1
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
2
|
Singh R, Bhardwaj VK, Purohit R. Computational targeting of allosteric site of MEK1 by quinoline-based molecules. Cell Biochem Funct 2022; 40:481-490. [PMID: 35604288 DOI: 10.1002/cbf.3709] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Abstract
MEK1 is an attractive target due to its role in selective extracellular-signal-regulated kinase phosphorylation, which plays a pivotal role in regulating cell proliferation. Another benefit of targeting the MEK protein is its unique hydrophobic pocket that can accommodate highly selective allosteric inhibitors. To date, various MEK1 inhibitors have reached clinical trials against several cancers, but they were discarded due to their severe toxicity and low efficacy. Thus, the development of allosteric inhibitors for MEK1 is the demand of the hour. In this in-silico study, molecular docking, long-term molecular dynamics (5 µs), and molecular mechanics Poisson-Boltzmann surface area analysis were undertaken to address the potential of quinolines as allosteric inhibitors. We selected four reference MEK1 inhibitors for the comparative analysis. The drug-likeness and toxicity of these molecules were also examined based on their ADMET and Toxicity Prediction by Komputer Assisted Technology profiles. The outcome of the analysis revealed that the quinolines (4m, 4o, 4s, and 4n) exhibited better stability and binding affinity while being nontoxic compared to reference inhibitors. We have reached the conclusion that these quinoline molecules could be checked by experimental studies to validate their use as allosteric inhibitors against MEK1.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay K Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Zhang X, Xu H, Bi X, Hou G, Liu A, Zhao Y, Wang G, Cao X. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis 2021; 12:931. [PMID: 34642304 PMCID: PMC8511016 DOI: 10.1038/s41419-021-04221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Studies have shown that matrine has antitumor activity against many types of cancers. However, the direct target in cancer cells of its anticancer effect has not been identified. The purpose of this study was to find the molecular target of matrine to inhibit the proliferation of cancer cells and explore its mechanism of action. Herein we showed that matrine inhibited the proliferation of cancer in vitro and in vivo. Pull-down assay with matrine-amino coupling resins and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) identified Src as the target of matrine. Cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) provided solid evidences that matrine directly bound to Src. Bioinformatics prediction and pull-down experiment demonstrated that Src kinase domain was required for its interaction with matrine and Ala392 in the kinase domain participated in matrine-Src interaction. Intriguingly, matrine was proven to inhibit Src kinase activity in a non-ATP-competitive manner by blocking the autophosphorylation of Tyr419 in Src kinase domain. Matrine down-regulated the phosphorylation levels of MAPK/ERK, JAK2/STAT3, and PI3K/Akt signaling pathways via targeting Src. Collectively, matrine targeted Src, inhibited its kinase activity, and down-regulated its downstream MAPK/ERK, JAK2/STAT3, and PI3K/Akt phosphorylation signaling pathways to inhibit the proliferation of cancer cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyang Bi
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Andong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youyun Zhao
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430073, China
| | - Guoping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Spyrakis F, Ahmed MH, Bayden AS, Cozzini P, Mozzarelli A, Kellogg GE. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. J Med Chem 2017; 60:6781-6827. [PMID: 28475332 DOI: 10.1021/acs.jmedchem.7b00057] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The value of thoroughly understanding the thermodynamics specific to a drug discovery/design study is well known. Over the past decade, the crucial roles of water molecules in protein structure, function, and dynamics have also become increasingly appreciated. This Perspective explores water in the biological environment by adopting its point of view in such phenomena. The prevailing thermodynamic models of the past, where water was seen largely in terms of an entropic gain after its displacement by a ligand, are now known to be much too simplistic. We adopt a set of terminology that describes water molecules as being "hot" and "cold", which we have defined as being easy and difficult to displace, respectively. The basis of these designations, which involve both enthalpic and entropic water contributions, are explored in several classes of biomolecules and structural motifs. The hallmarks for characterizing water molecules are examined, and computational tools for evaluating water-centric thermodynamics are reviewed. This Perspective's summary features guidelines for exploiting water molecules in drug discovery.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via Pietro Giuria 9, 10125 Torino, Italy
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| | - Alexander S Bayden
- CMD Bioscience , 5 Science Park, New Haven, Connecticut 06511, United States
| | - Pietro Cozzini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Modellistica Molecolare, Università degli Studi di Parma , Parco Area delle Scienze 59/A, 43121 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Biochimica, Università degli Studi di Parma , Parco Area delle Scienze 23/A, 43121 Parma, Italy.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche , Via Moruzzi 1, 56124 Pisa, Italy
| | - Glen E Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| |
Collapse
|
5
|
Muraoka T, Ide M, Irie M, Morikami K, Miura T, Nishihara M, Kashiwagi H. Development of a Method for Converting a TAK1 Type I Inhibitor into a Type II or c-Helix-Out Inhibitor by Structure-Based Drug Design (SBDD). Chem Pharm Bull (Tokyo) 2017; 64:1622-1629. [PMID: 27803473 DOI: 10.1248/cpb.c16-00606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a method for converting a transforming growth factor-β-activated kinase 1 (TAK1) type I inhibitor into a type II or c-helix-out inhibitor by structure-based drug design (SBDD) to achieve an effective strategy for developing these different types of kinase inhibitor in parallel. TAK1 plays a key role in inflammatory and immune signaling, and is therefore considered to be an attractive molecular target for the treatment of human diseases (inflammatory disease, cancer, etc.). We have already reported novel type I TAK1 inhibitor, so we utilized its X-ray information to design a new chemical class type II and c-helix-out inhibitors. To develop the type II inhibitor, we superimposed the X-ray structure of our reported type I inhibitor onto a type II compound that inhibits multiple kinases, and used SBDD to design a new type II inhibitor. For the TAK1 c-helix-out inhibitor, we utilized the X-ray structure of a b-Raf c-helix-out inhibitor to design compounds, because TAK1 is located close to b-Raf in the Sugen kinase tree, so we considered that TAK1 would, similarly to b-Raf, form a c-helix-out conformation. The X-ray crystal structure of the inhibitors in complex with TAK1 confirmed the binding modes of the compounds we designed. This report is notable for being the first discovery of a c-helix-out inhibitor against TAK1.
Collapse
|
6
|
Zou F, Yang Y, Ma T, Xi J, Zhou J, Zha X. Identification of novel MEK1 inhibitors by pharmacophore and docking based virtual screening. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1788-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Yun T, Qin T, Liu Y, Lai L. Discovery of Non-ATP-Competitive Inhibitors of Polo-like Kinase 1. ChemMedChem 2016; 11:713-7. [PMID: 27061239 DOI: 10.1002/cmdc.201600051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/18/2016] [Indexed: 11/09/2022]
Abstract
Polo-like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N-terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP-competitive compounds, which may suffer from low selectivity. In this study we discovered novel non-ATP-competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular-docking-based virtual screening. The activities of top-ranking compounds were evaluated by in vitro enzyme assay with full-length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3-((2-oxo-2-(thiophen-2-yl)ethyl)thio)-6-(pyridin-3-ylmethyl)-1,2,4-triazin-5(4H)-one (compound 4) with an IC50 value of 13.1 ± 1.7 μm. Our work provides new insight into the design of kinase inhibitors that target non-ATP binding sites.
Collapse
Affiliation(s)
- Taikangxiang Yun
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Tan Qin
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, PekingUniversity, Beijing, 100871, China
| | - Ying Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, PekingUniversity, Beijing, 100871, China.
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, PekingUniversity, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors. Biochem J 2014; 460:211-22. [PMID: 24593284 DOI: 10.1042/bj20131139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK. The novel ITK allosteric site was characterized by NMR, surface plasmon resonance, isothermal titration calorimetry, enzymology and X-ray crystallography. Initial screening hits bound to both the allosteric pocket and the ATP site. Successful lead optimization was achieved by improving the contribution of the allosteric component to the overall inhibition. NMR competition experiments demonstrated that the dual-site binders showed higher affinity for the allosteric site compared with the ATP site. Moreover, an optimized inhibitor displayed non-competitive inhibition with respect to ATP as shown by steady-state enzyme kinetics. The activity of the isolated kinase domain and auto-activation of the full-length enzyme were inhibited with similar potency. However, inhibition of the activated full-length enzyme was weaker, presumably because the allosteric site is altered when ITK becomes activated. An optimized lead showed exquisite kinome selectivity and is efficacious in human whole blood and proximal cell-based assays.
Collapse
|
9
|
Wang C, Zhang H, Xu F, Niu Y, Wu Y, Wang X, Peng Y, Sun J, Liang L, Xu P. Substituted 3-benzylcoumarins as allosteric MEK1 inhibitors: design, synthesis and biological evaluation as antiviral agents. Molecules 2013; 18:6057-91. [PMID: 23698055 PMCID: PMC6269873 DOI: 10.3390/molecules18056057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/16/2022] Open
Abstract
In order to find novel antiviral agents, a series of allosteric MEK1 inhibitors were designed and synthesized. Based on docking results, multiple optimizations were made on the coumarin scaffold. Some of the derivatives showed excellent MEK1 binding affinity in the appropriate enzymatic assays and displayed obvious inhibitory effects on the ERK pathway in a cellular assay. These compounds also significantly inhibited virus (EV71) replication in HEK293 and RD cells. Several compounds showed potential as agents for the treatment of viral infective diseases, with the most potent compound 18 showing an IC₅₀ value of 54.57 nM in the MEK1 binding assay.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Hao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fengrong Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Yan Niu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
- Authors to whom correspondence should be addressed; E-Mail: (Y.N.); (P.X.); Tel./Fax: +86-10-8280-1505 (Y.N.); Tel.: +86-10-8280-2632 (P.X.); Fax: +86-10-8280-1117 (P.X.)
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Xin Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Lei Liang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Ping Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
- Authors to whom correspondence should be addressed; E-Mail: (Y.N.); (P.X.); Tel./Fax: +86-10-8280-1505 (Y.N.); Tel.: +86-10-8280-2632 (P.X.); Fax: +86-10-8280-1117 (P.X.)
| |
Collapse
|
10
|
Tomita N, Hayashi Y, Suzuki S, Oomori Y, Aramaki Y, Matsushita Y, Iwatani M, Iwata H, Okabe A, Awazu Y, Isono O, Skene RJ, Hosfield DJ, Miki H, Kawamoto T, Hori A, Baba A. Structure-based discovery of cellular-active allosteric inhibitors of FAK. Bioorg Med Chem Lett 2013; 23:1779-85. [PMID: 23414845 DOI: 10.1016/j.bmcl.2013.01.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
Abstract
In order to develop potent and selective focal adhesion kinase (FAK) inhibitors, synthetic studies on pyrazolo[4,3-c][2,1]benzothiazines targeted for the FAK allosteric site were carried out. Based on the X-ray structural analysis of the co-crystal of the lead compound, 8-(4-ethylphenyl)-5-methyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazine 4,4-dioxide 1 with FAK, we designed and prepared 1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin derivatives which selectively inhibited kinase activity of FAK without affecting seven other kinases. The optimized compound, N-(4-tert-butylbenzyl)-1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin-8-amine 4,4-dioxide 30 possessed significant FAK kinase inhibitory activities both in cell-free (IC50=0.64μM) and in cellular assays (IC50=7.1μM). These results clearly demonstrated a potential of FAK allosteric inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Naoki Tomita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zapf CW, Gerstenberger BS, Xing L, Limburg DC, Anderson DR, Caspers N, Han S, Aulabaugh A, Kurumbail R, Shakya S, Li X, Spaulding V, Czerwinski RM, Seth N, Medley QG. Covalent Inhibitors of Interleukin-2 Inducible T Cell Kinase (Itk) with Nanomolar Potency in a Whole-Blood Assay. J Med Chem 2012; 55:10047-63. [DOI: 10.1021/jm301190s] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christoph W. Zapf
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - Brian S. Gerstenberger
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Li Xing
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - David C. Limburg
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David R. Anderson
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicole Caspers
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ann Aulabaugh
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ravi Kurumbail
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Subarna Shakya
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Xin Li
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Vikki Spaulding
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Robert M. Czerwinski
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Nilufer Seth
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Quintus G. Medley
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| |
Collapse
|
12
|
Lavogina D, Enkvist E, Uri A. Bisubstrate inhibitors of protein kinases: from principle to practical applications. ChemMedChem 2010; 5:23-34. [PMID: 19774589 DOI: 10.1002/cmdc.200900252] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, Jakobi 2, 51014 Tartu (Estonia).
| | | | | |
Collapse
|
13
|
Rubinstein M, Niv MY. Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 2009; 91:505-13. [PMID: 19226619 DOI: 10.1002/bip.21164] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the decline in productivity of drug-development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence-based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure-based approach, in which protein-peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors.
Collapse
Affiliation(s)
- Mor Rubinstein
- The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|