1
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
2
|
Shehab WS, Elsayed DA, Abdel Hamid AM, Assy MG, Mouneir SM, Hamed EO, Mousa SM, El-Bassyouni GT. CuO nanoparticles for green synthesis of significant anti-Helicobacter pylori compounds with in silico studies. Sci Rep 2024; 14:1608. [PMID: 38238369 PMCID: PMC10796945 DOI: 10.1038/s41598-024-51708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a universal health intimidation as mentioned by the World Health Organization. The primary causal agent linked to a number of illnesses, including inflammation and the development of stomach ulcers, is Helicobacter pylori. Since, H. pylori develops antibiotic resistance quickly, current H. pylori treatment approaches are becoming less effective. Our research aims to highlight novel formulation antibiotics using CuO-NPs as catalysts and studied their activity as anti-helicobacter pylori supported by computational studies (POM analysis and molecular docking) software. They were designed for anti-Helicobacter Pylori action. All compounds revealed a bactericidal effect better than the reference McFarland standards.
Collapse
Grants
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- Zagazig University
Collapse
Affiliation(s)
- Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Eman O Hamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Gehan T El-Bassyouni
- Ceramics and Building Materials Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Soliman YM, Mabrouk M, Raboh ASA, Tohamy KM, Beherei HH. Influence of the addition of different metal oxides on physicochemical and biological properties of calcium fluorosilicate/PCL bone cement. J Mech Behav Biomed Mater 2023; 146:106075. [PMID: 37591054 DOI: 10.1016/j.jmbbm.2023.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Calcium silicate cements have been greatly developed in the last decades through different approaches. Among these approaches, the inclusion of antibacterial agents or addition of metal oxides. Herein, calcium silicate cement containing fluorine (CFS) was developed from sodium fluorosilicate precursor for the first time using chemical perception method. Afterwards, metal oxide Bi2O3 or MgO or ZrO2 was individually mixed with CFS powder and blended together using Polycaprolactone polymer (PCL). The cement mixtures were characterized using DSC, XRD, FTIR and SEM/EDX to determine the effect of metal oxide on the pure CFS. Furthermore, mechanical, antibacterial and cell viability properties were evaluated for the developed CFS mixture cements. Moreover, these CFS mixture cements were implanted in male Wistar rats to determine the effect of metal oxides on the rate of bone reformation. The findings of physicochemical and morphological characterization showed no remarkable effects on the pure CFS after mixing with each metal oxide. However, enhanced compressive strengths (up to 104.07N/cm2), antibacterial activity and cell viability (up to 96%) were achieved for the CFS cement mixtures. Finally, the in vivo studies confirmed the biocompatibility of the CFS cement mixtures and especially those mixed with Bi2O3 or ZrO2. Therefore, this study supports that CFS blends with Bi2O3 or ZrO2 can be novel promising cementing materials for bone restoration.
Collapse
Affiliation(s)
- Yasser M Soliman
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrir St), Dokki, Giza, P.O.12622, Egypt.
| | - Ahmed S Abd Raboh
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Khairy M Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrir St), Dokki, Giza, P.O.12622, Egypt
| |
Collapse
|
4
|
ElShebiney SA, Elgohary R, Kenawy SH, El-Bassyouni GT, Hamzawy EMA. Zinc oxide calcium silicate composite attenuates acute tramadol toxicity in mice. BMC Pharmacol Toxicol 2023; 24:9. [PMID: 36759887 PMCID: PMC9912638 DOI: 10.1186/s40360-023-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Seizures are considered to be the most common symptom encountered in emergency- rushed tramadol-poisoned patients; accounting for 8% of the drug-induced seizure cases. Although, diazepam clears these seizures, the risk of central respiratory depression cannot be overlooked. Henceforth, three adsorbing composites were examined in a tramadol acute intoxication mouse model. METHODS Calcium Silicate (Wollastonite) either non-doped or wet doped with iron oxide (3%Fe2O3) or zinc oxide (30% ZnO) were prepared. The composites' adsorption capacity for tramadol was determined in vitro. Tramadol intoxication was induced in Swiss albino mice by a parenteral dose of 120 mg/kg. Proposed treatments were administered within 1 min at 5 increasing doses, i.p. The next 30 min, seizures were monitored as an intoxication symptom. Plasma tramadol concentration was recorded after two hours of administration. RESULTS The 3% Fe2O3-containing composite (CSFe3), was found to be composed of mainly wollastonite with very little alpha-hematite. On the other hand, hardystonite and wellimite were developed in the 30%ZnO-containing composite (CSZn3). Micro-round and irregular nano-sized microstructures were established (The particle size of CS was 56 nm, CSFe3 was 49 nm, and CSZn3 was 42 nm). The CSZn3 adsorption capacity reached 1497 mg of tramadol for each gram. Tramadol concentration was reduced in plasma and seizures were inhibited after its administration to mice at three doses. CONCLUSION The calcium silicate composite doped with ZnO presented a good resolution of tramadol-induced seizures accompanied by detoxification of blood, indicating its potential for application in such cases. Further studies are required.
Collapse
Affiliation(s)
- Shaimaa A. ElShebiney
- grid.419725.c0000 0001 2151 8157Narcotics, Ergogenics, and Poisons Department, National Research Centre, 33-El-Buhouth St., 12622 Dokki, Giza, Egypt
| | - Rania Elgohary
- grid.419725.c0000 0001 2151 8157Narcotics, Ergogenics, and Poisons Department, National Research Centre, 33-El-Buhouth St., 12622 Dokki, Giza, Egypt
| | - Sayed H. Kenawy
- grid.419725.c0000 0001 2151 8157Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622 Egypt
| | - Gehan T. El-Bassyouni
- grid.419725.c0000 0001 2151 8157Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622 Egypt
| | - Esmat M. A. Hamzawy
- grid.419725.c0000 0001 2151 8157Glass Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622 Egypt
| |
Collapse
|
5
|
Kumar D, Gautam A, Tripathi DK, Poluri KM, Kundu PP. Synthesis, characterization and biological influences of rifaximin loaded melanin/zinc oxide nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2672. [PMID: 35957103 PMCID: PMC9370272 DOI: 10.3390/nano12152672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022]
Abstract
Cancer therapies have advanced tremendously throughout the last decade, yet multiple factors still hinder the success of the different cancer therapeutics. The traditional therapeutic approach has been proven insufficient and lacking in the suppression of tumor growth. The simultaneous delivery of multiple small-molecule chemotherapeutic drugs and genes improves the effectiveness of each treatment, thus optimizing efficacy and improving synergistic effects. Nanomedicines integrating inorganic, lipid, and polymeric-based nanoparticles have been designed to regulate the spatiotemporal release of the encapsulated drugs. Multidrug-loaded nanocarriers are a potential strategy to fight cancer and the incorporation of co-delivery systems as a feasible treatment method has projected synergistic benefits and limited undesirable effects. Moreover, the development of co-delivery systems for maximum therapeutic impact necessitates better knowledge of the appropriate therapeutic agent ratio as well as the inherent heterogeneity of the cancer cells. Co-delivery systems can simplify clinical processes and increase patient quality of life, even though such systems are more difficult to prepare than single drug delivery systems. This review highlights the progress attained in the development and design of nano carrier-based co-delivery systems and discusses the limitations, challenges, and future perspectives in the design and fabrication of co-delivery systems.
Collapse
Affiliation(s)
- Rouba D. Al Bostami
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
7
|
Mabrouk M, Abd El-Wahab RM, Abo-Elfadl MT, Beherei HH, Selim MM, Ibrahim AM, Das DB. Magnetic nanosystems substituted with zinc for enhanced antibacterial, drug delivery and cell viability behaviours. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Mabrouk M, Beherei HH, Tanaka Y, Tanaka M. Sol-gel silicate glass doped with silver for bone regeneration: Antibacterial activity, intermediate water, and cell death mode. BIOMATERIALS ADVANCES 2022; 138:212965. [PMID: 35913231 DOI: 10.1016/j.bioadv.2022.212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The hydration state of bioactive glass materials and its relationship with their biocompatibility have been receiving attention. In this research, silver-containing bioactive glasses (BGAgs) (Ag contents of 0.25, 0.5, and 1.0% in the glass system) were developed using the sol-gel method. Their physicochemical properties, size, morphology, and surface area were characterized by conducting X-rays diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The surface charges of the developed BGAgs were evaluated using the Nano Zetasizer. Moreover, the antibacterial activities and intermediate water (IW) contents of hydrated BGAgs were determined. Finally, BGAgs disks were tested against osteosarcoma (MG63) cell line to evaluate their death modes. The physicochemical characteristics of the BGAgs revealed no modifications after Ag doping. In comparison, relative changes were recorded in the particle size (20-33 to 16-29 nm), surface area (4.3 to 3.7 m2/g), and particle charge (-24 to -14.6 mV). Doping the current glass system with silver produced impressive amounts of IW, consistent with recorded proliferation rates of the cells when treated with BGAgs. The determined hydration states correlated with other findings in this research might be helpful in predicting and assessing the biological behaviors of BGAgs.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt.
| | - Hanan H Beherei
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
9
|
Abou El-Nour MF, Kenawy SH, El-Bassyouni GT, Hamzawy EMA. A Novel Treatment of Schistosomiasis: Nano-Calcium Silicate Incorporating 5% Copper Oxide. Adv Pharm Bull 2021; 11:68-76. [PMID: 33747853 PMCID: PMC7961221 DOI: 10.34172/apb.2021.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose: Praziquantel (PZQ) is a well-known drug accredited by the World Health Organization (WHO) for the treatment of schistosomiasis. It shows poor efficiency in patients during the earliest infection phases. Therefore, the search for new alternative drugs was the intention of many researchers. Methods: In the current study, the effect of different concentrations (ranging from 0.07-10 μg∕mL) of calcium silicate (CS) containing 5% copper oxide [CS-5%CuO] on golden hamster infected by Schistosoma mansoni and Schistosoma haematobium (Egyptian strains) was evaluated in both in vitro and in vivo. To the best of our knowledge, this is a novel study in investigating the efficiency of CS-5%CuO against both strains of schistosomes. The worms of S. mansoni and S. haematobium were tested in RPMI-1640 medium in vitro. Results: The results declare that CS-5% CuO exhibited excellent anti-schistosomal activities on both in vitro and in vivo experiments for both Egyptians Schistosoma strains. The most potential effect of the CS-5% CuO was exhibited after 6 h by 10 μg∕mL with significant activity of (P value = 0.001). Conclusion: Therefore, CS-5%CuO may become an innovative treatment for the schistosomiasis.
Collapse
Affiliation(s)
| | - Sayed Hamed Kenawy
- Refractories, Ceramics and Building Materials Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt.,Imam Mohamed Ibn Saud Islamic University (IMSIU), Collage of Science, Chemistry Dept. Riyadh 11623, Saudi Arabia
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | | |
Collapse
|
10
|
Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021; 26:1077. [PMID: 33670668 PMCID: PMC7922738 DOI: 10.3390/molecules26041077] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Designing of nanomaterials has now become a top-priority research goal with a view to developing specific applications in the biomedical fields. In fact, the recent trends in the literature show that there is a lack of in-depth reviews that specifically highlight the current knowledge based on the design and production of nanomaterials. Considerations of size, shape, surface charge and microstructures are important factors in this regard as they affect the performance of nanoparticles (NPs). These parameters are also found to be dependent on their synthesis methods. The characterisation techniques that have been used for the investigation of these nanomaterials are relatively different in their concepts, sample preparation methods and obtained results. Consequently, this review article aims to carry out an in-depth discussion on the recent trends on nanomaterials for biomedical engineering, with a particular emphasis on the choices of the nanomaterials, preparation methods/instruments and characterisations techniques used for designing of nanomaterials. Key applications of these nanomaterials, such as tissue regeneration, medication delivery and wound healing, are also discussed briefly. Covering this knowledge gap will result in a better understanding of the role of nanomaterial design and subsequent larger-scale applications in terms of both its potential and difficulties.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Zeinab A. Salem
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Giza P.O. 12613, Egypt;
- Faculty of Oral and Dental Medicine, Ahram Canadian University, 6 October City P.O. 12573, Egypt
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
| |
Collapse
|
11
|
Mabrouk M, Taha SK, Abdel Hamid MA, Kenawy SH, Hassan EA, El-Bassyouni GT. Radiological evaluations of low cost wollastonite nano-ceramics graft doped with iron oxide in the treatment of induced defects in canine mandible. J Biomed Mater Res B Appl Biomater 2020; 109:1029-1044. [PMID: 33289320 DOI: 10.1002/jbm.b.34767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 02/01/2023]
Abstract
Wollastonite with/without maghemite [(Fe2O3), 0, 3 and 10 wt%] was prepared by facile wet precipitation method. Effect of Fe2O3 presence in the obtained nano-ceramics on physical structure, morphology, size and the mechanical features was evaluated using X-ray diffraction, transmission electron microscope, and universal testing machine. Moreover, the in vitro biomineralization was examined using simulated body fluid (SBF) by means of scanning electron microscope/energy dispersive X-ray, Fourier transform infrared, and inductively coupled plasma. An in vivo study was conducted on 24 adult male mongrel dogs to test the biosafety of fabricated samples in the reconstruction of experimentally induced mandibular bone defects. Bone density was measured through cone beam computed tomography analysis conducted at 1 and 3 months following surgery. Wollastonite was the main phase in all the prepared samples however little maghemite was developed in Fe-containing samples. No remarkable changes were recognized for physical structure of obtained microcrystalline structures, however, a decrease in particle size was noted in the existence of Fe2O3 (10-15 nm) when compared to the pure wollastonite (30-50 nm). Mechanical features were dependent on the included Fe2O3 concentration within the wollastonite ceramic matrix. The degree of biomineralization of the samples immersed in SBF was elevated with the increase in Fe2O3 percentage. Clinically, the reconstruction of bone defects was uneventful without any adverse toxic effect. Bone density was significantly increased at 1 and 3 months (p < .001) in grafted defects compared to control ones. Increasing the doping concentrations of iron oxide was associated with significant increase (p < .001) of bone density in all induced defects. Due to the impressive healing effect of current fabricated nano-ceramics, they are recommended to be utilized as low cost bone graft alternatives.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Giza, Egypt
| | - Said K Taha
- OMF surgeon researcher in Surgery and Oral Medicine Dept., Oral and Dental Researches Division, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Abdel Hamid
- Department of Surgery, Anaesthesiology, and Radiology- Faculty of Veterinary Medicine, Cairo University- Giza, Egypt
| | - Sayed H Kenawy
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Elham A Hassan
- Department of Surgery, Anaesthesiology, and Radiology- Faculty of Veterinary Medicine, Cairo University- Giza, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Multifunctional magnetite nanoparticles for drug delivery: Preparation, characterisation, antibacterial properties and drug release kinetics. Int J Pharm 2020; 587:119658. [PMID: 32682959 DOI: 10.1016/j.ijpharm.2020.119658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
Abstract
Multifunctional nanoparticles (NPs) with magnetic (M) and antibacterial properties were prepared for drug delivery purposes by a method involving co-precipitation synthesis. Partial and complete substitutions of ferrous ions (Fe2+) by copper ions (Cu2+) were carried out for the preparation of the magnetite NPs, which are designated as Cu0.5M and CuM, respectively, in this work. In addition, chitosan and ciprofloxacin were hybridized with the NPs from the previous step to achieve multifunctional properties. XRD, TEM, SEM/EDAX, VSM and FTIR were subsequently employed to characterize various properties of the prepared NPs, namely, crystallinity, nanostructure (size), particle morphology, elemental mapping, magnetic strength and chemical composition. Antibacterial properties of the NPs were tested against Bacillus cereus (Gram-positive bacteria), Escherichia coli (Gram-negative bacteria) and Candida albicans (yeast). Efficiency of the ciprofloxacin release was also studied for the drug-loaded NPs. It is demonstrated that the obtained NPs possess mixed phases with crystalline structures that are affected by the degree of Cu ion substitution (5-10 nm (M), 2.5-3.5 nm (Cu0.5M) and 11-16 nm (CuM)). Saturation magnetization values of the NPs were recorded as 38.7, 3.5 and 1.3 emu/g, respectively. It was also found that the introduction of Cu ions in the NP samples improved the significance of their antibacterial activity, especially against Escherichia coli. Chitosan and ciprofloxacin were found to have stronger effects against Bacillus cereus and Escherichia coli and lesser effects against Candida albicans. However, the samples containing chitosan, ciprofloxacin and the higher Cu ion concentration exhibited strong influence against Candida albicans. During a study period of 30-days, the amounts of released drug from the tested NPs were 85, 26 and 20% of the originally loaded amount, respectively. Owing to the findings in this paper, the developed NPs are considered to have good potential for drug delivery applications and to study them further such as in pre-clinical studies.
Collapse
|
13
|
Sorption of radioactive cobalt onto nano calcium silicate/CuO composite modified by humic acid. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06599-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|