1
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Galvão-Coelho NL, Galvão ACDM, da Silva FS, de Sousa MBC. Common Marmosets: A Potential Translational Animal Model of Juvenile Depression. Front Psychiatry 2017; 8:175. [PMID: 28983260 PMCID: PMC5613153 DOI: 10.3389/fpsyt.2017.00175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/05/2017] [Indexed: 12/04/2022] Open
Abstract
Major depression is a psychiatric disorder with high prevalence in the general population, with increasing expression in adolescence, about 14% in young people. Frequently, it presents as a chronic condition, showing no remission even after several pharmacological treatments and persisting in adult life. Therefore, distinct protocols and animal models have been developed to increase the understanding of this disease or search for new therapies. To this end, this study investigated the effects of chronic social isolation and the potential antidepressant action of nortriptyline in juvenile Callithrix jacchus males and females by monitoring fecal cortisol, body weight, and behavioral parameters and searching for biomarkers and a protocol for inducing depression. The purpose was to validate this species and protocol as a translational model of juvenile depression, addressing all domain criteria of validation: etiologic, face, functional, predictive, inter-relational, evolutionary, and population. In both sexes and both protocols (IDS and DPT), we observed a significant reduction in cortisol levels in the last phase of social isolation, concomitant with increases in autogrooming, stereotyped and anxiety behaviors, and the presence of anhedonia. The alterations induced by chronic social isolation are characteristic of the depressive state in non-human primates and/or in humans, and were reversed in large part by treatment with an antidepressant drug (nortriptyline). Therefore, these results indicate C. jacchus as a potential translational model of juvenile depression by addressing all criteria of validation.
Collapse
Affiliation(s)
- Nicole Leite Galvão-Coelho
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
- National Institute of Science and Technology in Translational Medicine Natal, Natal, Brazil
| | - Ana Cecília de Menezes Galvão
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Flávia Santos da Silva
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Bernardete Cordeiro de Sousa
- Laboratory of Hormone Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
Kysil EV, Meshalkina DA, Frick EE, Echevarria DJ, Rosemberg DB, Maximino C, Lima MG, Abreu MS, Giacomini AC, Barcellos LJG, Song C, Kalueff AV. Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests. Zebrafish 2017; 14:197-208. [DOI: 10.1089/zeb.2016.1415] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Elana V. Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Darya A. Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Erin E. Frick
- Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi
| | - David J. Echevarria
- Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
| | - Denis B. Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Laboratory of Neurosciences and Behavior “Frederico Guilherme Graeff,” Center for Biological and Health Sciences, Institute of Health and Biological Studies, Federal University of Southern and Southeastern Pará (UNIFESSPA), Marabá, Brazil
| | - Monica Gomes Lima
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- University of the State of Pará (UEPA), Marabá, Brazil
| | - Murilo S. Abreu
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Ana C. Giacomini
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Leonardo J. G. Barcellos
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
- Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung, Taiwan
| | - Allan V. Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Ural Federal University, Ekaterinburg, Russia
- ZENEREI Research Center, Slidell, Louisiana
| |
Collapse
|
4
|
|
5
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
6
|
Kalueff AV. Commentary: Supplier-dependent differences in intermittent voluntary alcohol intake and response to naltrexone in Wistar rats. Front Neurosci 2016; 10:82. [PMID: 27013944 PMCID: PMC4779880 DOI: 10.3389/fnins.2016.00082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/18/2016] [Indexed: 12/04/2022] Open
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean UniversityZhanjiang, China; Institute of Translational Biomedicine, St. Petersburg State UniversitySt. Petersburg, Russia; Institutes of Chemical Technology and Natural Sciences, Ural Federal UniversityEkaterinburg, Russia; Neuroscience and Pharmacology Lab, ZENEREI InstituteSlidell, LA, USA
| |
Collapse
|
7
|
Homberg JR, Kyzar EJ, Stewart AM, Nguyen M, Poudel MK, Echevarria DJ, Collier AD, Gaikwad S, Klimenko VM, Norton W, Pittman J, Nakamura S, Koshiba M, Yamanouchi H, Apryatin SA, Scattoni ML, Diamond DM, Ullmann JFP, Parker MO, Brown RE, Song C, Kalueff AV. Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opin Drug Discov 2015; 11:11-25. [DOI: 10.1517/17460441.2016.1115834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
| | | | | | | | - David J Echevarria
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Adam D Collier
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Viktor M Klimenko
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Pavlov Physiology Department, Institute of Experimental Medicine, St. Petersburg, Russia
| | - William Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Shun Nakamura
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mamiko Koshiba
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | - Hideo Yamanouchi
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | | | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Research and Development Service, J.A. Haley Veterans Hospital, Tampa, FL, USA
| | - Jeremy FP Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allan V Kalueff
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Institute of Chemical Technology and Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
8
|
Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods 2015; 255:66-74. [DOI: 10.1016/j.jneumeth.2015.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/16/2023]
|
9
|
Smith JA, Pati D, Wang L, de Kloet AD, Frazier CJ, Krause EG. Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness. Front Syst Neurosci 2015; 9:46. [PMID: 25873866 PMCID: PMC4379895 DOI: 10.3389/fnsys.2015.00046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Challenges to body fluid homeostasis can have a profound impact on hypothalamic regulation of stress responsiveness. Deficiencies in blood volume or sodium concentration leads to the generation of neural and humoral signals relayed through the hindbrain and circumventricular organs that apprise the paraventricular nucleus of the hypothalamus (PVH) of hydromineral imbalance. Collectively, these neural and humoral signals converge onto PVH neurons, including those that express corticotrophin-releasing factor (CRF), oxytocin (OT), and vasopressin, to influence their activity and initiate compensatory responses that alleviate hydromineral imbalance. Interestingly, following exposure to perceived threats to homeostasis, select limbic brain regions mediate behavioral and physiological responses to psychogenic stressors, in part, by influencing activation of the same PVH neurons that are known to maintain body fluid homeostasis. Here, we review past and present research examining interactions between hypothalamic circuits regulating body fluid homeostasis and those mediating behavioral and physiological responses to psychogenic stress.
Collapse
Affiliation(s)
- Justin A. Smith
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Dipanwita Pati
- Laboratory of Dr. Charles Frazier, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Lei Wang
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Annette D. de Kloet
- Laboratory of Dr. Colin Sumners, Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, USA
| | - Charles J. Frazier
- Laboratory of Dr. Charles Frazier, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Eric G. Krause
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| |
Collapse
|
10
|
Kalueff AV, Stewart AM, Song C, Gottesman II. Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neurosci Biobehav Rev 2015; 53:25-36. [PMID: 25813308 DOI: 10.1016/j.neubiorev.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
Contemporary biological psychiatry uses clinical and experimental (animal) models to increase our understanding of brain pathogenesis. Modeling psychiatric disorders is currently performed by targeting various key neurobehavioral clusters of phenotypic traits (domains), including affective, cognitive, social, motor and reward. Analyses of such domains and their 'smaller units' - individual endophenotypes - are critical for the study of complex brain disorders and their neural underpinnings. The spectrum nature of brain disorders and the importance of pathogenetic linkage among various disordered domains or endophenotypes have also been recognized as an important strategic direction of translational research. Here, we discuss cross-domain analyses of animal models, and focus on their value for mimicking the clinical overlap between disordered neurobehavioral domains in humans. Based on recent experimental evidence, we argue that understanding of brain pathogenesis requires modeling the clinically relevant inter-relationships between various individual endophenotypes (or their domains).
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Halifax, NS B3H 4R2, Canada
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Stewart AM, Gerlai R, Kalueff AV. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front Behav Neurosci 2015; 9:14. [PMID: 25729356 PMCID: PMC4325915 DOI: 10.3389/fnbeh.2015.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga ON, Canada
| | - Allan V Kalueff
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA ; Research Institute for Marine Drugs and Nutrients, College of Food Science and Technology, Guangdong Ocean University Zhanjiang, Guangdong, China
| |
Collapse
|
12
|
Scott KA, Hoban AE, Clarke G, Moloney GM, Dinan TG, Cryan JF. Thinking small: towards microRNA-based therapeutics for anxiety disorders. Expert Opin Investig Drugs 2015; 24:529-42. [DOI: 10.1517/13543784.2014.997873] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karen A Scott
- 1Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- 2Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Alan E Hoban
- 1Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- 2Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Gerard Clarke
- 2Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- 3Department of Psychiatry, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- 1Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- 2Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- 2Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- 3Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- 1Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- 2Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Stewart AM, Roy S, Wong K, Gaikwad S, Chung KM, Kalueff AV. Cytokine and endocrine parameters in mouse chronic social defeat: Implications for translational ‘cross-domain’ modeling of stress-related brain disorders. Behav Brain Res 2015; 276:84-91. [DOI: 10.1016/j.bbr.2014.08.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
|
14
|
Modeling neuropsychiatric spectra to empower translational biological psychiatry. Behav Brain Res 2015; 276:1-7. [DOI: 10.1016/j.bbr.2014.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
|
15
|
Kalueff AV, Echevarria DJ, Stewart AM. Gaining translational momentum: more zebrafish models for neuroscience research. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:1-6. [PMID: 24593944 DOI: 10.1016/j.pnpbp.2014.01.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
Abstract
Zebrafish (Danio rerio) are rapidly becoming a popular model organism in translational neuroscience and biological psychiatry research. Here we discuss conceptual, practical and other related aspects of using zebrafish in this field ("from tank to bedside"), and critically evaluate both advantages and limitations of zebrafish models of human brain disorders. We emphasize the need to more actively develop zebrafish models for neuroscience research focusing on complex traits.
Collapse
Affiliation(s)
- Allan V Kalueff
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| | - David J Echevarria
- Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Adam Michael Stewart
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| |
Collapse
|
16
|
Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:67-79. [PMID: 25138994 DOI: 10.1016/j.pnpbp.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field.
Collapse
|
17
|
Stewart AM, Grossman L, Nguyen M, Maximino C, Rosemberg DB, Echevarria DJ, Kalueff AV. Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:269-273. [PMID: 25245382 DOI: 10.1016/j.aquatox.2014.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Fluoxetine is one of the most prescribed psychotropic medications, and is an agent of increasing interest for environmental toxicology. Fish and other aquatic organisms are excellent models to study neuroactive small molecules like fluoxetine. However, prone to variance due to experimental factors, data obtained in these models need to be interpreted with caution, using proper experimental protocols, study designs, validated endpoints as well as well-established models and tests. Choosing the treatment protocol and dose range for fluoxetine and other serotonergic drugs is critical for obtaining valid test results and correct data interpretation. Here we discuss the value of aquatic models to study fluoxetine effects, based on prior high-quality research, and outline the directions of future translational studies in the field. We review fluoxetine-evoked phenotypes in acute vs. chronic protocols, discussing them in the contact of complex role of serotonin in behavioral regulation. We conclude that zebrafish and other aquatic models represent a useful in-vivo tool for fluoxetine pharmacology and (eco)toxicology research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Leah Grossman
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; St. George's University School of Medicine, Grenada, WI, USA
| | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Center for Biological and Health Sciences, State University of Para, Maraba, Para, Brazil
| | - Denis Broock Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Ave, Santa Maria, Brazil
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
18
|
Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014; 37:264-78. [PMID: 24726051 DOI: 10.1016/j.tins.2014.02.011] [Citation(s) in RCA: 455] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/23/2023]
Abstract
The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Oliver Braubach
- Center for Functional Connectomics, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul, 136791, Republic of Korea
| | - Jan Spitsbergen
- Department of Microbiology, Oregon State University, Nash Hall 220 Corvallis, OR 97331, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, N Mississauga, Ontario L5L 1C6, Canada
| | - Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
19
|
Kalueff AV, Nguyen M. Testing anxiolytic drugs in the C57BL/6J mouse strain. J Pharmacol Toxicol Methods 2014; 69:205-7. [DOI: 10.1016/j.vascn.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|