1
|
Li R, Mak WWS, Li J, Zheng C, Shiu PHT, Seto SW, Lee SMY, Leung GPH. Structure-Activity Relationship Studies of 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) Analogues as Inhibitors of Human Equilibrative Nucleoside Transporters. Front Pharmacol 2022; 13:837555. [PMID: 35264969 PMCID: PMC8899516 DOI: 10.3389/fphar.2022.837555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) play a vital role in nucleotide synthesis, regulation of adenosine function and chemotherapy. Current inhibitors of ENTs are mostly ENT1-selective. Our previous study has demonstrated that 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) is a novel inhibitor of ENTs, which is more selective to ENT2 than to ENT1. The present study aimed to screen a series of FPMINT analogues and study their structure-activity relationship. Nucleoside transporter-deficient cells transfected with cloned human ENT1 and ENT2 were used as in vitro models. The results of the [3H]uridine uptake study showed that the replacement of the naphthalene moiety with the benzene moiety could abolish the inhibitory effects on ENT1 and ENT2. The addition of chloride to the meta position of this benzene moiety could restore only the inhibitory effect on ENT1 but had no effect on ENT2. However, the addition of the methyl group to the meta position or the ethyl or oxymethyl group to the para position of this benzene moiety could regain the inhibitory activity on both ENT1 and ENT2. The presence of a halogen substitute, regardless of the position, in the fluorophenyl moiety next to the piperazine ring was essential for the inhibitory effects on ENT1 and ENT2. Among the analogues tested, compound 3c was the most potent inhibitor. Compound 3c reduced V max of [3H]uridine uptake in ENT1 and ENT2 without affecting K m. The inhibitory effect of compound 3c could not be washed out. Compound 3c did not affect cell viability, protein expression and internalization of ENT1 and ENT2. Therefore, similar to FPMINT, compound 3c was an irreversible and non-competitive inhibitor. Molecular docking analysis also showed that the binding site of compound 3c in ENT1 may be different from that of other conventional inhibitors. It is expected that structural modification may further improve its potency and selectivity and lead to the development of useful pharmacological agents.
Collapse
Affiliation(s)
- Renkai Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Winston Wing-Shum Mak
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jingjing Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sai-Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
2
|
Gilmore JC, Serghides L, Bendayan R. Differential effects of antiretroviral drug toxicity in male versus female children who are HIV-exposed but uninfected. AIDS 2021; 35:1-14. [PMID: 33048885 DOI: 10.1097/qad.0000000000002707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
: In recent years, widespread use of antiretroviral therapy (ART) during pregnancy has been increasingly effective in reducing risk of vertical transmission of HIV, with over 80% of pregnant women living with HIV now accessing ART, and a 41% reduction in new infections in children between 2010 and 2018. Despite these strides, the developmental toxicity of widely administered antiretroviral drugs (ARVs) remains poorly described and existing literature often fails to account for fetal and infant sex as a variable. Recent reports have identified associations between in-utero exposure to commonly used antiretroviral regimens and alteration in neurodevelopment, growth, and metabolism amongst children who are HIV-exposed but uninfected, with findings of sex differences in the prevalence and severity of ARV toxicity. These differences are potentially explained by variable exposure to ARV drugs in utero or exacerbation of existing sex-linked risk factors. Fetal ARV exposure is mediated by placental and fetal drug transporters and metabolic enzymes, which may contribute to the manifestation of sex differences. Existing evidence of sex differences in ARV toxicity in fetal development is concerning, and demands further research to guide optimal treatment options for maternal health and prevention of vertical HIV transmission.
Collapse
Affiliation(s)
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network (UHN)
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto
| |
Collapse
|
3
|
Çağdaş D, Sürücü N, Tan Ç, Kayaoğlu B, Özgül RK, Akkaya-Ulum YZ, Aydınoğlu AT, Aytaç S, Gümrük F, Balci-Hayta B, Balci-Peynircioğlu B, Özen S, Gürsel M, Tezcan İ. Autoinflammation in addition to combined immunodeficiency: SLC29A3 gene defect. Mol Immunol 2020; 121:28-37. [PMID: 32151906 DOI: 10.1016/j.molimm.2020.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION H Syndrome is an autosomal recessive (AR) disease caused by defects in SLCA29A3 gene. This gene encodes the equilibrative nucleoside transporter, the protein which is highly expressed in spleen, lymph node and bone marrow. Autoinflammation and autoimmunity accompanies H Syndrome (HS). AIM The aim was to further elucidate the mechanisms of disease by molecular studies in a patient with SLC29A3 gene defect. PATIENT AND METHODS Mitochondrial dysfunction, lysosomal integrity, cytokine response in response to stimulation with different pattern recognition receptor ligands, and circulating cell-free mitochondrial-DNA(ccf-mtDNA) level in plasma were analyzed compared to controls to understand the cellular triggers of autoinflammation. RNA sequencing (RS) analyses were also performed in monocytes before/after culture with lipopolysaccharide. RESULTS Patient had progressive destructive arthropathy in addition to clinical findings due to combined immunodeficiency. Pure red cell aplasia (PRCA), vitiligo, diabetes, multiple autoantibody positivity, lymphopenia, increased acute phase reactants were present. Recent thymic emigrants (RTE), naïve T cells were decreased, effector memory CD4 + T cells, nonclassical inflammatory monocytes were increased. Patient's peripheral blood mononuclear cells secreted more IL-1β and IL-6, showed lysosomal disruption and significant mitochondrial dysfunction compared to healthy controls. Plasma ccf-mtDNA level was significantly elevated compared to age-matched controls (p < 0.05). RNA sequencing studies revealed decreased expression of NLR Family Caspase Recrument-Domain Containing 4(NLRC4), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4(PFKFB4), serine dehydratase(SDS), heparan sulfate(Glucosamine) 3-O-sulfotransferase 1(HS3ST1), neutral cholesterol ester hydrolase 1 (NCEH1), and interleukin-8 (IL-8) in patient's monocytes compared to controls. Longstanding PRCA, which is possibly autoimmune, resolved after initiating monthly intravenous immunoglobulins (IVIG) and low dose steroids to the patient. CONCLUSION Although autoinflammation and autoimmunity are reported in HS, by functional analyses we here show in the present patient that over-active inflammasome pathway in HS might be related with mitochondrial and lysosomal dysfunction. Increased plasma ccf-mtDNA may be used as a biomarker of inflammasomopathy in HS. HS should be included in the classification of primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Deniz Çağdaş
- Department of Pediatric Immunology, Hacettepe University Medical Faculty, Ankara, Turkey.
| | - Naz Sürücü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Çağman Tan
- Institute of Child Health, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Başak Kayaoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Rıza Köksal Özgül
- Department of Pediatric Metabolism, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşe Tülay Aydınoğlu
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Selin Aytaç
- Department of Pediatric Hematology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Fatma Gümrük
- Department of Pediatric Hematology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Seza Özen
- Department of Pediatric Rheumatology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Mayda Gürsel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatric Immunology, Hacettepe University Medical Faculty, Ankara, Turkey
| |
Collapse
|
4
|
Sergeeva O, Kepe V, Zhang Y, Miller-Atkins GA, Keynon JD, Iyer R, Sexton S, Awadallah A, Xin W, Saunthararajah Y, Chan ER, Lee Z. [ 18F] Clofarabine for PET Imaging of Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111748. [PMID: 31703407 PMCID: PMC6896045 DOI: 10.3390/cancers11111748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical diagnosis of hepatocellular carcinoma (HCC) relies heavily on radiological imaging. However, information pertaining to liver cancer treatment such as the proliferation status is lacking. Imaging tumor proliferation can be valuable in patient management. This study investigated 18F-labeled clofarabine ([18F]CFA) targeting deoxycytidine kinase (dCK) for PET imaging of dCK-dependent proliferation in HCC. Since clinical PET scans showed a high liver background uptake of [18F]CFA, the aim of this study was to reduce this liver background uptake. A clinically relevant animal model of spontaneously developed HCC in the woodchucks was used for imaging experiments. Several modifiers were tested and compared with the baseline PET scan: Forodesine, probenecid, and cold clofarabine, all applied before the hot [18F]CFA injection to evaluate the reduction in liver background uptake. Application of forodesine before hot [18F]CFA injection did not reduce the background uptake. Instead, it increased the background by 11.6–36.3%. Application of probenecid also increased the liver background uptake by 16.6–32.1%. Cold CFA application did reduce the liver background uptake of [18F]CFA, comparing to the baseline scan. Combining cold CFA with [18F]CFA for PET imaging of liver cancers is a promising strategy, worthy of further clinical evaluation.
Collapse
Affiliation(s)
- Olga Sergeeva
- Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; (O.S.); (Y.Z.)
| | - Vladimir Kepe
- Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Yifan Zhang
- Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; (O.S.); (Y.Z.)
| | | | | | - Renuka Iyer
- Medical Oncology, Rowell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.I.); (S.S.)
| | - Sandra Sexton
- Medical Oncology, Rowell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.I.); (S.S.)
| | - Amad Awadallah
- Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (A.A.); (W.X.)
| | - Wei Xin
- Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (A.A.); (W.X.)
| | | | - E. Ricky Chan
- Institute for Computational Biology, Cleveland, OH 44106, USA; (G.A.M.-A.); (E.R.C.)
| | - Zhenghong Lee
- Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; (O.S.); (Y.Z.)
- Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
- Correspondence: ; Tel.: +1-216-844-7920
| |
Collapse
|
5
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
6
|
Determination and quantification of intracellular fludarabine triphosphate, cladribine triphosphate and clofarabine triphosphate by LC-MS/MS in human cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1053:101-110. [PMID: 28415014 DOI: 10.1016/j.jchromb.2017.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/02/2017] [Accepted: 03/22/2017] [Indexed: 11/21/2022]
Abstract
Purine nucleoside analogues are widely used in the treatment of haematological malignancies, and their biological activity is dependent on the intracellular accumulation of their triphosphorylated metabolites. In this context, we developed and validated a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to study the formation of 5'-triphosphorylated derivatives of cladribine, fludarabine, clofarabine and 2'-deoxyadenosine in human cancer cells. Br-ATP was used as internal standard. Separation was achieved on a hypercarb column. Analytes were eluted with a mixture of hexylamine (5 mM), DEA (0.4%, v/v, pH 10.5) and acetonitrile, in a gradient mode at a flow rate of 0.3mLmin-1. Multiple reactions monitoring (MRM) and electrospray ionization in negative mode (ESI-) were used for detection. The application of this method to the quantification of these phosphorylated cytotoxic compounds in a human follicular lymphoma cell line, showed that it was suitable for the study of relevant biological samples.
Collapse
|
7
|
Xirotagaros G, Hernández-Ostiz S, Aróstegui JI, Torrelo A. Newly Described Autoinflammatory Diseases in Pediatric Dermatology. Pediatr Dermatol 2016; 33:602-614. [PMID: 27699831 DOI: 10.1111/pde.12984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Specific gene mutations leading to dysregulation of innate immune response produce the expanding spectrum of monogenic autoinflammatory diseases (AIDs). They are characterized by seemingly unprovoked, recurrent episodes of systemic inflammation in which a myriad of manifestations usually affect skin. Novel genetic technologies have led to the discovery of new AIDs and phenotypes that were not previously clinically described. Consequently the number of AIDs is continuously growing and their recognition and the disclosure of their pathophysiology will prompt early diagnosis and targeted treatment of affected patients. The objective of the present work is to review those newly described AIDs with prominent dermatologic manifestations that may constitute a major criterion for their diagnosis.
Collapse
Affiliation(s)
| | | | | | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil del Niño Jesús, Madrid, Spain
| |
Collapse
|
8
|
Yang C, Leung GPH. Equilibrative Nucleoside Transporters 1 and 4: Which One Is a Better Target for Cardioprotection Against Ischemia-Reperfusion Injury? J Cardiovasc Pharmacol 2015; 65:517-21. [PMID: 26070128 PMCID: PMC4461397 DOI: 10.1097/fjc.0000000000000194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/14/2014] [Indexed: 01/04/2023]
Abstract
The cardioprotective effects of adenosine and adenosine receptor agonists have been studied extensively. However, their therapeutic outcomes in ischemic heart disease are limited by systemic side effects such as hypotension, bradycardia, and sedation. Equilibrative nucleoside transporter (ENT) inhibitors may be an alternative. By reducing the uptake of extracellular adenosine, ENT1 inhibitors potentiate the cardioprotective effect of endogenous adenosine. They have fewer systemic side effects because they selectively increase the extracellular adenosine levels in ischemic tissues undergoing accelerated adenosine formation. Nonetheless, long-term inhibition of ENT1 may adversely affect tissues that have low capacity for de novo nucleotide biosynthesis. ENT1 inhibitors may also affect the cellular transport, and hence the efficacy, of anticancer and antiviral nucleoside analogs used in chemotherapy. It has been proposed that ENT4 may also contribute to the regulation of extracellular adenosine in the heart, especially under the acidotic conditions associated with ischemia. Like ENT1 inhibitors, ENT4 inhibitors should work specifically on ischemic tissues. Theoretically, ENT4 inhibitors do not affect tissues that rely on ENT1 for de novo nucleotide synthesis. They also have no interaction with anticancer and antiviral nucleosides. Development of specific ENT4 inhibitors may open a new avenue in research on ischemic heart disease therapy.
Collapse
Affiliation(s)
- Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China; and
| | - George P. H. Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Lee MW, Parker WB, Xu B. New insights into the synergism of nucleoside analogs with radiotherapy. Radiat Oncol 2013; 8:223. [PMID: 24066967 PMCID: PMC3851323 DOI: 10.1186/1748-717x-8-223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Medical Education, College of Medicine, University of Central Florida, 6850 Lake Nona Blvd,, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
10
|
Arnold JJ, Smidansky ED, Moustafa IM, Cameron CE. Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:948-60. [PMID: 22551784 DOI: 10.1016/j.bbagrm.2012.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022]
Abstract
Transcription of the human mitochondrial genome is required for the expression of 13 subunits of the respiratory chain complexes involved in oxidative phosphorylation, which is responsible for meeting the cells' energy demands in the form of ATP. Also transcribed are the two rRNAs and 22 tRNAs required for mitochondrial translation. This process is accomplished, with the help of several accessory proteins, by the human mitochondrial RNA polymerase (POLRMT, also known as h-mtRNAP), a nuclear-encoded single-subunit DNA-dependent RNA polymerase (DdRp or RNAP) that is distantly related to the bacteriophage T7 class of single-subunit RNAPs. In addition to its role in transcription, POLRMT serves as the primase for mitochondrial DNA replication. Therefore, this enzyme is of fundamental importance for both expression and replication of the human mitochondrial genome. Over the past several years rapid progress has occurred in understanding POLRMT and elucidating the molecular mechanisms of mitochondrial transcription. Important accomplishments include development of recombinant systems that reconstitute human mitochondrial transcription in vitro, determination of the X-ray crystal structure of POLRMT, identification of distinct mechanisms for promoter recognition and transcription initiation, elucidation of the kinetic mechanism for POLRMT-catalyzed nucleotide incorporation and discovery of unique mechanisms of mitochondrial transcription inhibition including the realization that POLRMT is an off target for antiviral ribonucleoside analogs. This review summarizes the current understanding of POLRMT structure-function, mechanism and inhibition. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
11
|
Koczor CA, Torres RA, Lewis W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol 2012; 8:665-76. [PMID: 22509856 DOI: 10.1517/17425255.2012.680885] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Two families of nucleoside analogs have been developed to treat viral infections and cancer, but these compounds can cause tissue- and cell-specific toxicity related to their uptake and subcellular activity, which are dictated by host enzymes and transporters. Cellular uptake of these compounds requires nucleoside transporters that share functional similarities but differ in substrate specificity. Tissue-specific cellular expression of these transporters enables nucleoside analogs to produce their tissue-specific toxic effects, a limiting factor in the treatment of retroviruses and cancer. AREAS COVERED This review discusses the families of nucleoside transporters and how they mediate cellular uptake of nucleoside analogs. Specific focus is placed on examples of known cases of transporter-mediated cellular toxicity and classification of the toxicities resulting. Efflux transporters are also explored as a contributor to analog toxicity and cell-specific effects. EXPERT OPINION Efforts to modulate transporter uptake/clearance remain long-term goals of oncologists and virologists. Accordingly, subcellular approaches that either increase or decrease intracellular nucleoside analog concentrations are eagerly sought and include transporter inhibitors and targeting transporter expression. However, additional understanding of nucleoside transporter kinetics, tissue expression and genetic polymorphisms is required to design better molecules and better therapies.
Collapse
|
12
|
Leung GPH. Iatrogenic mitochondriopathies: a recent lesson from nucleoside/nucleotide reverse transcriptase inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:347-69. [PMID: 22399431 DOI: 10.1007/978-94-007-2869-1_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) has revolutionized the treatment of infection by human immunodeficiency virus (HIV) and hepatitis-B virus. NRTIs can suppress viral replication in the long-term, but possess significant toxicity that can seriously compromise treatment effectiveness. The major toxicity of NRTIs is mitochondrial toxicity. This manifests as serious side effects such as myopathy, peripheral neuropathy and lactic acidosis. In general, it is believed that the mitochondrial pathogenesis is closely related to the effect of NRTIs on mitochondrial DNA polymerase-γ. Depletion and mutation of mitochondrial DNA during chronic NRTI therapy may lead to cellular respiratory dysfunction and release of reactive oxidative species, resulting in cellular damage. It is now apparent that the etiology is far more complex than originally thought. It appears to involve multiple mechanisms as well as host factors such as HIV per se, inborn mitochondrial mutation, and sex. Management of mitochondrial toxicity during NRTI therapy remains a challenge. Interruption of NRTI therapy and substitution of the causative agents with alternative better-tolerated NRTIs represents the mainstay of management for mitochondrial toxicity and its clinical manifestations. A range of pharmacological approaches has been proposed as treatments and prophylaxes.
Collapse
Affiliation(s)
- George P H Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Apostolova N, Blas-García A, Esplugues JV. Mitochondrial interference by anti-HIV drugs: mechanisms beyond Pol-γ inhibition. Trends Pharmacol Sci 2011; 32:715-25. [PMID: 21899897 DOI: 10.1016/j.tips.2011.07.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
The combined pharmacological approach to the treatment of HIV infection, known as highly active antiretroviral therapy (HAART), has dramatically reduced AIDS-related morbidity and mortality. However, its use has been associated with serious adverse reactions, of which those resulting from mitochondrial dysfunction are particularly widespread. Nucleos(t)ide-reverse transcriptase inhibitors (NRTIs) have long been considered the main source of HAART-related mitochondrial toxicity due to their ability to inhibit Pol-γ, the DNA polymerase responsible for the synthesis of mitochondrial DNA. Nevertheless, accumulating evidence points to a more complex relationship between these organelles and NRTIs. Also, alternative pathways by which other groups of anti-HIV drugs (non-nucleoside reverse transcriptase inhibitors and protease inhibitors) interfere with mitochondria have been suggested, although their implications, both pharmacological and clinical, are open to debate. This review aims to provide a comprehensive overview of the mechanisms and factors which influence the mitochondrial involvement in the toxicity of all three major classes of anti-HIV drugs.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Avda Blasco Ibáñez n.15-17, 46010 Valencia, Spain
| | | | | |
Collapse
|
14
|
A Case of H Syndrome Showing Immunophenotye Similarities to Rosai–Dorfman Disease. Am J Dermatopathol 2011; 33:47-51. [DOI: 10.1097/dad.0b013e3181ee547c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
|
16
|
Liu HL, Xu JJ, Dai XM, Shi JB, Xu S, Gao J, Yao QZ, Liu F. Both DNA damage and mitochondrial dysfunction are involved in novel oxadiazolo[3,4-d]pyrimidine nucleoside derivatives-induced cancer cell death. J Appl Toxicol 2009; 29:489-95. [DOI: 10.1002/jat.1433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Molho-Pessach V, Lerer I, Abeliovich D, Agha Z, Abu Libdeh A, Broshtilova V, Elpeleg O, Zlotogorski A. The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am J Hum Genet 2008; 83:529-34. [PMID: 18940313 DOI: 10.1016/j.ajhg.2008.09.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 12/13/2022] Open
Abstract
The H syndrome is a recently reported autosomal-recessive disorder characterized by cutaneous hyperpigmentation, hypertrichosis, hepatosplenomegaly, heart anomalies, hearing loss, hypogonadism, short stature, hallux valgus, and fixed flexion contractures of the toe joints and the proximal interphalangeal joints. Homozygosity mapping in five consanguineous families resulted in the identification of mutations in the SLC29A3 gene, which encodes the equilibrative nucleoside transporter hENT3. Three mutations were found in 11 families of Arab and Bulgarian origin. The finding of several different mutations in a small geographic region implies that the H syndrome might be rather common. The identification of mutations in the SLC29A3 gene in patients with a mild clinical phenotype suggests that this is a largely underdiagnosed condition and strongly suggests that even oligosymptomatic individuals might have the disorder.
Collapse
|
18
|
Wallace KB. Mitochondrial off targets of drug therapy. Trends Pharmacol Sci 2008; 29:361-6. [PMID: 18501972 DOI: 10.1016/j.tips.2008.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 02/07/2023]
Abstract
The bioenergetic features of mitochondria have long been exploited in the design of pharmacological agents suited to accomplish a desired physiological effect; uncoupling of oxidative phosphorylation to induce weight loss, for example. However, more recent experience demonstrates mitochondria to be unintended off targets of other drug therapies and responsible, at least in part, for the dose-limiting adverse events associated with a large array of pharmaceuticals. Review of the fundamentals of mitochondrial molecular biology and bioenergetics reveals a multiplicity of off targets that can be invoked to explain drug-induced mitochondrial failure. It is this redundancy of mitochondrial off targets that complicates identification of discrete mechanisms of toxicity and confounds QSAR-based design of new small molecules devoid of this potential for mitochondrial toxicity. The present review article briefly reviews the molecular biology and biophysics of mitochondrial bioenergetics, which then serves as a platform for identifying the various potential off targets for drug-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Kendall B Wallace
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|