1
|
Convit L, Kelly MK, Jardine WT, Périard JD, Carr AJ, Warmington S, Bowe SJ, Snipe RMJ. Influence of acute heat mitigation strategies on core temperature, heart rate and aerobic performance in females: A systematic literature review. J Sports Sci 2024; 42:1491-1511. [PMID: 39262133 DOI: 10.1080/02640414.2024.2396225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
This review examined the effect of acute heat mitigation strategies on physiological strain and exercise performance in females exercising in the heat. Three databases were searched for original research with an acute heat mitigation (intervention) and control strategy in active females and reporting core temperature, heart rate and/or aerobic exercise performance/capacity with ≥ 24°C wet bulb globe temperature. Hedges' g effect sizes were calculated to evaluate outcomes. Thirteen studies (n = 118) were included. Most studies that applied an acute heat mitigation strategy to females did not reduce thermal (9/10) or cardiovascular (6/6) strain or improve exercise performance/capacity (8/10). The most effective strategies for attenuating thermal strain were pre-cooling with ice-slurry (effect size = -2.2 [95% CI, -3.2, -1.1]) and ice-vests (-1.9 [-2.7, -1.1]), and pre- and per-cooling with an ice-vest (-1.8 [-2.9, -0.7]). Only pre-cooling with an ice-vest improved running performance (-1.8 [-2.9, -0.7]; ~0.43 min) whilst sodium hyperhydration improved cycling capacity at 70% V O2peak (0.8 [0.0, 1.6]; ~20.1 min). There is currently limited research on acute heat mitigation strategies in females, so the evidence for the efficacy is scarce. Some studies show beneficial effects with ice-slurry, ice-vests and sodium hyperhydration, which can guide future research to support female exercise performance in the heat.
Collapse
Affiliation(s)
- Lilia Convit
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Monica K Kelly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - William T Jardine
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Bruce, Australia
| | - Amelia J Carr
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Stuart Warmington
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Steven J Bowe
- School of Health, Wellington Faculty of Health, Victoria University of Wellington, Wellington, New Zealand
| | - Rhiannon M J Snipe
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
2
|
Collado A, Rinaldi K, Hermand E, Hue O. Cumulative pre-cooling methods do not enhance cycling performance in tropical climate. PLoS One 2023; 18:e0291951. [PMID: 37824451 PMCID: PMC10569554 DOI: 10.1371/journal.pone.0291951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
The main objective of this study was to investigate the effect of mixed cooling techniques (combination of internal and external strategies, with and without menthol) during warm-up for a time trial in tropical climate. Seven heat-acclimatized trained male road cyclists participated in three experimental sessions consisting of 20-min cycling performances on a velodrome track in ecological hot and humid conditions (Guadeloupe, French West Indies; WBGT: 27.64±0.27°C; relative humidity: 76.43±2.19%), preceded by a standardized 30-min warm-up and the ingestion of cold menthol water (1) with a cooling vest soaked in ice water (ICE-VEST), (2) with a cooling vest soaked in ice menthol water (MEN-VEST), and (3) without a vest (NO-VEST). Cycling performance (total distance, distance traveled per 2-min block), physiological parameters (core body temperature recorded, heart rate) and perceptions (exertion, thermal comfort, thermal sensation) were assessed. No between-condition differences were found for physiological parameters, the total covered distance or the distance traveled per 2-min block. However, distance traveled per 2-min decreased with time (p = 0.03), with no difference between conditions, suggesting a variation in pace during the cycling performance trial (e.g., mean±SD: 1321±48.01m at T2; 1308±46.20m at T8, 1284±78.38m at T14, 1309±76.29m at T20). No between-condition differences were found for perception of exertion, thermal comfort and thermal sensation during the warm-up (11.83±3.34; 2.58±1.02; 4.39±0.94, respectively) and the performance (17.85±0.99; 2.70±1.25; 5.20±1.20, respectively) but the pairwise comparisons within condition revealed a significant increase of TS values from T0 (4.57±1.13) to T20 (6.00±0.58) only in NO-VEST condition (p = 0.04). The absence of modification of thermal sensation at the end of the cycling test under the mixed conditions (ICE-VEST and MEN-VEST) suggests a beneficial effect of wearing a cooling vest on thermal sensation although it had no effect on performance.
Collapse
Affiliation(s)
- Aurélie Collado
- Université des Antilles, ACTES (UPRES EA 3596), UFR STAPS, Pointe-à-Pitre, France
| | | | - Eric Hermand
- Univ. Littoral Côte d’Opale, Univ. Artois, Univ. Lille, CHU LIlle, ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, Dunkerque, France
| | - Olivier Hue
- Université des Antilles, ACTES (UPRES EA 3596), UFR STAPS, Pointe-à-Pitre, France
| |
Collapse
|
3
|
Oyama T, Fujii M, Nakajima K, Takakura J, Hijioka Y. Validation of upper thermal thresholds for outdoor sports using thermal physiology modelling. Temperature (Austin) 2023; 11:92-106. [PMID: 38577294 PMCID: PMC10989705 DOI: 10.1080/23328940.2023.2210477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 04/06/2024] Open
Abstract
Thermal safety guidelines with upper thresholds aim to protect athletes' health, yet evidence-based sport-specific thresholds remain unestablished. Experimenting with athletes in severely hot conditions raises ethical concerns, so we used a thermo-physiological model to validate the thresholds of guidelines for outdoor sports. First, the reproducibility of the joint system thermoregulation model (JOS-3) of core temperature has been validated for 18 sports experiments (n = 213) and 11 general exercise experiments (n = 121) using the Bland - Altman analysis. Then, core temperatures were predicted using the JOS-3 in conditions corresponding to the upper thresholds, and if the 90th-99.7th percentile core temperature value (corresponding to 0.3%-10% of the participants) exceeded 40°C, the thresholds were judged as potentially hazardous. Finally, we proposed revisions for sports with potentially hazardous thresholds. As a result, the JOS-3 could simulate core temperature increases in most experiments (27/29) for six sports and general exercises with an accuracy of 0.5°C. The current upper thresholds for marathons, triathlons, and football are potentially hazardous. Suggested revisions, based on specified percentiles, include: Football: revise from wet bulb globe temperature (WBGT) 32°C to 29-31°C or not revise. Marathon: revise from WBGT 28°C to 24-27°C. Triathlon: revise from WBGT 32.2°C to 23-26°C. If conducting sports events under the revised upper thresholds proves difficult, taking measures for a possible high incidence of heat illness becomes crucial, such as placing additional medical resources, assisting heat acclimatization and cooling strategies for participants, and rule changes such as shorter match times and increased breaks.
Collapse
Affiliation(s)
- Takahiro Oyama
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Minoru Fujii
- Social Systems Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kenichi Nakajima
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Jun’ya Takakura
- Social Systems Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yasuaki Hijioka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
4
|
Jiang D, Yu Q, Liu M, Dai J. Effects of different external cooling placements prior to and during exercise on athletic performance in the heat: A systematic review and meta-analysis. Front Physiol 2023; 13:1091228. [PMID: 36703929 PMCID: PMC9871495 DOI: 10.3389/fphys.2022.1091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nowadays, many high-profile international sport events are often held in warm or hot environments, hence, it is inevitable for these elite athletes to be prepared for the challenges from the heat. Owing to internal cooling may cause gastrointestinal discomfort to athletes, external cooling technique seems to be a more applicable method to deal with thermal stress. Central cooling mainly refers to head, face, neck and torso cooling, can help to reduce skin temperature and relieve thermal perception. Peripheral cooling mainly refers to four limbs cooling, can help to mitigate metabolic heat from muscular contrac to effectively prevent the accumulation of body heat. Hence, we performed a meta-analysis to assess the effectiveness of different external cooling placements on athletic performance in the heat Methods: A literatures search was conducted using Web of Science, MEDLINE and SPORTDiscus until September 2022. The quality and risk of bias in the studies were independently assessed by two researchers. Results: 1,430 articles were initially identified (Web of Science = 775; MEDLINE = 358; SPORTDiscus = 271; Additional records identified through other sources = 26), 60 articles (82 experiments) met the inclusion criteria and were included in the final analysis, with overall article quality being deemed moderate. Central cooling (SMD = 0.43, 95% CI 0.27 to 0.58, p < 0.001) was most effective in improving athletic performance in the heat, followed by central and peripheral cooling (SMD = 0.38, 95% CI 0.23 to 0.54, p < 0.001), AND peripheral cooling (SMD = 0.32, 95% CI 0.07 to 0.57, p = 0.013). For the cooling-promotion effects on different sports types, the ranking order in central cooling was ETE (exercise to exhaustion), TT (time-trial), EWT (exercise within the fixed time or sets), IS (intermittent sprint); the ranking order in peripheral cooling was EWT, TT, ETE and IS; the ranking order in central and peripheral cooling was ETE, IS, EWT and TT. Conclusion: Central cooling appears to be an more effective intervention to enhance performance in hot conditions through improvements of skin temperature and thermal sensation, compared to other external cooling strategies. The enhancement effects of peripheral cooling require sufficient re-warming, otherwise it will be trivial. Although, central and peripheral cooling seems to retain advantages from central cooling, as many factors may influence the effects of peripheral cooling to offset the positive effects from central cooling, the question about whether central and peripheral cooling method is better than an isolated cooling technique is still uncertain and needs more researchs to explore it.
Collapse
Affiliation(s)
- Dongting Jiang
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Qiuyu Yu
- Sports Coaching College, Beijing Sports University, Beijing, China
- Big Ball Sports Center, Hebei Provincial Sports Bureau, Shijiazhuang, China
| | - Meng Liu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Jinjin Dai
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
5
|
Knechtle B, Stjepanovic M, Knechtle C, Rosemann T, Sousa CV, Nikolaidis PT. Physiological Responses to Swimming Repetitive "Ice Miles". J Strength Cond Res 2021; 35:487-494. [PMID: 29878984 DOI: 10.1519/jsc.0000000000002690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Knechtle, B, Stjepanovic, M, Knechtle, C, Rosemann, T, Sousa, CV, and Nikolaidis, PT. Physiological responses to swimming repetitive "Ice Miles." J Strength Cond Res 35(2): 487-494, 2021-"Ice Mile" swimming (i.e., 1,608 m in water of below 5° C) is becoming increasingly popular. Since the foundation of the International Ice Swimming Association (IISA) in 2009, official races are held as World Cup Races and World Championships. Ice swimming was a demonstration sport at the 2014 Winter Olympics in Sochi, Russia. This case study aimed to identify core body temperature and selected hematological and biochemical parameters before and after repeated "Ice Miles." An experienced ice swimmer completed 6 consecutive Ice Miles within 2 days. Three Ice Miles adhered to the strict criteria for the definition of Ice Miles, whereas the other 3 were very close (i.e., 5.2, 6.1, and 6.6° C) to the temperature limit. Swimming times, changes in core body temperatures, and selected urinary and hematological parameters were recorded. The athlete showed after each Ice Mile a metabolic acidosis (i.e., an increase in lactate and TCO2; a decrease in base excess and HCO3-) and an increase in blood glucose, cortisol, and creatine kinase concentration. The decrease in pH correlated significantly and negatively with the increase in cortisol level, indicating that this intense exercise causes a metabolic stress. The change in core body temperature between start and finish was negatively associated with metabolic acidosis. The increase in creatine kinase suggests skeletal muscle damages due to shivering after an Ice Mile. For athletes and coaches, swimming in cold water during Ice Miles leads to a metabolic acidosis, which the swimmer tries to compensate with a respiratory response. Considering the increasing popularity of ice swimming, the findings have practical value for swimmers and practitioners (e.g., coaches, exercise physiologists, and physicians) working with them because our results provide a detailed description of acute physiological responses to repeated swimming in cold conditions. These findings are of importance for athletes and coaches for National Championships and World Championships in Ice Swimming following the IISA rules.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Mirko Stjepanovic
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Caio V Sousa
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil ; and
| | | |
Collapse
|
6
|
Rodríguez MÁ, Piedra JV, Sánchez-Fernández M, del Valle M, Crespo I, Olmedillas H. A Matter of Degrees: A Systematic Review of the Ergogenic Effect of Pre-Cooling in Highly Trained Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2952. [PMID: 32344616 PMCID: PMC7215649 DOI: 10.3390/ijerph17082952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023]
Abstract
The current systematic review evaluated the effects of different pre-cooling techniques on sports performance in highly-trained athletes under high temperature conditions. PubMed/MEDLINE, EMBASE, Web of Science, CENTRAL, Scopus, and SPORTDiscus databases were searched from inception to December 2019. Studies performing pre-cooling interventions in non-acclimatized highly-trained athletes (>55 mL/kg/min of maximal oxygen consumption) under heat conditions (≥30 °C) were included. The searched reported 26 articles. Pre-cooling techniques can be external (exposure to ice water, cold packs, or cooling clothes), internal (intake of cold water or ice), or mixed. Cooling prior to exercise concluded increases in distance covered (1.5-13.1%), mean power output (0.9-6.9%), time to exhaustion (19-31.9%), work (0.1-8.5%), and mean peak torque (10.4-22.6%), as well as reductions in completion time (0.6-6.5%). Mixed strategies followed by cold water immersion seem to be the most effective techniques, being directly related with the duration of cooling and showing the major effects in prolonged exercise protocols. The present review showed that pre-cooling methods are an effective strategy to increase sports performance in hot environments. This improvement is associated with the body surface exposed and its sensibility, as well as the time of application, obtaining the best results in prolonged physical exercise protocols.
Collapse
Affiliation(s)
- Miguel Ángel Rodríguez
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
| | - José Víctor Piedra
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
| | - Mario Sánchez-Fernández
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
| | - Miguel del Valle
- Department of Cellular Morphology and Biology, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Irene Crespo
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
- Institute of Biomedicine, Universidad de León, 24071 León, Spain
| | - Hugo Olmedillas
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
7
|
Maley MJ, Minett GM, Bach AJE, Zietek SA, Stewart KL, Stewart IB. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity. PLoS One 2018; 13:e0191416. [PMID: 29357373 PMCID: PMC5777660 DOI: 10.1371/journal.pone.0191416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.
Collapse
Affiliation(s)
- Matthew J. Maley
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
- * E-mail:
| | - Geoffrey M. Minett
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Aaron J. E. Bach
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Stephanie A. Zietek
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kelly L. Stewart
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ian B. Stewart
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
8
|
Davies MJ, Clark B, Welvaert M, Skorski S, Garvican-Lewis LA, Saunders P, Thompson KG. Effect of Environmental and Feedback Interventions on Pacing Profiles in Cycling: A Meta-Analysis. Front Physiol 2016; 7:591. [PMID: 27994554 PMCID: PMC5136559 DOI: 10.3389/fphys.2016.00591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/14/2016] [Indexed: 11/15/2022] Open
Abstract
In search of their optimal performance athletes will alter their pacing strategy according to intrinsic and extrinsic physiological, psychological and environmental factors. However, the effect of some of these variables on pacing and exercise performance remains somewhat unclear. Therefore, the aim of this meta-analysis was to provide an overview as to how manipulation of different extrinsic factors affects pacing strategy and exercise performance. Only self-paced exercise studies that provided control and intervention group(s), reported trial variance for power output, disclosed the type of feedback received or withheld, and where time-trial power output data could be segmented into start, middle and end sections; were included in the meta-analysis. Studies with similar themes were grouped together to determine the mean difference (MD) with 95% confidence intervals (CIs) between control and intervention trials for: hypoxia, hyperoxia, heat-stress, pre-cooling, and various forms of feedback. A total of 26 studies with cycling as the exercise modality were included in the meta-analysis. Of these, four studies manipulated oxygen availability, eleven manipulated heat-stress, four implemented pre-cooling interventions and seven studies manipulated various forms of feedback. Mean power output (MPO) was significantly reduced in the middle and end sections (p < 0.05), but not the start section of hypoxia and heat-stress trials compared to the control trials. In contrast, there was no significant change in trial or section MPO for hyperoxic or pre-cooling conditions compared to the control condition (p > 0.05). Negative feedback improved overall trial MPO and MPO in the middle section of trials (p < 0.05), while informed feedback improved overall trial MPO (p < 0.05). However, positive, neutral and no feedback had no significant effect on overall trial or section MPO (p > 0.05). The available data suggests exercise regulation in hypoxia and heat-stress is delayed in the start section of trials, before significant reductions in MPO occur in the middle and end of the trial. Additionally, negative feedback involving performance deception may afford an upward shift in MPO in the middle section of the trial improving overall performance. Finally, performance improvements can be retained when participants are informed of the deception.
Collapse
Affiliation(s)
- Michael J Davies
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Department of Physiology, Australian Institute of SportBruce, ACT, Australia
| | - Bradley Clark
- University of Canberra Research Institute for Sport and Exercise Bruce, ACT, Australia
| | - Marijke Welvaert
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Department of Physiology, Australian Institute of SportBruce, ACT, Australia
| | - Sabrina Skorski
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Institute of Sports and Preventive Medicine, Saarland UniversitySaarbrücken, Germany
| | - Laura A Garvican-Lewis
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Department of Physiology, Australian Institute of SportBruce, ACT, Australia; Mary Mackillop Institute for Health Research, Australian Catholic UniversityMelbourne, VIC, Australia
| | - Philo Saunders
- Department of Physiology, Australian Institute of Sport Bruce, ACT, Australia
| | - Kevin G Thompson
- University of Canberra Research Institute for Sport and Exercise Bruce, ACT, Australia
| |
Collapse
|
9
|
Stevens CJ, Taylor L, Dascombe BJ. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat. Sports Med 2016; 47:829-841. [DOI: 10.1007/s40279-016-0625-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|