1
|
Britton D, Legocki J, Paul D, Katsara O, Aristizabal O, Pandya N, Mishkit O, Xiao Y, Aristizabal M, Rahman N, Schneider R, Wadghiri YZ, Montclare JK. Coiled-Coil Protein Hydrogels Engineered with Minimized Fiber Diameters for Sustained Release of Doxorubicin in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:3425-3437. [PMID: 38622760 PMCID: PMC11094684 DOI: 10.1021/acsbiomaterials.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks expressed protein targets, making therapy development challenging. Hydrogels offer a promising new route in this regard by improving the chemotherapeutic efficacy through increased solubility and sustained release. Moreover, subcutaneous hydrogel administration reduces patient burden by requiring less therapy and shorter treatment times. We recently established the design principles for the supramolecular assembly of single-domain coiled-coils into hydrogels. Using a modified computational design algorithm, we designed Q8, a hydrogel with rapid assembly for faster therapeutic hydrogel preparation. Q8 encapsulates and releases doxorubicin (Dox), enabling localized sustained release via subcutaneous injection. Remarkably, a single subcutaneous injection of Dox-laden Q8 (Q8•Dox) significantly suppresses tumors within just 1 week. This work showcases the bottom-up engineering of a fully protein-based drug delivery vehicle for improved TBNC treatment via noninvasive localized therapy.
Collapse
Affiliation(s)
- Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jakub Legocki
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Deven Paul
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Olga Katsara
- Department
of Microbiology, New York University Grossman
School of Medicine, New York, New York 10016, United States
| | - Orlando Aristizabal
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Neelam Pandya
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Orin Mishkit
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingxin Xiao
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Matias Aristizabal
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Neha Rahman
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Robert Schneider
- Department
of Microbiology, New York University Grossman
School of Medicine, New York, New York 10016, United States
- Department
of Radiation Oncology, New York University
Grossman School of Medicine, New
York, New York 10016, United States
| | - Youssef Z. Wadghiri
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York 10016, United States
- Department
of Biomedical Engineering, New York University
Tandon School of Engineering, Brooklyn ,New York11201, United States
- Department
of Chemistry, New York University, New York, New York 10012, United States
- Department
of Biomaterials, New York University College
of Dentistry, New York, New York 10010, United States
| |
Collapse
|
2
|
Annuryanti F, Domínguez-Robles J, Anjani QK, Adrianto MF, Larrañeta E, Thakur RRS. Fabrication and Characterisation of 3D-Printed Triamcinolone Acetonide-Loaded Polycaprolactone-Based Ocular Implants. Pharmaceutics 2023; 15:243. [PMID: 36678872 PMCID: PMC9863928 DOI: 10.3390/pharmaceutics15010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Triamcinolone acetonide (TA) is a corticosteroid that has been used to treat posterior segment eye diseases. TA is injected intravitreally in the management of neovascular disorders; however, frequent intravitreal injections result in many potential side effects and poor patient compliance. In this work, a 3D bioprinter was used to prepare polycaprolactone (PCL) implants loaded with TA. Implants were manufactured with different shapes (filament-, rectangular-, and circle-shaped) and drug loadings (5, 10, and 20%). The characterisation results showed that TA was successfully mixed and incorporated within the PCL matrix without using solvents, and drug content reached almost 100% for all formulations. The drug release data demonstrate that the filament-shaped implants (SA/V ratio~7.3) showed the highest cumulative drug release amongst all implant shapes over 180 days, followed by rectangular- (SA/V ratio~3.7) and circle-shaped implants (SA/V ratio~2.80). Most implant drug release data best fit the Korsmeyer−Peppas model, indicating that diffusion was the prominent release mechanism. Additionally, a biocompatibility study was performed; the results showed >90% cell viability, thus proving that the TA-loaded PCL implants were safe for ocular application.
Collapse
Affiliation(s)
- Febri Annuryanti
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, C Campus, Mulyorejo, Surabaya 60115, Indonesia
| | - Juan Domínguez-Robles
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, C Campus, Mulyorejo, Surabaya 60115, Indonesia
| | - Eneko Larrañeta
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Raghu Raj Singh Thakur
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
3
|
Özkahraman B, Özbaş Z, Bayrak G, Tamahkar E, Perçin I, Kılıç Süloğlu A, Boran F. Characterization and antibacterial activity of gelatin–gellan gum bilayer wound dressing. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bengi Özkahraman
- Polymer Materials Engineering Department, Faculty of Engineering, Hitit University, Corum, Turkey
| | - Zehra Özbaş
- Chemical Engineering Department, Faculty of Engineering, Cankiri Karatekin University, Cankiri, Turkey
| | - Gülsen Bayrak
- Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Emel Tamahkar
- Bioengineering Department, Bursa Technical University, Bursa, Turkey
| | - Işık Perçin
- Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Aysun Kılıç Süloğlu
- Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Filiz Boran
- Chemical Engineering Department, Faculty of Engineering, Hitit University, Corum, Turkey
| |
Collapse
|
4
|
Wang Y, Wang X, Montclare JK. Effect of Divalent Metal Cations on the Conformation, Elastic Behavior, and Controlled Release of a Photocrosslinked Protein Engineered Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:3587-3597. [PMID: 35014444 DOI: 10.1021/acsabm.1c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate the effect of Zn2+, Cu2+, and Ni2+ coordination on the conformation, mechanical properties, contraction, and small-molecule drug encapsulation and release of a photocrosslinked protein-engineered hydrogel, CEC-D. The treatment of the CEC-D hydrogel with divalent metal (M2+) results in significant conformational changes where a loss in structure is observed with Zn2+, while both Cu2+ and Ni2+ induce a blueshift. The relationship of M2+ to mechanical properties illustrates a trend, while the CEC-D hydrogel in the presence of 2 mM Cu2+ reveals the highest increase in G' to 14.4 ± 0.7 kPa followed by 9.7 ± 0.9 kPa by addition of 2 mM Zn2+, and a decrease to 1.1 ± 0.2 kPa is demonstrated in the presence of 2 mM Ni2+. A similar observation in M2+ responsiveness emerges where CEC-D hydrogels contract into a condensed state of 2.6-fold for Cu2+, 2.4-fold for Zn2+, and 1.6-fold for Ni2+. Furthermore, CEC-D hydrogels coordinated with M2+ demonstrate control over the encapsulation and release of the small molecule curcumin. The trend of release is opposite of the mechanical and contraction properties with a 70.0 ± 5.3% release with Ni2+, 64.2 ± 1.2% release with Zn2+, and 42.3 ± 11.3 release with Cu2+. Taken together, these results indicate that the CEC-D hydrogel tuned by M2+ is a promising drug delivery platform with tunable physicochemical properties.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xiaole Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.,Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
5
|
Wang Y, Wang X, Montclare JK. Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release. Biomacromolecules 2021; 22:1509-1522. [PMID: 33685120 DOI: 10.1021/acs.biomac.0c01721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fabrication of protein hydrogels consisting of different properties and functional motifs is critical in the development of protein-based materials for biomedical applications. Here, we report the design and characterization of a triblock protein polymer, CEC, composed of two different self-assembling domains derived from elastin protein (E) and coiled-coil protein (C), photopolymerized with a NHS-diazirine (D) crosslinker into a CEC-D hydrogel. The optimal photocrosslinker concentration and exposure time is determined to fabricate a free-standing hydrogel. Upon increasing the concentration of the CEC-D monomer and environmental temperature, the CEC-D hydrogel's conformation decreases in helical content from 58.0% to 44.8% and increases in β-content from 25.9% to 38.1%. These gels experience 55 ± 6% protein erosion from the free-standing gel in 13 days as the gel films gradually decrease in size. The swelling ratio of 12 ± 1% denotes that the gel has a swelling ability comparable to other protein hydrogels. These photocrosslinked CEC-D hydrogels can be employed for drug delivery with high encapsulation and 14 ± 2% release of curcumin into the supernatant in a week long study. Overall, the photocrosslinked CEC-D hydrogels exhibit stability, swelling ability, and sustained release of drug.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xiaole Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.,Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
6
|
New Insight into the Mechanism of Drug Release from Poly(d,l-lactide) Film by Electron Paramagnetic Resonance. Polymers (Basel) 2020; 12:polym12123046. [PMID: 33353203 PMCID: PMC7767321 DOI: 10.3390/polym12123046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
A novel approach based on convolution of the electron paramagnetic resonance (EPR) spectra was used for quantitative study of the release kinetics of paramagnetic dopants from poly(d,l-lactide) films. A non-monotonic dependence of the release rate on time was reliably recorded. The release regularities were compared with the dynamics of polymer structure changes determined by EPR, SEM, and optic microscopy. The data obtained allow for the conclusion that the main factor governing dopant release is the formation of pores connected with the surface. In contrast, the contribution of the dopant diffusion through the polymer matrix is negligible. The dopant release can be divided into two phases: release through surface pores, which are partially closed with time, and release through pores initially formed inside the polymer matrix due to autocatalytic hydrolysis of the polymer and gradually connected to the surface of the sample. For some time, these processes co-occur. The mathematical model of the release kinetics based on pore formation is presented, describing the kinetics of release of various dopants from the polymer films of different thicknesses.
Collapse
|
7
|
Wang S, Liu R, Fu Y, Kao WJ. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin Drug Deliv 2020; 17:1289-1304. [PMID: 32619149 DOI: 10.1080/17425247.2020.1788541] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Drug delivery systems with extended-release profiles are ideal in improving patient compliance with enhanced efficacy. To develop devices capable of a prolonged delivery kinetics, it is crucial to understand the various underlying mechanisms contributing to extended drug release and the impact thereof on modulating the long-term performance of such systems in a practical application environment. AREAS COVERED This review article intends to provide a comprehensive summary of release mechanisms in extended-release drug delivery systems, particularly polymer-based systems; however, other material types will also be mentioned. Selected current research in the delivery of small molecule drugs and macromolecules is highlighted. Emphasis is placed on the combined impact of different release mechanisms and drug properties on the long-term release kinetics in vitro and in vivo. EXPERT OPINION The development of drug delivery systems over an extended duration is promising but also challenging when considering the numerous interrelated delivery-related parameters. Achieving a well-controlled extended drug release requires advanced techniques to minimize burst release and lag phase, a better understanding of the dynamic interrelationship between drug properties and release profiles over time, and a thorough elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.
Collapse
Affiliation(s)
- Shuying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University , Chengdu, China
| | - Renhe Liu
- Global Health Drug Discovery Institute , Beijing, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University , Chengdu, China
| | - W John Kao
- Department of Industrial and Manufacturing Systems Engineering, Biomedical Engineering Programme, Chemical Biology Centre, and Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, China
| |
Collapse
|
8
|
Chegini SP, Varshosaz J, Sadeghi HM, Dehghani A, Minayian M. Poly(glycerol sebacate) nanoparticles for ocular delivery of sunitinib: physicochemical, cytotoxic and allergic studies. IET Nanobiotechnol 2019; 13:974-982. [PMID: 31811769 PMCID: PMC8676034 DOI: 10.1049/iet-nbt.2019.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 07/28/2023] Open
Abstract
Poly(glycerol sebacate) (PGS) is a new biodegradable polymer with good biocompatibility used in many fields of biomedicine and drug delivery. Sunitinib-loaded PGS/gelatine nanoparticles were prepared by the de-solvation method for retinal delivery and treatment of diabetic retinopathy. The nanoparticles were characterised by Fourier-transform infrared and differential scanning calorimetry. The effects of different formulation variables including drug-to-carrier ratio, gelatine-to-PGS ratio, and glycerine-to-sebacate ratio were assessed on the encapsulation efficiency (EE%), particle size, release efficiency (RE), and zeta potential of the nanoparticles. The in vitro cytotoxicity of PGS/gelatine nanoparticles was studied on L929 cells. Draize test on rabbit eyes was also done to investigate the possible allergic reactions caused by the polymer. Glycerine/sebacic acid was the most effective parameter on the EE and RE. Gelatine-to-PGS ratio had the most considerable effect on the particle size while the RE was more affected by the glycerine/sebacic acid ratio. The optimised formulation (S1G0.7D21.2) exhibited a particle size of 282 nm, 34.6% EE, zeta potential of -8.9 mV, and RE% of about 27.3% for drug over 228 h. The 3-(4,5-dimethylthuazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated PGS/gelatine nanoparticles were not cytotoxic and sunitinib-loaded nanoparticles were not toxic at concentrations <36 nM.
Collapse
Affiliation(s)
- Sana Pirmardvand Chegini
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamid Mirmohammad Sadeghi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Dehghani
- School of Medicine, Isfahan Eye Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minayian
- Department of Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Hill LK, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu CF, O’Neill S, Tu RS, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK. Thermoresponsive Protein-Engineered Coiled-Coil Hydrogel for Sustained Small Molecule Release. Biomacromolecules 2019; 20:3340-3351. [DOI: 10.1021/acs.biomac.9b00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Teeba Jihad
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Che-Fu Liu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Sean O’Neill
- Chemical Engineering Department, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Raymond S. Tu
- Chemical Engineering Department, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - P. Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, United States
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, New York 10009, United States
| | | | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
10
|
Radfar N, Mobedi H, Behnamghader A, Mashak A. PLGA‐based
in situ
‐forming system: degradation behavior in the presence of hydroxyapatite nanoparticles. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Neda Radfar
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
| | - Hamid Mobedi
- Department of Novel Drug Delivery SystemsIran Polymer and Petrochemical Institute, P.O. Box: 14965/115 Tehran Iran
| | - Aliasghar Behnamghader
- Biomaterials Group, Nanotechnology and Advanced Materials DepartmentMaterials and Energy Research Center Karaj Iran
| | - Arezou Mashak
- Department of Novel Drug Delivery SystemsIran Polymer and Petrochemical Institute, P.O. Box: 14965/115 Tehran Iran
| |
Collapse
|
11
|
Development of customised 3D printed biodegradable projectile for administrating extended-release contraceptive to wildlife. Int J Pharm 2018; 548:349-356. [DOI: 10.1016/j.ijpharm.2018.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
|
12
|
Varshosaz J, Taymouri S, Minaiyan M, Rastegarnasab F, Baradaran A. Development and in vitro/in vivo evaluation of HPMC/chitosan gel containing simvastatin loaded self-assembled nanomicelles as a potent wound healing agent. Drug Dev Ind Pharm 2017; 44:276-288. [DOI: 10.1080/03639045.2017.1391832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rastegarnasab
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azar Baradaran
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Bajpai SK, Shah FF, Bajpai M. Dynamic release of gentamicin sulfate (GS) from alginate dialdehyde (AD)-crosslinked casein (CAS) films for antimicrobial applications. Des Monomers Polym 2016; 20:18-32. [PMID: 29491776 PMCID: PMC5812178 DOI: 10.1080/15685551.2016.1231037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/29/2016] [Indexed: 10/25/2022] Open
Abstract
In the present work, antibiotic drug gentamicin sulfate (GS) has been loaded into alginate dialdehyde-crosslinked casein (CAS) films for wound dressing applications. The films have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The dynamic release of model drug GS has been investigated in the physiological fluid at 37 °C. The drug release data has been interpreted in the terms of various kinetic models such as Power function model, first order model and Schott model. The release data was found to be well fitted by Schott model. The various diffusion coefficients are also evaluated. The adsorption of model therapeutic protein BSA on the film has been investigated. The maximum adsorption is found to be 5.7 mg/cm2.The films were tested for their antibacterial and anti-fungal action. Finally, the in vivo wound healing study was carried out on Albino wistar rats.
Collapse
Affiliation(s)
- S. K. Bajpai
- Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur, India
| | - Farhan Ferooz Shah
- Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur, India
| | - M. Bajpai
- Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur, India
| |
Collapse
|