1
|
Lanjar SUN, Solangi AR, Batool N, Khand NH, Kamboh M, Malah A, Buledi JA, Khan MM. Strategic electrochemical oxidation of vinblastin sulfate (an anticancer drug) via PVP-functionalized strontium oxide nanoparticles. RSC Adv 2024; 14:31387-31397. [PMID: 39359336 PMCID: PMC11446183 DOI: 10.1039/d4ra05493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a primary cause of death worldwide, and considerably impacts mortality rates in low- and middle-income countries. The rise in chemotherapeutic patients and toxicity of cytotoxic agents highlight the need for reliable analytical methods to detect these compounds. The current study presents a simple and straightforward method for producing polyvinylpyrrolidone functionalized strontium oxide nanoparticles (PVP-SrO NPs). The synthesized PVP-SrO NPs were applied as a sensitive sensor to detect vinblastin sulfate (VNB) (an anticancer drug). The synthesized PVP-SrO NPs were characterized using different characterization techniques. Fourier transform infrared spectroscopy (FTIR) confirms the functionality of synthesized PVP-SrO NPs. The sharp intense peaks of X-ray diffraction spectroscopy (XRD) confirm the crystalline nature of NPs, scanning electron microscopy (SEM) confirm the nanobeads like morphology, and energy dispersive spectroscopy (EDS) reveals the presence of Sr and O at 68.3% and 23% respectively. The electrochemical impedance spectroscopy and cyclic voltammetry studies revealed that the PVP-SrO/GCE is more conductive than bare GCE with an R ct value of 960.4 Ω compared to 2440 Ω. The sensor exhibited a wide linear dynamic range for VNB (0.05 to 60 μM) with low LOD 0.005 μM, and LOD 0.017 μM. The proposed sensor was successfully used for monitoring VNB in human blood serum samples with a satisfactory percent recovery from 96% to 103%. The fabricated sensor exhibits better performance than the reported sensors in terms of processing, simplicity, cost-effectiveness, energy consumption, and enhanced efficacy in a very short time.
Collapse
Affiliation(s)
- Sana-Ul-Nisa Lanjar
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Nahjul Batool
- M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro-76080 Sindh Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Manaza Kamboh
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Arfana Malah
- M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro-76080 Sindh Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Mir Mehran Khan
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| |
Collapse
|
2
|
Al Azzam KM, Al-Areer NW, Al Omari RH, Al-Deeb I, Bounoua N, Negim ES, Al-Samydai A, Aboalroub AA, Said R. Assessment of the anticancer potential of certain phenolic and flavonoid components in ginger capsules using colorectal cancer cell lines coupled with quantitative analysis. Biomed Chromatogr 2024; 38:e5993. [PMID: 39152776 DOI: 10.1002/bmc.5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Colorectal cancer (CRC) is the fourth most common cause of malignant tumor death. The development of novel, more effective drugs is desperately needed to treat CRC. Zingiber officinale is believed to possess anticancer properties due to its flavonoids and phenols. Using Soxhlet (SOXT) and maceration (MACR) techniques, the present study aimed to evaluate the amounts of quercetin, gallic acid, rutin, naringin, and caffeic acid in ginger capsules of Z. officinale. High-performance liquid chromatography (HPLC)/ultraviolet was used for separation and quantitation. In vitro toxicity evaluation of ginger capsules on the CRC cell line HT-29 was also conducted to assess the anticancer activity of the supplement. The cell line HT-29 (HTB-38) colorectal adenocarcinoma was utilized for the antiproliferative effect of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Ginger herbal supplement extract at dosages of 200 and 100 μg had strong cytotoxic effects (IC50 < 50 μg/mL) on HT-29 CRC cells via MACR. This extract is comparable to the SOXT extract, which has an IC50 of less than 50 μg/mL. The anticancer effect of ginger herbal supplement formulations against CRC lines was investigated, and the results obtained from both the MACR and SOXT extraction procedures were noteworthy. The quercetin content was the highest of all the extracts according to the HPLC data.
Collapse
Affiliation(s)
- Khaldun M Al Azzam
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Nadeen Waleed Al-Areer
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Rima H Al Omari
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ibrahim Al-Deeb
- Department of Biopharmaceutics and Clinical Pharmacy, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nadia Bounoua
- Laboratory of the Innovation Sponsorship and the Emerging Institution for Graduates of Higher Education of Sustainable Development and Dealing with Emerging Conditions, Department of Exact Sciences, Normal Higher School of Bechar, Bechar, 8000, Algeria
- Laboratory of Chemical and Environmental Science (LCSE), Bechar, Algeria, 8000
| | - El-Sayed Negim
- School of Petroleum Engineering, Satbayev University, 22 Satpayev Street, Almaty, 050013, Kazakhstan
- School of Materials Science and Green Technologies, Kazakh-British Technical University, 59 Tole bi St., Almaty, 050000, Kazakhstan
| | - Ali Al-Samydai
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Adam A Aboalroub
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Rana Said
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
3
|
Arulvendhan V, Saravana Bhavan P, Rajaganesh R. Molecular Identification and Phytochemical Analysis and Bioactivity Assessment of Catharanthus roseus Leaf Extract: Exploring Antioxidant Potential and Antimicrobial Activities. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04902-w. [PMID: 38526661 DOI: 10.1007/s12010-024-04902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Plants have long been at the main focus of the medical industry's attention due to their extensive list of biological and therapeutic properties and ethnobotanical applications. Catharanthus roseus, sometimes referred to as Nithyakalyani in Tamil, is an Apocynaceae family member used in traditional Indian medicine. It also examines the plant's potential antimicrobial and antioxidant activities as well as its preliminary phytochemical makeup. Leaf material from C. roseus was analyzed and found to include a variety of phytochemicals including alkaloids, terpenoids, flavonoids, tannins, phenols, saponins, glycosides, quinones, and steroids. Four of the seven secondary metabolic products discovered in C. roseus leaves showed bioactive principles: 3-methylmannoside, squalene, pentatriacontane, and 2,4,4-trimethyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene. Catharanthus roseus is rich in the anticancer compounds vinblastine and vincristine. Whole DNA was isolated from fresh leaves, then amplified, sequenced, and aligned to find prospective DNA barcode candidates. One DNA marker revealed the restricted genetic relationship among C. roseus based on genetic distance and phylogenetic analysis. The antioxidant activity of the plant extract was evaluated using the DPPH, ABTS, phosphomolybdenum, FRAP, and superoxide radical scavenging activity assays, while the antibacterial potential was evaluated using the agar well diffusion assay. The ethanol extract of C. roseus was found to have the highest reducing power. In addition, a 4- to 21-mm-wide zone of inhibition was seen when the C. roseus extract was tested against bacterial and fungal stains. In conclusion, C. roseus has the most promise as an antibacterial and antioxidant agent.
Collapse
Affiliation(s)
- Velusamy Arulvendhan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Periyakali Saravana Bhavan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
4
|
Kumar S, Singh B, Singh R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114647. [PMID: 34562562 DOI: 10.1016/j.jep.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Catharanthus roseus (L.) G. Don is a well known medicinal plant belonging to family Apocynaceae that have been traditionally used as medicine since ancient times. C. roseus is a well-recognized herbal medicine due to its anticancer bisindole alkaloids (vinblastine (111), vincristine (112) and vindesine (121)). In the Ayurvedic system of medicine, different parts of C. roseus are used in folklore herbal medicine for treatment of many types of cancer, diabetes, stomach disorders, kidney, liver and cardiovascular diseases. AIM OF THE STUDY The main idea behind this communication is to update comprehensively and analyze critically the traditional applications, phytochemistry, pharmacological activities, and toxicity of various extracts and isolated compounds from C. roseus. MATERIALS AND METHODS The presented data covers scientific works on C. roseus published across the world between 1967 and 2021 was searched from various international publishing houses using search engines as well as several traditional texts like Ayurveda and relevant books. Collected data from different sources was comprehensively summarized/analyzed for ethnomedicinal uses, phytochemistry, analytical chemistry, biological activities and toxicity studies of C. roseus. RESULTS AND DISCUSSION C. roseus has a wide range of applications in the traditional system of medicine especially in cancer and diabetes. During phytochemical investigation, total of 344 compounds including monoterpene indole alkaloids (MIAs) (110), bisindole alkaloids (35), flavonoids (34), phenolic acids (9) and volatile constituents (156) have been reported in the various extracts and fractions of different plant parts of C. roseus. The extracts and isolated compounds of C. roseus have to exhibit many pharmacological activities such as anticancer/cytotoxic, antidiabetic, antimicrobial, antioxidant, larvicidal and pupicidal. The comparative toxicity of extracts and bioactive compounds investigated in dose dependent manner. The investigation of toxicity showed that the both extracts and isolated compounds are safe to a certain limit beyond that they cause adverse effects. CONCLUSION This review is a comprehensive, critically analyzed summarization of sufficient baseline information of selected topics in one place undertaken till date on C. roseus for future works and drug discovery. The phytochemical investigation including biosynthetic pathways showed that the MIAs and bisindole alkaloids are major and characteristic class of compounds in this plant. The present data confirm that the extracts/fractions and their isolated alkaloids especially vinblastine (111) and vincristine (112) have a potent anticancer/cytotoxic and antidiabetic property and there is a need for further study with particular attention to the mechanisms of anticancer activity. In biosynthesis pathways of alkaloids especially bisindole alkaloids, some enzymes and rearrangement are unexposed therefore it is required to draw special attention. It also focuses on attracting the attention of scientific communities about the widespread biological activities of this species for its better utilization prospects in the near future.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, (affiliated to Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur), Farrukhabad, 209602, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Botany, Government Degree College Bahua Dehat, (affiliated to Professor Rajendra Singh (Rajju Bhaiya) University Prayagraj), Fatehpur, 212663, Uttar Pradesh, India
| |
Collapse
|
5
|
Abdul Rahim R, Jayusman PA, Lim V, Ahmad NH, Abdul Hamid ZA, Mohamed S, Muhammad N, Ahmad F, Mokhtar N, Mohamed N, Shuid AN, Naina Mohamed I. Phytochemical Analysis, Antioxidant and Bone Anabolic Effects of Blainvillea acmella (L.) Philipson. Front Pharmacol 2022; 12:796509. [PMID: 35111063 PMCID: PMC8802550 DOI: 10.3389/fphar.2021.796509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Blainvillea acmella (L.) Philipson [Asteraceae] (B. acmella) is an important medicinal plant native to Brazil, and it is widely known as a toothache plant. A plethora of studies have demonstrated the antioxidant activities of B. acmella and few studies on the stimulatory effects on alkaline phosphatase (ALP) secretion from bone cells; however, there is no study on its antioxidant and anabolic activity on bone cells. The study aimed to evaluate the phytochemical contents of aqueous and ethanol extracts of B. acmella using gas chromatography mass spectrometry (GCMS) and liquid chromatography time of flight mass spectrometry (LCTOFMS) along with the total phenolic (TPC) and flavonoid (TFC) contents using Folin-Ciocalteu and aluminum colorimetric methods. The extracts of B. acmella leaves were used to scavenge synthetic-free radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. The bone anabolic effects of B. acmella extracts on MC3T3-E1 cells were measured with 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoium bromide (MTT) at 1, 3, 5, and 7 days, Sirius-red and ALP at 7 and 14 days, and Alizarin Red S at 14 and 21 days. Comparatively, ethanol extract of B. acmella (BaE) contributed higher antioxidant activities (IC50 of 476.71 µg/ml and 56.01 ± 6.46 mg L-ascorbic acid/g against DPPH and FRAP, respectively). Anabolic activities in bone proliferation, differentiation, and mineralization were also higher in B. acmella of ethanol (BaE) than aqueous (BaA) extracts. Positive correlations were observed between phenolic content (TPC and TFC) to antioxidant (ABTS and FRAP) and anabolic activities. Conversely, negative correlations were present between phenolic content to antioxidant (DPPH) activity. These potential antioxidant and bone anabolic activities in BaE might be due to the phytochemicals confirmed through GCMS and LCTOFMS, revealed that terpenoids of α-cubebene, cryophyllene, cryophyllene oxide, phytol and flavonoids of pinostrobin and apigenin were the compounds contributing to both antioxidant and anabolic effects in BaE. Thus, B. acmella may be a valuable antioxidant and anti-osteoporosis agent. Further study is needed to isolate, characterize and elucidate the underlying mechanisms responsible for the antioxidant and bone anabolic effects.
Collapse
Affiliation(s)
- Rohanizah Abdul Rahim
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nor Hazwani Ahmad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sharlina Mohamed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Norliza Muhammad
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Anatomy Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mokhtar
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazlina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Isa Naina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Chen Y, Zhang H, Zhang M, Zhang W, Ou Z, Peng Z, Fu C, Zhao C, Yu L. Salicylic Acid-Responsive Factor TcWRKY33 Positively Regulates Taxol Biosynthesis in Taxus chinensis in Direct and Indirect Ways. FRONTIERS IN PLANT SCIENCE 2021; 12:697476. [PMID: 34434205 PMCID: PMC8381197 DOI: 10.3389/fpls.2021.697476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 05/29/2023]
Abstract
Taxol is a rare secondary metabolite that accumulates considerably in Taxus species under salicylic acid (SA) and methyl jasmonate treatment. However, the molecular mechanism of its accumulation remains unclear. We investigated TcWRKY33, a nuclear-localized group I WRKY transcription factor, as an SA-responsive regulator of taxol biosynthesis. Overexpression and RNA interference of TcWRKY33 confirmed that TcWRKY33 regulates the expression of most taxol biosynthesis genes, especially 10-deacetylbaccatin III-10-O-acetyltransferase (DBAT) and taxadiene synthase (TASY), which were considered as key enzymes in taxol biosynthesis. Transient overexpression of TcWRKY33 in Taxus chinensis leaves resulted in increased taxol and 10-deacetylbaccatin accumulation by 1.20 and 2.16 times compared with the control, respectively. Furthermore, TcWRKY33, DBAT, and TASY were confirmed to respond positively to SA signals. These results suggested that TcWRKY33 was the missing component of taxol biosynthesis that responds to SA. The sequence analysis identified two W-box motifs in the promoter of DBAT but not in the TASY. Yeast one-hybrid and dual-luciferase activity assays confirmed that TcWRKY33 can bind to the two W-boxes in the promoter of DBAT, upregulating its expression level. Hence, DBAT is a direct target of TcWRKY33. Furthermore, TcERF15, encoding a TASY activator, also contains two W-boxes in its promoter. Yeast one-hybrid and dual-luciferase activity assays further confirmed that TcWRKY33 can upregulate TASY expression through the activation of TcERF15. In summary, TcWRKY33 transmits SA signals and positively regulates taxol biosynthesis genes in two ways: directly and through the activation of other activators. Therefore, TcWRKY33 is an excellent candidate for genetically engineering regulation of taxol biosynthesis in Taxus plants.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Hua Zhang
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Meng Zhang
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Wenli Zhang
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Ziqi Ou
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Zehang Peng
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Chunfang Zhao
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| |
Collapse
|
7
|
Liu Q, Xia H, Xu Y, Cheng Y, Cheng Z. Investigation on the Preparation, Characteristics, and Controlled Release Model of Paeonol-Loaded Liposome in Carbomer Hydrogel. Curr Drug Deliv 2020; 17:159-173. [PMID: 31951179 DOI: 10.2174/1567201817666200115163506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Paeonol is a phenolic compounce that is volatile. In order to decrease its volatility and achieve controlled release, paeonol-loaded liposome in carbomer hydrogel was prepared by coating with soybean phospholipid via ethanol injection method and then added into the carbomer hydrogel. METHODS The quality of paeonol-loaded liposome in carbomer hydrogel was evaluated by the degree of roundness, particle size distribution, zeta potential, entrapment efficiency (filtration method and chitosan neutralization method), viscosity, infrared spectrum, etc. Furthermore, the diffusion from paeonolloaded liposome in hydrogel was studied in vitro. RESULTS The results showed that the average particle size of paeonol-loaded liposome was about 401 nm, the potential was -17.8 mV, and the entrapment efficiency was above 45%. The viscosity of paeonol- loaded liposome in hydrogel was 23.972×10-3 Pa*s, and the diffusion rate from paeonol-loaded liposome in hydrogel in vitro was obviously slower than that from the other paeonol preparations. CONCLUSION The conclusions could be drawn that paeonol-loaded liposome in hydrogel was a kind of novel preparation, and its diffusion in vitro had obvious controlled-release characteristics, which further proved that it might improve the bioavailability of paeonol.
Collapse
Affiliation(s)
- Qinqin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co. Ltd., Hefei, 230088, China
| | - Yongfeng Cheng
- School of Life Science, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiqing Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China
| |
Collapse
|
8
|
Galal MM, Saad AS. Portable solid-state sensor for therapeutic monitoring of an antineoplastic drug; vinblastine in human plasma. RSC Adv 2020; 10:42699-42705. [PMID: 35514918 PMCID: PMC9058239 DOI: 10.1039/d0ra07070j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
Potentiometric glassy carbon electrode for determination of vinblastine.
Collapse
Affiliation(s)
- Maha Mohammed Galal
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- Cairo
- Egypt
| | - Ahmed Sayed Saad
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- Cairo
- Egypt
| |
Collapse
|