injury and the impact of transplantation by analyzing cytokine production and oxidative stress induction to find suitable biomarkers of cell therapy effectiveness.
Collapse
Affiliation(s)
- Julio Rodriguez-Fernandez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Emma Garcia-Legler
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain
| | - M Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Gomez-Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Manuel Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain; Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| |
Collapse
|
25
|
Bowen TJ, Southam AD, Hall AR, Weber RJM, Lloyd GR, Macdonald R, Wilson A, Pointon A, Viant MR. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat Commun 2023; 14:4653. [PMID: 37537184 PMCID: PMC10400635 DOI: 10.1038/s41467-023-40333-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Untargeted metabolomics is an established approach in toxicology for characterising endogenous metabolic responses to xenobiotic exposure. Detecting the xenobiotic and its biotransformation products as part of the metabolomics analysis provides an opportunity to simultaneously gain deep insights into its fate and metabolism, and to associate the internal relative dose directly with endogenous metabolic responses. This integration of untargeted exposure and response measurements into a single assay has yet to be fully demonstrated. Here we assemble a workflow to discover and analyse pharmaceutical-related measurements from routine untargeted UHPLC-MS metabolomics datasets, derived from in vivo (rat plasma and cardiac tissue, and human plasma) and in vitro (human cardiomyocytes) studies that were principally designed to investigate endogenous metabolic responses to drug exposure. Our findings clearly demonstrate how untargeted metabolomics can discover extensive biotransformation maps, temporally-changing relative systemic exposure, and direct associations of endogenous biochemical responses to the internal dose.
Collapse
Affiliation(s)
- Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Hall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth Macdonald
- Animal Sciences and Technology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
26
|
Li L, Zang Q, Li X, Zhu Y, Wen S, He J, Zhang R, Abliz Z. Spatiotemporal pharmacometabolomics based on ambient mass spectrometry imaging to evaluate the metabolism and hepatotoxicity of amiodarone in HepG2 spheroids. J Pharm Anal 2023; 13:483-493. [PMID: 37305784 PMCID: PMC10257197 DOI: 10.1016/j.jpha.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 06/13/2023] Open
Abstract
Three-dimensional (3D) cell spheroid models combined with mass spectrometry imaging (MSI) enables innovative investigation of in vivo-like biological processes under different physiological and pathological conditions. Herein, airflow-assisted desorption electrospray ionization-MSI (AFADESI-MSI) was coupled with 3D HepG2 spheroids to assess the metabolism and hepatotoxicity of amiodarone (AMI). High-coverage imaging of >1100 endogenous metabolites in hepatocyte spheroids was achieved using AFADESI-MSI. Following AMI treatment at different times, 15 metabolites of AMI involved in N-desethylation, hydroxylation, deiodination, and desaturation metabolic reactions were identified, and according to their spatiotemporal dynamics features, the metabolic pathways of AMI were proposed. Subsequently, the temporal and spatial changes in metabolic disturbance within spheroids caused by drug exposure were obtained via metabolomic analysis. The main dysregulated metabolic pathways included arachidonic acid and glycerophospholipid metabolism, providing considerable evidence for the mechanism of AMI hepatotoxicity. In addition, a biomarker group of eight fatty acids was selected that provided improved indication of cell viability and could characterize the hepatotoxicity of AMI. The combination of AFADESI-MSI and HepG2 spheroids can simultaneously obtain spatiotemporal information for drugs, drug metabolites, and endogenous metabolites after AMI treatment, providing an effective tool for in vitro drug hepatotoxicity evaluation.
Collapse
Affiliation(s)
- Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinzhu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shanjing Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
27
|
Fu J, Qiu H, Tan CS. Microfluidic Liver-on-a-Chip for Preclinical Drug Discovery. Pharmaceutics 2023; 15:pharmaceutics15041300. [PMID: 37111785 PMCID: PMC10141038 DOI: 10.3390/pharmaceutics15041300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Drug discovery is an expensive, long, and complex process, usually with a high degree of uncertainty. In order to improve the efficiency of drug development, effective methods are demanded to screen lead molecules and eliminate toxic compounds in the preclinical pipeline. Drug metabolism is crucial in determining the efficacy and potential side effects, mainly in the liver. Recently, the liver-on-a-chip (LoC) platform based on microfluidic technology has attracted widespread attention. LoC systems can be applied to predict drug metabolism and hepatotoxicity or to investigate PK/PD (pharmacokinetics/pharmacodynamics) performance when combined with other artificial organ-on-chips. This review discusses the liver physiological microenvironment simulated by LoC, especially the cell compositions and roles. We summarize the current methods of constructing LoC and the pharmacological and toxicological application of LoC in preclinical research. In conclusion, we also discussed the limitations of LoC in drug discovery and proposed a direction for improvement, which may provide an agenda for further research.
Collapse
Affiliation(s)
- Jingyu Fu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hailong Qiu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Cherie S Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Yang S, Ooka M, Margolis RJ, Xia M. Liver three-dimensional cellular models for high-throughput chemical testing. CELL REPORTS METHODS 2023; 3:100432. [PMID: 37056374 PMCID: PMC10088249 DOI: 10.1016/j.crmeth.2023.100432] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Drug-induced hepatotoxicity is a leading cause of drug withdrawal from the market. High-throughput screening utilizing in vitro liver models is critical for early-stage liver toxicity testing. Traditionally, monolayer human hepatocytes or immortalized liver cell lines (e.g., HepG2, HepaRG) have been used to test compound liver toxicity. However, monolayer-cultured liver cells sometimes lack the metabolic competence to mimic the in vivo condition and are therefore largely appropriate for short-term toxicological testing. They may not, however, be adequate for identifying chronic and recurring liver damage caused by drugs. Recently, several three-dimensional (3D) liver models have been developed. These 3D liver models better recapitulate normal liver function and metabolic capacity. This review describes the current development of 3D liver models that can be used to test drugs/chemicals for their pharmacologic and toxicologic effects, as well as the advantages and limitations of using these 3D liver models for high-throughput screening.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masato Ooka
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Jared Margolis
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Chen YH, Shih YT, Chien CS, Tsai CS. Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach. PLoS One 2022; 17:e0266435. [PMID: 36516131 PMCID: PMC9750037 DOI: 10.1371/journal.pone.0266435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
We apply a heterogeneous graph convolution network (GCN) combined with a multi-layer perceptron (MLP) denoted by GCNMLP to explore the potential side effects of drugs. Here the SIDER, OFFSIDERS, and FAERS are used as the datasets. We integrate the drug information with similar characteristics from the datasets of known drugs and side effect networks. The heterogeneous graph networks explore the potential side effects of drugs by inferring the relationship between similar drugs and related side effects. This novel in silico method will shorten the time spent in uncovering the unseen side effects within routine drug prescriptions while highlighting the relevance of exploring drug mechanisms from well-documented drugs. In our experiments, we inquire about the drugs Vancomycin, Amlodipine, Cisplatin, and Glimepiride from a trained model, where the parameters are acquired from the dataset SIDER after training. Our results show that the performance of the GCNMLP on these three datasets is superior to the non-negative matrix factorization method (NMF) and some well-known machine learning methods with respect to various evaluation scales. Moreover, new side effects of drugs can be obtained using the GCNMLP.
Collapse
Affiliation(s)
- Y.-H. Chen
- Dept. of Nephrology, Taichung Tzu Chi Hospital, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Y.-T. Shih
- Dept. of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan
| | - C.-S. Chien
- Dept. of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan
| | - C.-S. Tsai
- Dept. of Management of Information Systems, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Cao L, Zhao H, Qian M, Shao C, Zhang Y, Yang J. Construction of polysaccharide scaffold-based perfusion bioreactor supporting liver cell aggregates for drug screening. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2249-2269. [PMID: 35848470 DOI: 10.1080/09205063.2022.2102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rebuilding a suitable microenvironment of liver cells is the key challenge to enhancing the expression of hepatic functions for drug screening in vitro. To improve the microenvironment by providing the specific adhesive ligands for hepatocytes in the three-dimensional dynamic culture, a perfusion bioreactor with a pectin/alginate blend porous scaffold was constructed in this study. The galactosyl component in the main chain of pectin was able to be specifically recognized by the asialoglycoprotein receptor on the surface of hepatocytes, and subsequently promoted the adhesion and aggregation of hepatocytes co-cultured with hepatic non-parenchymal cells. The bioreactor was optimized for 4 h of dynamic inoculation followed by perfusion at a flow rate of 2 mL/min, which provided adequate oxygen supply and good mass transfer to the liver cells. During dynamic cultured in the bioreactor for 14 days, more multicellular aggregates were formed and were evenly distributed in the pectin/alginate blend scaffolds. The expressions of intercellular interaction and hepatic functions of the hepatocytes in aggregates were significantly enhanced in the three-dimensional dynamic group. Furthermore, the bioreactor not only markedly upregulated the cell polarity markers expression of hepatocytes but also enhanced their metabolic capacity to acetaminophen, isoniazid, and tolbutamide, which exhibited a significant concentration-dependent manner. Therefore, the pectin/alginate blend scaffold-based perfusion bioreactor appeared to be a promising candidate in the field of drug development and liver regeneration research.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China.,Biological Sample Resource Sharing Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huicun Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Mengyuan Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
31
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
32
|
Messelmani T, Le Goff A, Souguir Z, Maes V, Roudaut M, Vandenhaute E, Maubon N, Legallais C, Leclerc E, Jellali R. Development of Liver-on-Chip Integrating a Hydroscaffold Mimicking the Liver’s Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9090443. [PMID: 36134989 PMCID: PMC9495334 DOI: 10.3390/bioengineering9090443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
The 3Rs guidelines recommend replacing animal testing with alternative models. One of the solutions proposed is organ-on-chip technology in which liver-on-chip is one of the most promising alternatives for drug screening and toxicological assays. The main challenge is to achieve the relevant in vivo-like functionalities of the liver tissue in an optimized cellular microenvironment. Here, we investigated the development of hepatic cells under dynamic conditions inside a 3D hydroscaffold embedded in a microfluidic device. The hydroscaffold is made of hyaluronic acid and composed of liver extracellular matrix components (galactosamine, collagen I/IV) with RGDS (Arg-Gly-Asp-Ser) sites for cell adhesion. The HepG2/C3A cell line was cultured under a flow rate of 10 µL/min for 21 days. After seeding, the cells formed aggregates and proliferated, forming 3D spheroids. The cell viability, functionality, and spheroid integrity were investigated and compared to static cultures. The results showed a 3D aggregate organization of the cells up to large spheroid formations, high viability and albumin production, and an enhancement of HepG2 cell functionalities. Overall, these results highlighted the role of the liver-on-chip model coupled with a hydroscaffold in the enhancement of cell functions and its potential for engineering a relevant liver model for drug screening and disease study.
Collapse
Affiliation(s)
- Taha Messelmani
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Anne Le Goff
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Victoria Maes
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Méryl Roudaut
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Elodie Vandenhaute
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Eric Leclerc
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| |
Collapse
|
33
|
Dalsbecker P, Beck Adiels C, Goksör M. Liver-on-a-chip devices: the pros and cons of complexity. Am J Physiol Gastrointest Liver Physiol 2022; 323:G188-G204. [PMID: 35819853 DOI: 10.1152/ajpgi.00346.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Physiologically relevant and broadly applicable liver cell culture platforms are of great importance in both drug development and disease modeling. Organ-on-a-chip systems offer a promising alternative to conventional, static two-dimensional (2-D) cultures, providing much-needed cues such as perfusion, shear stress, and three-dimensional (3-D) cell-cell communication. However, such devices cover a broad range of complexity both in manufacture and in implementation. In this review, we summarize the key features of the human liver that should be reflected in a physiologically relevant liver-on-a-chip model. We also discuss different material properties of importance in producing liver-on-a-chip devices and summarize recent and current progress in the field, highlighting different types of devices at different levels of complexity.
Collapse
Affiliation(s)
| | | | - Mattias Goksör
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
35
|
An Engineered Protein-Based Building Block (Albumin Methacryloyl) for Fabrication of a 3D In Vitro Cryogel Model. Gels 2022; 8:gels8070404. [PMID: 35877489 PMCID: PMC9324498 DOI: 10.3390/gels8070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition in drug development or withdrawal; current animal experiments and traditional 2D cell culture systems fail to precisely predict the liver toxicity of drug candidates. Hence, there is an urgent need for an alternative in vitro model that can mimic the liver microenvironments and accurately detect human-specific drug hepatotoxicity. Here, for the first time we propose the fabrication of an albumin methacryloyl cryogel platform inspired by the liver’s microarchitecture via emulating the mechanical properties and extracellular matrix (ECM) cues of liver. Engineered crosslinkable albumin methacryloyl is used as a protein-based building block for fabrication of albumin cryogel in vitro models that can have potential applications in 3D cell culture and drug screening. In this work, protein modification, cryogelation, and liver ECM coating were employed to engineer highly porous three-dimensional cryogels with high interconnectivity, liver-like stiffness, and liver ECM as artificial liver constructs. The resulting albumin-based cryogel in vitro model provided improved cell–cell and cell–material interactions and consequently displayed excellent liver functional gene expression, being conducive to detection of fialuridine (FIAU) hepatotoxicity.
Collapse
|
36
|
Mai P, Hampl J, Baca M, Brauer D, Singh S, Weise F, Borowiec J, Schmidt A, Küstner JM, Klett M, Gebinoga M, Schroeder IS, Markert UR, Glahn F, Schumann B, Eckstein D, Schober A. MatriGrid® Based Biological Morphologies: Tools for 3D Cell Culturing. Bioengineering (Basel) 2022; 9:bioengineering9050220. [PMID: 35621498 PMCID: PMC9138054 DOI: 10.3390/bioengineering9050220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid®s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account.
Collapse
Affiliation(s)
- Patrick Mai
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Jörg Hampl
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| | - Martin Baca
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Dana Brauer
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Sukhdeep Singh
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Frank Weise
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Justyna Borowiec
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - André Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Johanna Merle Küstner
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Maren Klett
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Michael Gebinoga
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Insa S. Schroeder
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany;
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Felix Glahn
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Berit Schumann
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Diana Eckstein
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Andreas Schober
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| |
Collapse
|
37
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
38
|
Naito Y, Yoshinouchi Y, Sorayama Y, Kohara H, Kitano S, Irie S, Matsusaki M. Constructing vascularized hepatic tissue by cell-assembled viscous tissue sedimentation method and its application for vascular toxicity assessment. Acta Biomater 2022; 140:275-288. [PMID: 34826641 DOI: 10.1016/j.actbio.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023]
Abstract
In vitro Construction of the liver sinusoidal structure using artificial tissue is an important but worthwhile challenge, particularly for assessing the risk of diseases such as sinusoidal obstruction syndrome (SOS). Current models are unsuitable for evaluating the toxicity because of lacking sinusoidal capillary. In this study, we developed a vascularized hepatic tissue (VHT) using a unique tissue engineering technique, the cell assembled viscous tissue by sedimentation (CAViTs) method. The "viscous bodies" created using the CAViTs method exhibited significant self-assembly within 6 h after seeding, promoting cell-cell interaction. The level of albumin secreted by the VHT was four times higher than that of 2D-coculture and maintained for 1 month. The gene expression pattern of the VHT was closer to that of total human liver, compared with the 2D system. Quantitative evaluations of the vascular structure of VHT treated with two typical SOS-inducing compounds, monocrotaline and retrorsine, revealed higher sensitivity (IC50 = 40.35 µM), 19.92 times higher than the cell-viability assay. Thus, VHT represents an innovative in vitro model that mimics the vessel network structure and could become a useful tool for the early screening of compounds associated with a risk of vascular toxicity. STATEMENT OF SIGNIFICANCE: Mimicking sinusoidal structures in in vitro liver model is important to consider from the perspective of predicting hepatotoxicity such like sinusoidal obstruction syndrome (SOS). However, it was difficult to reconstruct the vascular structure within the hepatocyte-rich environment. In this study, we constructed a vascularized hepatic tissue in a high-throughput manner by a unique method using collagen and heparin, and evaluated its applicability to toxicity assessment. Vessel morphology analysis of the model treated by monocrotaline, which is a well-known SOS-inducing compound, could predict the toxicity with higher sensitivity. To the best of our knowledge, this is the first report to provide vascularized hepatic tissues using sinusoidal endothelial cells at least for demonstrating applicability to the evaluation of SOS induction risk.
Collapse
|
39
|
Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. Influence of Liver Extracellular Matrix in Predicting Drug-Induced Liver Injury: An Alternate Paradigm. ACS Biomater Sci Eng 2022; 8:834-846. [PMID: 34978414 DOI: 10.1021/acsbiomaterials.1c00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vitro drug-induced liver injury (DILI) models are promising tools for drug development to predict adverse events during clinical usage. However, the currently available DILI models are not specific or not able to predict the injury accurately. This is believed to be mainly because of failure to conserve the hepatocyte phenotype, lack of longevity, and difficulty in maintaining the tissue-specific microenvironment. In this study, we have assessed the potential of decellularized liver extracellular matrix (DLM) in retaining the hepatic cellular phenotype and functionality in the presence of a tissue-specific microenvironment along with its role in influencing the effect of the drug on hepatic cells. We show that DLM helps maintain the phenotype of the hepatic cell line HepG2, a well-known cell line for secretion of human proteins that is easily available. Also, the DLM enhanced the expression of a metabolic marker carbamoyl phosphate synthetase I (CPS1), a regulator of urea cycle, and bile salt export pump (BSEP), a marker of hepatocyte polarity. We further validated the DLM for its influence on the sensitivity of cells toward different classes of drugs. Interestingly, the coculture model, in the presence of endothelial cells and stellate cells, exhibited a higher sensitivity for both acetaminophen and trovafloxacin, a toxic compound that does not show any toxicity on preclinical screening. Thus, our results demonstrate for the first time that a multicellular combination along with DLM can be a potential and reliable DILI model to screen multiple drugs.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Brett Cromer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
40
|
Ma X, Sun J, Ye Y, Ji J, Sun X. Application of triple co-cultured cell spheroid model for exploring hepatotoxicity and metabolic pathway of AFB1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150840. [PMID: 34627904 DOI: 10.1016/j.scitotenv.2021.150840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The toxicity evaluation suffers from the absence of suitable models capable of replicating in the co-cultured cell microenvironment and the function of specific tissues in vitro. Motivated by this urgent need, this study aimed to describe a novel three-dimensional (3D) liver spheroid model. The model consisted of a triple co-culture of HepG2, EA.hy 926, and LX-2. Subsequently, it was used for the toxicity evaluation of aflatoxin B1 (AFB1), and its advantages over the two-dimensional (2D) model and the mono-type cell spheroid model were assessed. This study examined the effects of AFB1 on cell viability, proliferation, mitochondria, oxidative stress, and cell membranes. The results revealed that AFB1 greatly affected 2D cell membranes and oxidative stress levels (0.01 μg/mL; 24 h), and could also significantly affect 2D cell viability, proliferation, and mitochondria levels (1 μg/mL; 24 h). On the contrary, 3D cells were less susceptible to AFB1. Combined with the analysis of gene expression, both metabolic activation (cytochrome P450; CYP450) and detoxification efficiency (drug-metabolizing enzymes) were found to be higher in 3D cells than in 2D cells. Moreover, 3D cells in triple co-culture outperformed mono-type cell spheroids. Therefore, the advanced 3D co-cultured spheroid model constructed in this study allowed us to more realistically simulate the microenvironment in vitro, and was a valuable and precise model to study mycotoxins.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
41
|
Widjaja F, Alhejji Y, Rietjens IMCM. The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides. PLANTA MEDICA 2022; 88:130-143. [PMID: 34741297 PMCID: PMC8807025 DOI: 10.1055/a-1582-9794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University and Research, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University and Research, The Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
42
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
43
|
Moreno-Torres M, Kumar M, García-Llorens G, Quintás G, Tricot T, Boon R, Tolosa L, Toprakhisar B, Chesnais F, Verfaillie C, Castell JV. A Novel UPLC-MS Metabolomic Analysis-Based Strategy to Monitor the Course and Extent of iPSC Differentiation to Hepatocytes. J Proteome Res 2022; 21:702-712. [PMID: 34982937 DOI: 10.1021/acs.jproteome.1c00779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Typical protocols to differentiate induced pluripotent stem cells (iPSCs) from hepatocyte-like cells (HLCs) imply complex strategies that include transfection with key hepatic transcription factors and the addition to culture media of nutrients, growth factors, and cytokines. A main constraint to evaluate the hepatic phenotype achieved arises from the way the grade of differentiation is determined. Currently, it relies on the assessment of the expression of a limited number of hepatic gene transcripts, less frequently by assessing certain hepatic metabolic functions, and rarely by the global metabolic performance of differentiated cells. We envisaged a new strategy to assess the extent of differentiation achieved, based on the analysis of the cellular metabolome along the differentiation process and its quantitative comparison with that of primary human hepatocytes (PHHs). To validate our approach, we examined the changes in the metabolome of three iPSC progenies (transfected with/without key transcription factors), cultured in three differentiation media, and compared them to PHHs. Results revealed consistent metabolome changes along differentiation and evidenced the factors that more strongly promote changes in the metabolome. The integrated dissimilarities between the PHHs and HLCs retrieved metabolomes were used as a numerical reference for quantifying the degree of iPSCs differentiation. This newly developed metabolome-analysis approach evidenced its utility in assisting us to select a cell's source, culture conditions, and differentiation media, to achieve better-differentiated HLCs.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Guillem García-Llorens
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia 46010, Spain
| | - Guillermo Quintás
- Health and Biomedicine, LEITAT Technological Center, Valencia 46026, Spain.,Analytical Unit, Health Research Institute La Fe, Valencia 46026, Spain
| | - Tine Tricot
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Ruben Boon
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston 02114, Massachusetts, United States.,The Broad Institute, Harvard & MIT, Cambridge 02142, Massachusetts, United States
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain
| | - Burak Toprakhisar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Francois Chesnais
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.,Academic Center of Reconstructive Science, King's College London, London SE1 9RT, U.K
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - José V Castell
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain.,Analytical Unit, Health Research Institute La Fe, Valencia 46026, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia 46010, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
44
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
45
|
HiPSC-Derived Hepatocyte-like Cells Can Be Used as a Model for Transcriptomics-Based Study of Chemical Toxicity. TOXICS 2021; 10:toxics10010001. [PMID: 35051043 PMCID: PMC8780865 DOI: 10.3390/toxics10010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 01/13/2023]
Abstract
Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.
Collapse
|
46
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
47
|
Matsui T, Shinozawa T. Human Organoids for Predictive Toxicology Research and Drug Development. Front Genet 2021; 12:767621. [PMID: 34790228 PMCID: PMC8591288 DOI: 10.3389/fgene.2021.767621] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organoids are three-dimensional structures fabricated in vitro from pluripotent stem cells or adult tissue stem cells via a process of self-organization that results in the formation of organ-specific cell types. Human organoids are expected to mimic complex microenvironments and many of the in vivo physiological functions of relevant tissues, thus filling the translational gap between animals and humans and increasing our understanding of the mechanisms underlying disease and developmental processes. In the last decade, organoid research has attracted increasing attention in areas such as disease modeling, drug development, regenerative medicine, toxicology research, and personalized medicine. In particular, in the field of toxicology, where there are various traditional models, human organoids are expected to blaze a new path in future research by overcoming the current limitations, such as those related to differences in drug responses among species. Here, we discuss the potential usefulness, limitations, and future prospects of human liver, heart, kidney, gut, and brain organoids from the viewpoints of predictive toxicology research and drug development, providing cutting edge information on their fabrication methods and functional characteristics.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
48
|
Handin N, Mickols E, Ölander M, Rudfeldt J, Blom K, Nyberg F, Senkowski W, Urdzik J, Maturi V, Fryknäs M, Artursson P. Conditions for maintenance of hepatocyte differentiation and function in 3D cultures. iScience 2021; 24:103235. [PMID: 34746700 PMCID: PMC8551077 DOI: 10.1016/j.isci.2021.103235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Spheroid cultures of primary human hepatocytes (PHH) are used in studies of hepatic drug metabolism and toxicity. The cultures are maintained under different conditions, with possible confounding results. We performed an in-depth analysis of the influence of various culture conditions to find the optimal conditions for the maintenance of an in vivo like phenotype. The formation, protein expression, and function of PHH spheroids were followed for three weeks in a high-throughput 384-well format. Medium composition affected spheroid histology, global proteome profile, drug metabolism and drug-induced toxicity. No epithelial-mesenchymal transition was observed. Media with fasting glucose and insulin levels gave spheroids with phenotypes closest to normal PHH. The most expensive medium resulted in PHH features most divergent from that of native PHH. Our results provide a protocol for culture of healthy PHH with maintained function - a prerequisite for studies of hepatocyte homeostasis and more reproducible hepatocyte research. 3D spheroid cultures were established in 384-well format Eight different media variants were used to optimize the 3D cultures Optimized William's medium was as good as expensive commercial medium The 3D cultures were used to study drug metabolism and toxicity
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Evgeniya Mickols
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Frida Nyberg
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Varun Maturi
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
49
|
Bouwmeester MC, Bernal PN, Oosterhoff LA, van Wolferen ME, Lehmann V, Vermaas M, Buchholz MB, Peiffer QC, Malda J, van der Laan LJW, Kramer NI, Schneeberger K, Levato R, Spee B. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol Biosci 2021; 21:e2100327. [PMID: 34559943 DOI: 10.1002/mabi.202100327] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 01/01/2023]
Abstract
There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88-107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21-51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.
Collapse
Affiliation(s)
- Manon C Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Paulina N Bernal
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Vivian Lehmann
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique Vermaas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Maj-Britt Buchholz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Quentin C Peiffer
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus Medical Center, Postbus 2040, Rotterdam, 3000 CA, The Netherlands
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, Utrecht, 3584 CM, The Netherlands
- Division of Toxicology, Wageningen University, P.O. box 8000, Wageningen, 6700 EA, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
50
|
Xu Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol 2021; 9:730008. [PMID: 34631680 PMCID: PMC8497968 DOI: 10.3389/fbioe.2021.730008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to retained hepatic phenotypes and functions, human three-dimensional (3D) hepatic models established with diverse hepatic cell types are thought to recoup the gaps in drug development and disease modeling limited by a conventional two-dimensional (2D) cell culture system and species-specific variability in drug metabolizing enzymes and transporters. Primary human hepatocytes, human hepatic cancer cell lines, and human stem cell-derived hepatocyte-like cells are three main hepatic cell types used in current models and exhibit divergent hepatic phenotypes. Primary human hepatocytes derived from healthy hepatic parenchyma resemble in vivo-like genetic and metabolic profiling. Human hepatic cancer cell lines are unlimitedly reproducible and tumorigenic. Stem cell-derived hepatocyte-like cells derived from patients are promising to retain the donor's genetic background. It has been suggested in some studies that unique properties of cell types endue them with benefits in different research fields of in vitro 3D modeling paradigm. For instance, the primary human hepatocyte was thought to be the gold standard for hepatotoxicity study, and stem cell-derived hepatocyte-like cells have taken a main role in personalized medicine and regenerative medicine. However, the comprehensive review focuses on the hepatic cell type variety, and corresponding applications in 3D models are sparse. Therefore, this review summarizes the characteristics of different cell types and discusses opportunities of different cell types in drug development, liver disease modeling, and liver transplantation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chinese Medicine, and Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|