1
|
Creatine Supplementation to Improve Sarcopenia in Chronic Liver Disease: Facts and Perspectives. Nutrients 2023; 15:nu15040863. [PMID: 36839220 PMCID: PMC9958770 DOI: 10.3390/nu15040863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Creatine supplementation has been one of the most studied and useful ergogenic nutritional support for athletes to improve performance, strength, and muscular mass. Over time creatine has shown beneficial effects in several human disease conditions. This review aims to summarise the current evidence for creatine supplementation in advanced chronic liver disease and its complications, primarily in sarcopenic cirrhotic patients, because this condition is known to be associated with poor prognosis and outcomes. Although creatine supplementation in chronic liver disease seems to be barely investigated and not studied in human patients, its potential efficacy on chronic liver disease is indirectly highlighted in animal models of non-alcoholic fatty liver disease, bringing beneficial effects in the fatty liver. Similarly, encephalopathy and fatigue seem to have beneficial effects. Creatine supplementation has demonstrated effects in sarcopenia in the elderly with and without resistance training suggesting a potential role in improving this condition in patients with advanced chronic liver disease. Creatine supplementation could address several critical points of chronic liver disease and its complications. Further studies are needed to support the clinical burden of this hypothesis.
Collapse
|
2
|
Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 2022; 162:116467. [PMID: 35688360 DOI: 10.1016/j.bone.2022.116467] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia refers to the age-related reduction in strength, muscle mass and functionality which increases the risk for falls, injuries and fractures. Sarcopenia is associated with other age-related conditions such as osteoporosis, frailty and cachexia. Identifying treatments to overcome sarcopenia and associated conditions is important from a global health perspective. There is evidence that creatine monohydrate supplementation, primarily when combined with resistance training, has favorable effects on indices of aging muscle and bone. These musculoskeletal benefits provide some rationale for creatine being a potential intervention for treating frailty and cachexia. The purposes of this narrative review are to update the collective body of research pertaining to the effects of creatine supplementation on indices of aging muscle and bone (including bone turnover markers) and present possible justification and rationale for its utilization in the treatment of frailty and cachexia in older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University Brandon, MB, Canada
| | - Ciaran M Fairman
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Creatine Supplementation for Muscle Growth: A Scoping Review of Randomized Clinical Trials from 2012 to 2021. Nutrients 2022; 14:nu14061255. [PMID: 35334912 PMCID: PMC8949037 DOI: 10.3390/nu14061255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Creatine supplementation is the most popular ergonomic aid for athletes in recent years and is used for improving sport performance and muscle growth. However, creatine supplementation is not always effective in all populations. To address these discrepancies, numerous studies have examined the use of creatine supplementation for muscle growth. This scoping review aimed to investigate the effects of creatine supplementation for muscle growth in various populations, in which Arksey and O'Malley's scoping review framework is used to present the findings. For this study, we performed a systematic search of the PubMed, Embase, and Web of Science databases for theses and articles published between 2012 and 2021. A manual search of the reference lists of the uncovered studies was conducted and an expert panel was consulted. Two reviewers screened the articles for eligibility according to the inclusion criteria. Methodological quality was assessed using the National Heart, Lung and Blood Institute's (NHLBI's) quality assessment tool. A total of 16 randomized controlled trials (RCTs) were finally included. All the authors extracted key data and descriptively analyzed the data. Thematic analysis was used to categorize the results into themes. Three major themes related to muscle growth were generated: (i) subjects of creatine supplementation-muscle growth is more effective in healthy young subjects than others; (ii) training of subjects-sufficient training is important in all populations; (iii) future direction and recommendation of creatine supplementation for muscle growth-injury prevention and utilization in medical practice. Overall, creatine is an efficient form of supplementation for muscle growth in the healthy young population with adequate training in a variety of dosage strategies and athletic activities. However, more well-designed, long-term RCTs with larger sample sizes are needed in older and muscular disease-related populations to definitively determine the effects of creatine supplementation on muscle growth in these other populations.
Collapse
|
4
|
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2021; 18:13. [PMID: 33557850 PMCID: PMC7871530 DOI: 10.1186/s12970-021-00412-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, Florida, USA.
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Medicine, FMUSP, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrew R Jagim
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | |
Collapse
|
5
|
Forbes SC, Candow DG, Ferreira LHB, Souza-Junior TP. Effects of Creatine Supplementation on Properties of Muscle, Bone, and Brain Function in Older Adults: A Narrative Review. J Diet Suppl 2021; 19:318-335. [PMID: 33502271 DOI: 10.1080/19390211.2021.1877232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aging is associated with reductions in muscle and bone mass and brain function, which may be counteracted by several lifestyle factors, of which exercise appears to be most beneficial. However, less than 20% of older adults (> 55 years of age) adhere to performing the recommended amount of resistance training (≥ 2 days/week) and less than 12% regularly meet the aerobic exercise guidelines (≥ 150 min/week of moderate to vigorous intensity aerobic exercise) required to achieve significant health benefits. Therefore, from a healthy aging and clinical perspective, it is important to determine whether other lifestyle interventions (independent of exercise) can have beneficial effects on aging muscle quality and quantity, bone strength, and brain function. Creatine, a nitrogen containing organic compound found in all cells of the body, has the potential to have favorable effects on muscle, bone, and brain health (independent of exercise) in older adults. The purpose of this narrative review is to examine and summarize the small body of research investigating the effects of creatine supplementation alone on measures of muscle mass and performance, bone mineral and strength, and indices of brain health in older adults.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Luis H B Ferreira
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tacito P Souza-Junior
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Endo Y, Nourmahnad A, Sinha I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front Physiol 2020; 11:874. [PMID: 32792984 PMCID: PMC7390896 DOI: 10.3389/fphys.2020.00874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Loss of muscle mass and strength with aging, also termed sarcopenia, results in a loss of mobility and independence. Exercise, particularly resistance training, has proven to be beneficial in counteracting the aging-associated loss of skeletal muscle mass and function. However, the anabolic response to exercise in old age is not as robust, with blunted improvements in muscle size, strength, and function in comparison to younger individuals. This review provides an overview of several physiological changes which may contribute to age-related loss of muscle mass and decreased anabolism in response to resistance training in the elderly. Additionally, the following supplemental therapies with potential to synergize with resistance training to increase muscle mass are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth hormone (GH). Although these interventions hold some promise, further research is necessary to optimize the response to exercise in elderly patients.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Atousa Nourmahnad
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
7
|
Balestrino M, Adriano E. Beyond sports: Efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Med Res Rev 2019; 39:2427-2459. [PMID: 31012130 DOI: 10.1002/med.21590] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
Creatine is pivotal in energy metabolism of muscle and brain cells, both in physiological and in pathological conditions. Additionally, creatine facilitates the differentiation of muscle and neuronal cells. Evidence of effectiveness of creatine supplementation in improving several clinical conditions is now substantial, and we review it in this paper. In hereditary diseases where its synthesis is impaired, creatine has a disease-modifying capacity, especially when started soon after birth. Strong evidence, including a Cochrane meta-analysis, shows that it improves muscular strength and general well-being in muscular dystrophies. Significant evidence exists also of its effectiveness in secondary prevention of statin myopathy and of treatment-resistant depression in women. Vegetarians and vegans do not consume any dietary creatine and must synthesize all they need, spending most of their methylation capacity. Nevertheless, they have a lower muscular concentration of creatine. Creatine supplementation has proved effective in increasing muscular and neuropsychological performance in vegetarians or vegans and should, therefore, be recommended especially in those of them who are athletes, heavy-duty laborers or who undergo intense mental effort. Convincing evidence also exists of creatine effectiveness in muscular atrophy and sarcopenia in the elderly, and in brain energy shortage (mental fatigue, sleep deprivation, environmental hypoxia as in mountain climbing, and advanced age). Furthermore, we review more randomized, placebo-controlled trials showing that creatine supplementation is safe up to 20 g/d, with a possible caveat only in people with kidney disease. We trust that the evidence we review will be translated into clinical practice and will spur more research on these subjects.
Collapse
Affiliation(s)
- Maurizio Balestrino
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrico Adriano
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy
| |
Collapse
|
8
|
Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. J Clin Med 2019; 8:E488. [PMID: 30978926 PMCID: PMC6518405 DOI: 10.3390/jcm8040488] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, defined as the age-related decrease in muscle mass, strength and physical performance, is associated with reduced bone mass and elevated low-grade inflammation. From a healthy aging perspective, interventions which overcome sarcopenia are clinically relevant. Accumulating evidence suggests that exogenous creatine supplementation has the potential to increase aging muscle mass, muscle performance, and decrease the risk of falls and possibly attenuate inflammation and loss of bone mineral. Therefore, the purpose of this review is to: (1) summarize the effects of creatine supplementation, with and without resistance training, in aging adults and discuss possible mechanisms of action, (2) examine the effects of creatine on bone biology and risk of falls, (3) evaluate the potential anti-inflammatory effects of creatine and (4) determine the safety of creatine supplementation in aging adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education, Brandon University, Brandon, MB R7A 6A9, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33314, USA.
| | - Richard B Kreider
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4253, USA.
| |
Collapse
|
9
|
Chami J, Candow DG. Effect of Creatine Supplementation Dosing Strategies on Aging Muscle Performance. J Nutr Health Aging 2019; 23:281-285. [PMID: 30820517 DOI: 10.1007/s12603-018-1148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study compared the effects of different creatine supplementation dosages, independent of resistance training, on aging muscle performance and functionality. DESIGN AND PARTICIPANTS Using a double-blind, repeated measures design, participants were randomized to one of three groups: Creatine-High (CR-H; n=11; 0.3 g/kg/day of creatine + 0.1 g/kg/day of maltodextrin), Creatine-Moderate (CR-M: n=11; 0.1 g/kg/day of creatine + 0.3 g/kg/day of maltodextrin) or Placebo (PLA; n=11; 0.4 g/kg/day of maltodextrin) for 10 consecutive days. MEASUREMENTS The primary dependent variables measured at baseline and after supplementation included muscle strength (1-repetition maximum leg press, chest press, hand-grip), muscle endurance (leg press and chest press; maximal number of repetitions performed for 1 set at 80% and 70% baseline 1-repetition maximum respectively), and physical performance (dynamic balance). RESULTS There was a significant increase over time for muscle strength (Leg press: CR-H pre 161.5 ± 55.1 kg, post 169.2 ± 59.2 kg; CR-M pre 145.2 ± 47.7 kg, post 151.7 ± 45.0 kg; PLA pre 163.7 ± 51.5 kg, post 178.2 ± 65.6 kg, p = 0.001; Chest press: CR-H pre 57.0 ± 26.2 kg, post 58.8 ± 28.0 kg; CR-M pre 54.5 ± 27.9 kg, post 56.8 ± 30.1 kg; PLA pre 55.1 ± 26.9 kg, post 58.5 ± 30.1 kg, p = 0.001) and endurance (Leg press: CR-H pre 17.1 ± 6.0 reps, post 21.0 ± 7.2 reps; CR-M pre 24.1 ± 11.6 reps, post 29.1 ± 17.0 reps; PLA pre 23.8 ± 9.7 reps, post 29.5 ± 11.9 reps, p = 0. 001; Chest press: CR-H pre 15.6 ± 2.7 reps, post 18.9 ± 2.7 reps; CR-M pre 18.0 ± 5.0 reps, post 19.9 ± 7.1 reps; PLA pre 20.5 ± 6.2 reps, post 21.6 ± 5.5 reps, p = 0. 001), with no other differences. CONCLUSION Short-term creatine supplementation, independent of dosage and resistance training, has no effect on aging muscle performance.
Collapse
Affiliation(s)
- J Chami
- Darren G. Candow, PhD, Professor and Associate Dean-Graduate Studies and Research, Faculty of Kinesiology and Health Studies, 3737 Wascana Parkway, University of Regina, Regina SK Canada, S4S 0A2,
| | | |
Collapse
|