1
|
Berta P, Michailov M, Kaško D, Gajdošík J, Běhounek M, Baláš J. Validity and normative scores of finger flexor strength and endurance tests estimated from a large sample of female and male climbers. J Sports Sci 2025:1-11. [PMID: 39754511 DOI: 10.1080/02640414.2024.2449316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Recent reviews have highlighted conflicting findings regarding the validity of finger flexor strength and endurance tests in sport climbers, often due to small sample sizes and low ecological validity of the tests used. To address these gaps, 185 male and 122 female climbers underwent maximal finger flexor strength, intermittent and continuous finger flexor endurance, and the finger hang tests in a sport-specific setting to determine the predictive and concurrent validity of these tests. The finger hang test showed the strongest relationship to climbing ability for both sexes (R ≈ 0.75). However, despite its widespread use as an endurance test, the finger hang was found to be primarily determined by finger strength, explaining 65% and 80% of the variance in males and females, respectively. Finger strength emerged as the dominant factor, explaining the majority of variance in climbing ability (males 68%; females 64%), followed by intermittent endurance (males 28%; females 34%). These findings emphasize finger strength as the primary predictor of climbing ability and highlight the importance of intermittent endurance testing for assessing climbing-specific endurance of the finger flexors. No significant differences were found between male and female climbers in finger flexor strength and endurance when normalized to body mass.
Collapse
Affiliation(s)
- Patrik Berta
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Michail Michailov
- Department Theory and Methodology of Sports Training, National Sports Academy "Vassil Levski", Sofia, Bulgaria
| | - Dávid Kaško
- Institute of Physical Education and Sport, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Jan Gajdošík
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Michal Běhounek
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Corral-Pérez J, Marín-Galindo A, Costilla M, Casals C, Muñoz-López A, Sánchez-Sixto A, Sañudo B, Ponce-González JG. Reliability of near-infrared spectroscopy in measuring muscle oxygenation during squat exercise. J Sci Med Sport 2024; 27:805-813. [PMID: 39054175 DOI: 10.1016/j.jsams.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Monitoring of changes in skeletal muscle oxygenation during exercise has increased in recent years. Tissue oxygenation, which is related to fatigue and muscle hypertrophy, is often measured using near-infrared spectroscopy (NIRS). OBJECTIVES This study aimed to determine the test-retest reliability of a non-portable NIRS (NIRO200Nx) during the full-squat exercise and recovery in young healthy men. DESIGN Twenty-five male participants (21.8 ± 2.6 years) were recruited for this original research. Each participant completed an 8-repetition test with a load that elicited a velocity of 1 m·s-1. The test was conducted twice, with a 48-hour washout period between sessions. METHODS The NIRS measured the changes of oxygenated-Hemoglobin (O2Hb), deoxygenated-Hemoglobin (HHb) and Tissue Oxygenation Index (TOI) in both Vastus Lateralis and Vastus Medialis during rest, exercise, and recovery. Coefficient of Variation (CV), Standard Error Measurement (SEM) and Intraclass Correlation Coefficient (ICC) were used to evaluate the reliability of the data. Significance was set at p < 0.05. RESULTS The results indicated that TOI had good to acceptable absolute reliability (CVTOI = 2.7-10.2 %). A good relative relativity for the overall test was found for Vastus Medialis O2Hb (ICC = 0.851), HHb (ICC = 0.852), and TOI (ICC = 0.864), and Vastus Lateralis O2Hb (ICC = 0.898), HHb (ICC = 0.899), and TOI (ICC = 0.897). CONCLUSIONS We conclude that NIRO200Nx is a reliable instrument for measuring muscle oxygen saturation through the TOI parameter in not-to-failure dynamic resistance exercises (1 set of 8 reps against ∼40 % 1 repetition maximum). Tissue oxygenation assessment could be a new way of individualizing exercise through dynamic resistance exercises.
Collapse
Affiliation(s)
- Juan Corral-Pérez
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Alberto Marín-Galindo
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Manuel Costilla
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Cristina Casals
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Alejandro Muñoz-López
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, Seville, Spain.
| | | | - Borja Sañudo
- Department of Physical Education and Sport, University of Seville, Spain.
| | - Jesús Gustavo Ponce-González
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| |
Collapse
|
3
|
Baláš J, Gajdošík J, Javorský T, Berta P, Feldmann A. Measuring critical force in sport climbers: a validation study of the 4 min all-out test on finger flexors. Eur J Appl Physiol 2024; 124:2787-2798. [PMID: 38668851 PMCID: PMC11365833 DOI: 10.1007/s00421-024-05490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 09/02/2024]
Abstract
PURPOSE The critical force (CF) concept, differentiating steady and non-steady state conditions, extends the critical power paradigm for sport climbing. This study aimed to validate CF for finger flexors derived from the 4 min all-out test as a boundary for the highest sustainable work intensity in sport climbers. METHODS Twelve participants underwent multiple laboratory visits. Initially, they performed the 4 min intermittent contraction all-out test for CF determination. Subsequent verification visits involved finger-flexor contractions at various intensities, including CF, CF -2 kg, CF -4 kg, and CF -6 kg, lasting for 720 s or until failure, while monitoring muscle-oxygen dynamics of forearm muscles. RESULTS CF, determined from the mean force of last three contractions, was measured at 20.1 ± 5.7 kg, while the end-force at 16.8 ± 5.2 kg. In the verification trials, the mean time to failure at CF was 440 ± 140 s, with only one participant completing the 720 s task. When the load was continuously lowered (-2 kg, -4 kg, and -6 kg), a greater number of participants (38%, 69%, and 92%, respectively) successfully completed the 720 s task. Changes of muscle-oxygen dynamics showed a high variability and could not clearly distinguish between exhaustive and non-exhaustive trials. CONCLUSIONS CF, based on the mean force of the last three contractions, failed to reliably predict the highest sustainable work rate. In contrast, determining CF as the end-force of the last three contractions exhibited a stronger link to sustainable work. Caution is advised in interpreting forearm muscle-oxygen dynamics, lacking sensitivity for nuanced metabolic responses during climbing-related tasks.
Collapse
Affiliation(s)
- Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic.
| | - Jan Gajdošík
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Tomáš Javorský
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Patrik Berta
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Perrey S, Quaresima V, Ferrari M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med 2024; 54:975-996. [PMID: 38345731 PMCID: PMC11052892 DOI: 10.1007/s40279-023-01987-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 04/28/2024]
Abstract
BACKGROUND In the last 5 years since our last systematic review, a significant number of articles have been published on the technical aspects of muscle near-infrared spectroscopy (NIRS), the interpretation of the signals and the benefits of using the NIRS technique to measure the physiological status of muscles and to determine the workload of working muscles. OBJECTIVES Considering the consistent number of studies on the application of muscle oximetry in sports science published over the last 5 years, the objectives of this updated systematic review were to highlight the applications of muscle oximetry in the assessment of skeletal muscle oxidative performance in sports activities and to emphasize how this technology has been applied to exercise and training over the last 5 years. In addition, some recent instrumental developments will be briefly summarized. METHODS Preferred Reporting Items for Systematic Reviews guidelines were followed in a systematic fashion to search, appraise and synthesize existing literature on this topic. Electronic databases such as Scopus, MEDLINE/PubMed and SPORTDiscus were searched from March 2017 up to March 2023. Potential inclusions were screened against eligibility criteria relating to recreationally trained to elite athletes, with or without training programmes, who must have assessed physiological variables monitored by commercial oximeters or NIRS instrumentation. RESULTS Of the identified records, 191 studies regrouping 3435 participants, met the eligibility criteria. This systematic review highlighted a number of key findings in 37 domains of sport activities. Overall, NIRS information can be used as a meaningful marker of skeletal muscle oxidative capacity and can become one of the primary monitoring tools in practice in conjunction with, or in comparison with, heart rate or mechanical power indices in diverse exercise contexts and across different types of training and interventions. CONCLUSIONS Although the feasibility and success of the use of muscle oximetry in sports science is well documented, there is still a need for further instrumental development to overcome current instrumental limitations. Longitudinal studies are urgently needed to strengthen the benefits of using muscle oximetry in sports science.
Collapse
Affiliation(s)
- Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
5
|
MacDougall KB, McClean ZJ, MacIntosh BR, Fletcher JR, Aboodarda SJ. Ischemic Preconditioning, But Not Priming Exercise, Improves Exercise Performance in Trained Rock Climbers. J Strength Cond Res 2023; 37:2149-2157. [PMID: 37607294 DOI: 10.1519/jsc.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
ABSTRACT MacDougall, KB, McClean, ZJ, MacIntosh, BR, Fletcher, JR, and Aboodarda, SJ. Ischemic preconditioning, but not priming exercise, improves exercise performance in trained rock climbers. J Strength Cond Res 37(11): 2149-2157, 2023-To assess the effects of ischemic preconditioning (IPC) and priming exercise on exercise tolerance and performance fatigability in a rock climbing-specific task, 12 rock climbers completed familiarization and baseline tests, and constant-load hangboarding tests (including 7 seconds on and 3 seconds off at an intensity estimated to be sustained for approximately 5 minutes) under 3 conditions: (a) standardized warm-up (CON), (b) IPC, or (c) a priming warm-up (PRIME). Neuromuscular responses were assessed using the interpolated twitch technique, including maximum isometric voluntary contraction (MVC) of the finger flexors and median nerve stimulation, at baseline and after the performance trial. Muscle oxygenation was measured continuously using near-infrared spectroscopy (NIRS) across exercise. Time to task failure (T lim ) for IPC (316.4 ± 83.1 seconds) was significantly greater than CON (263.6 ± 69.2 seconds) ( p = 0.028), whereas there was no difference between CON and PRIME (258.9 ± 101.8 seconds). At task failure, there were no differences in MVC, single twitch force, or voluntary activation across conditions; however, recovery of MVC and single twitch force after the performance trial was delayed for IPC and PRIME compared with CON ( p < 0.05). Despite differences in T lim , there were no differences in any of the NIRS variables assessed. Overall, despite exercise tolerance being improved by an average of 20.0% after IPC, there were no differences in neuromuscular responses at task failure, which is in line with the notion of a critical threshold of peripheral fatigue. These results indicate that IPC may be a promising precompetition strategy for rock climbers, although further research is warranted to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Keenan B MacDougall
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Zachary J McClean
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Saied J Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
6
|
Javorský T, Saeterbakken AH, Andersen V, Baláš J. Comparing low volume of blood flow restricted to high-intensity resistance training of the finger flexors to maintain climbing-specific strength and endurance: a crossover study. Front Sports Act Living 2023; 5:1256136. [PMID: 37841889 PMCID: PMC10570524 DOI: 10.3389/fspor.2023.1256136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction It is acknowledged that training during recovery periods after injury involves reducing both volume and intensity, often resulting in losses of sport-specific fitness. Therefore, this study aimed to compare the effects of high-intensity training (HIT) and low-intensity training with blood flow restriction (LIT + BFR) of the finger flexors in order to preserve climbing-specific strength and endurance. Methods In a crossover design, thirteen intermediate climbers completed two 5-week periods of isometric finger flexors training on a hangboard. The trainings consisted of ten LIT + BFR (30% of max) or HIT sessions (60% of max without BFR) and were undertaken in a randomized order. The training session consisted of 6 unilateral sets of 1 min intermittent hanging at a 7:3 work relief ratio for both hands. Maximal voluntary contraction (MVC), force impulse from the 4 min all out test (W), critical force (CF) and force impulse above the critical force (W') of the finger flexors were assessed before, after the first, and after the second training period, using a climbing-specific dynamometer. Forearm muscle oxidative capacity was estimated from an occlusion test using near-infrared spectroscopy at the same time points. Results Both training methods led to maintaining strength and endurance indicators, however, no interaction (P > 0.05) was found between the training methods for any strength or endurance variable. A significant increase (P = 0.002) was found for W, primarily driven by the HIT group (pretest-25078 ± 7584 N.s, post-test-27327 ± 8051 N.s, P = 0.012, Cohen's d = 0.29). There were no significant (P > 0.05) pre- post-test changes for MVC (HIT: Cohen's d = 0.13; LIT + BFR: Cohen's d = -0.10), CF (HIT: Cohen's d = 0.36; LIT + BFR = 0.05), W` (HIT: Cohen's d = -0.03, LIT + BFR = 0.12), and forearm muscle oxidative capacity (HIT: Cohen's d = -0.23; LIT + BFR: Cohen's d = -0.07). Conclusions Low volume of BFR and HIT led to similar results, maintaining climbing-specific strength and endurance in lower grade and intermediate climbers. It appears that using BFR training may be an alternative approach after finger injury as low mechanical impact occurs during training.
Collapse
Affiliation(s)
- Tomáš Javorský
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Atle Hole Saeterbakken
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Vidar Andersen
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Breen M, Reed T, Nishitani Y, Jones M, Breen HM, Breen MS. Wearable and Non-Invasive Sensors for Rock Climbing Applications: Science-Based Training and Performance Optimization. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115080. [PMID: 37299807 DOI: 10.3390/s23115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Rock climbing has evolved from a method for alpine mountaineering into a popular recreational activity and competitive sport. Advances in safety equipment and the rapid growth of indoor climbing facilities has enabled climbers to focus on the physical and technical movements needed to elevate performance. Through improved training methods, climbers can now achieve ascents of extreme difficulty. A critical aspect to further improve performance is the ability to continuously measure body movement and physiologic responses while ascending the climbing wall. However, traditional measurement devices (e.g., dynamometer) limit data collection during climbing. Advances in wearable and non-invasive sensor technologies have enabled new applications for climbing. This paper presents an overview and critical analysis of the scientific literature on sensors used during climbing. We focus on the several highlighted sensors with the ability to provide continuous measurements during climbing. These selected sensors consist of five main types (body movement, respiration, heart activity, eye gazing, skeletal muscle characterization) that demonstrate their capabilities and potential climbing applications. This review will facilitate the selection of these types of sensors in support of climbing training and strategies.
Collapse
Affiliation(s)
- Miyuki Breen
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | - Taylor Reed
- The Beta Angel Project, Alexandria, VA 22304, USA
- Sportrock Performance Institute, Alexandria, VA 22304, USA
| | - Yoshiko Nishitani
- Rikkyo Research Institute of Wellness, Rikkyo University, Tokyo 171-8501, Japan
| | - Matthew Jones
- Jones Fitness and Performance, Charleston, SC 29412, USA
| | - Hannah M Breen
- The Beta Angel Project, Alexandria, VA 22304, USA
- Eno River Academy, Hillsborough, NC 27278, USA
| | - Michael S Breen
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Langer K, Simon C, Wiemeyer J. Physical performance testing in climbing-A systematic review. Front Sports Act Living 2023; 5:1130812. [PMID: 37229362 PMCID: PMC10203485 DOI: 10.3389/fspor.2023.1130812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the increasing popularity of climbing, the corresponding diagnostics are gaining in importance for both science and practice. This review aims to give an overview of the quality of different diagnostic testing- and measurement methods for performance, strength, endurance, and flexibility in climbing. A systematic literature search for studies including quantitative methods and tests for measuring different forms of strength, endurance, flexibility, or performance in climbing and bouldering was conducted on PubMed and SPORT Discus. Studies and abstracts were included if they a) worked with a representative sample of human boulderers and/or climbers, b) included detailed information on at least one test, and c) were randomized-controlled-, cohort-, cross-over-, intervention-, or case studies. 156 studies were included into the review. Data regarding subject characteristics, as well as the implementation and quality of all relevant tests were extracted from the studies. Tests with similar exercises were grouped and the information on a) measured value, b) unit, c) subject characteristics (sex and ability level), and d) quality criteria (objectivity, reliability, validity) were bundled and displayed in standardized tables. In total, 63 different tests were identified, of which some comprised different ways of implementation. This clearly shows that there are no uniform or standard procedures in climbing diagnostics, for tests on strength, endurance or flexibility. Furthermore, only few studies report data on test quality and detailed information on sample characteristics. This not only makes it difficult to compare test results, but at the same time makes it impossible to give precise test recommendations. Nevertheless, this overview of the current state of research contributes to the creation of more uniform test batteries in the future.
Collapse
|
9
|
Dindorf C, Bartaguiz E, Dully J, Sprenger M, Becker S, Fröhlich M, Ludwig O. In Vivo Monitoring of Acute and Intermittent Fatigue in Sport Climbing Using Near-Infrared Spectroscopy Wearable Biosensors. Sports (Basel) 2023; 11:sports11020037. [PMID: 36828322 PMCID: PMC9959212 DOI: 10.3390/sports11020037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The objectification of acute fatigue (during isometric muscle contraction) and cumulative fatigue (due to multiple intermittent isometric muscle contractions) plays an important role in sport climbing. The data of 42 participants were used in the study. Climbing performance was operationalized using maximal climbing-specific holding time (CSHT) by performing dead hangs. The test started with an initial measurement of handgrip strength (HGS) followed by three intermittent measurements of CSHT and HGS. During the test, finger flexor muscle oxygen saturation (SmO2) was measured using a near-infrared spectroscopy wearable biosensor. Significant reductions in CSHT and HGS could be found (p < 0.001), which indicates that the consecutive maximal isometric holding introduces cumulative fatigue. The reduction in CSHT did not correlate with a reduction in HGS over multiple consecutive maximal dead hangs (p > 0.35). Furthermore, there were no significant differences in initial SmO2 level, SmO2 level at termination, SmO2 recovery, and mean negative slope of the SmO2 saturation reduction between the different measurements (p > 0.24). Significant differences were found between pre-, termination-, and recovery- (10 s after termination) SmO2 levels (p < 0.001). Therefore, monitoring acute fatigue using athletes' termination SmO2 saturation seems promising. By contrast, the measurement of HGS and muscle oxygen metabolism seems inappropriate for monitoring cumulative fatigue during intermittent isometric climbing-specific muscle contractions.
Collapse
|
10
|
Biddulph B, Morris JG, Lewis M, Hunter K, Sunderland C. Reliability of Near-Infrared Spectroscopy with and without Compression Tights during Exercise and Recovery Activities. Sports (Basel) 2023; 11:sports11020023. [PMID: 36828308 PMCID: PMC9965473 DOI: 10.3390/sports11020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) is widely used in sports science research, despite the limited reliability of available data. The aim of the present study was to assess the reliability of NIRS with and without compression tights. Thirteen healthy active males, (age 21.5 ± 2.7 years, body mass 82.1 ± 11.2 kg, BMI 24.6 ± 3.2 kg·m-2) completed four trials (two control trials and two trials using compression tights) over a 28-day period. During each trial, participants completed 20 min each of laying supine, sitting, walking (4 km·h-1), jogging, and sitting following the jogging. An NIRS device was attached to the muscle belly of the vastus lateralis and gastrocnemius and recorded tissue saturation index (TSI), muscle oxygenation, and muscle deoxygenation. Systematic bias and 95% limits of agreement (LOA) and coefficient of variation (CV) were used to report reliability measures for each activity type. For TSI, systematic bias (LOA) at the gastrocnemius during the control and tights trial ranged from -0.4 to 1.7% (4.4 to 10.3%) and -1.9 to 3.5% (8.1 to 12.0%), respectively. For the vastus lateralis, the systematic bias (LOA) for the control trial ranged from -2.4 to 1.0% (5.1 to 6.9%) and for the tights trial was -0.8 to 0.6% (7.0 to 9.5%). For TSI, the CV during the control trial ranged from 1.7 to 4.0% for the gastrocnemius and 1.9 to 2.6% for the vastus lateralis. During the tights trials, the CV ranged from 3.0 to 4.5% for the gastrocnemius and 2.6 to 3.5% for the vastus lateralis. The CV for muscle oxygenation during the control and tights trials for the gastrocnemius was 2.7 to 6.2% and 1.0 to 8.8% and for the vastus lateralis was 0.6 to 4.0% and 4.0 to 4.5%, respectively. The relative reliability was poorer in the tights trials, but if the aim was to detect a 5% difference in TSI, NIRS would be sufficiently reliable. However, the reliability of muscle oxygenation and deoxygenation varies considerably with activity type, and this should be considered when determining whether to employ NIRS in research studies.
Collapse
Affiliation(s)
- Brett Biddulph
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - John G Morris
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK
| | | | - Kirsty Hunter
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Caroline Sunderland
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: ; Tel.: +44-(0)1158486379
| |
Collapse
|
11
|
Limmer M, de Marées M, Roth R. Effects of Forearm Compression Sleeves on Muscle Hemodynamics and Muscular Strength and Endurance Parameters in Sports Climbing: A Randomized, Controlled Crossover Trial. Front Physiol 2022; 13:888860. [PMID: 35726278 PMCID: PMC9206081 DOI: 10.3389/fphys.2022.888860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: Wearing compression garments is a commonly used intervention in sports to improve performance and facilitate recovery. Some evidence supports the use of forearm compression to improve muscle tissue oxygenation and enhance sports climbing performance. However, evidence is lacking for an effect of compression garments on hand grip strength and specific sports climbing performance. The purpose of this study was to evaluate the immediate effects of forearm compression sleeves on muscular strength and endurance of finger flexor muscles in sports climbers. Materials and Methods: This randomized crossover study included 24 sports climbers who performed one familiarization trial and three subsequent test trials while wearing compression forearm sleeves (COMP), non-compressive placebo forearm sleeves (PLAC), or no forearm sleeves (CON). Test trials consisted of three performance measurements (intermittent hand grip strength and endurance measurements, finger hang, and lap climbing) at intervals of at least 48 h in a randomized order. Muscle oxygenation during hand grip and finger hang measurements was assessed by near-infrared spectroscopy. The maximum blood lactate level, rate of perceived exertion, and forearm muscle pain were also determined directly after the lap climbing trials. Results: COMP resulted in higher changes in oxy[heme] and tissue oxygen saturation (StO2) during the deoxygenation (oxy[heme]: COMP –10.7 ± 5.4, PLAC –6.7 ± 4.3, CON –6.9 ± 5.0 [μmol]; p = 0.014, ηp2 = 0.263; StO2: COMP –4.0 ± 2.2, PLAC –3.0 ± 1.4, CON –2.8 ± 1.8 [%]; p = 0.049, ηp2 = 0.194) and reoxygenation (oxy [heme]: COMP 10.2 ± 5.3, PLAC 6.0 ± 4.1, CON 6.3 ± 4.9 [μmol]; p = 0.011, ηp2 = 0.274; StO2: COMP 3.5 ± 1.9, PLAC 2.4 ± 1.2, CON 2.3 ± 1.9 [%]; p = 0.028, ηp2 = 0.225) phases of hand grip measurements, whereas total [heme] concentrations were not affected. No differences were detected between the conditions for the parameters of peak force and fatigue index in the hand grip, time to failure and hemodynamics in the finger hang, or performance-related parameters in the lap climbing measurements (p ≤ 0.05). Conclusions: Forearm compression sleeves did not enhance hand grip strength and endurance, sports climbing performance parameters, physiological responses, or perceptual measures. However, they did result in slightly more pronounced changes of oxy [heme] and StO2 in the deoxygenation and reoxygenation phases during the hand grip strength and endurance measurements.
Collapse
Affiliation(s)
- Mirjam Limmer
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, Germany
- *Correspondence: Mirjam Limmer, , orcid.org/0000-0002-8032-6152
| | - Markus de Marées
- Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Roth
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, Germany
| |
Collapse
|
12
|
Baláš J, Gajdošík J, Giles D, Fryer S. The Estimation of Critical Angle in Climbing as a Measure of Maximal Metabolic Steady State. Front Physiol 2022; 12:792376. [PMID: 35069253 PMCID: PMC8766676 DOI: 10.3389/fphys.2021.792376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose: Sport climbing is a technical, self-paced sport, and the workload is highly variable and mainly localized to the forearm flexors. It has not proved effective to control intensity using measures typical of other sports, such as gas exchange thresholds, heart rate, or blood lactate. Therefore, the purposes of the study were to (1) determine the possibility of applying the mathematical model of critical power to the estimation of a critical angle (CA) as a measure of maximal metabolic steady state in climbing and (2) to compare this intensity with the muscle oxygenation breakpoint (MOB) determined during an exhaustive climbing task. Materials and Methods: Twenty-seven sport climbers undertook three to five exhaustive ascents on a motorized treadwall at differing angles to estimate CA, and one exhaustive climbing test with a progressive increase in angle to determine MOB, assessed using near-infrared spectroscopy (NIRS). Results: Model fit for estimated CA was very high (R2 = 0.99; SEE = 1.1°). The mean peak angle during incremental test was −17 ± 5°, and CA from exhaustive trials was found at −2.5 ± 3.8°. Nine climbers performing the ascent 2° under CA were able to sustain the task for 20 min with perceived exertion at 12.1 ± 1.9 (RPE). However, climbing 2° above CA led to task failure after 15.9 ± 3.0 min with RPE = 16.4 ± 1.9. When MOB was plotted against estimated CA, good agreement was stated (ICC = 0.80, SEM = 1.5°). Conclusion: Climbers, coaches, and researchers may use a predefined route with three to five different wall angles to estimate CA as an analog of critical power to determine a maximal metabolic steady state in climbing. Moreover, a climbing test with progressive increases in wall angle using MOB also appears to provide a valid estimate of CA.
Collapse
Affiliation(s)
- Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Jan Gajdošík
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - David Giles
- Lattice Training Ltd., Chesterfield, United Kingdom
| | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, United Kingdom
| |
Collapse
|
13
|
Hooff M, Meijer EJ, Scheltinga MRM, Savelberg HHCM, Schep G. Test–retest reliability of skeletal muscle oxygenation measurement using near‐infrared spectroscopy during exercise in patients with sport‐related iliac artery flow limitation. Clin Physiol Funct Imaging 2022; 42:114-126. [PMID: 35075811 PMCID: PMC9306874 DOI: 10.1111/cpf.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
The ankle‐brachial index is an accurate tool for detecting claudication in atherosclerotic patients. However, this technique fails to identify subtle flow limitations of the iliac arteries (FLIA) in endurance athletes. Near‐infrared spectroscopy (NIRS) is a noninvasive technique that measures skeletal muscle tissue oxygenation status. The aim of the present study is to examine the absolute and relative test–retest reliability of NIRS and evaluate its potential as a diagnostic tool in FLIA. NIRS‐derived exercise variables were analyzed during exercise and recovery in FLIA 17 patients and 19 healthy controls. The relative reliability of absolute variables (such as the maximal value) were slight to yet predominantly substantial (intraclass correlation coefficient [ICC], ICC range: 0.06–0.76) with good to excellent absolute reliability (absolute limits of agreement [ALoA], ALoA range: 0.8 ± 10.2 to 0.7 ± 13.1; coefficient of variation [CV], CV range: 5%–11%). Absolute values encompassing signal amplitudes showed moderate to almost perfect relative reliability (ICC range: 0.51–0.89) and poor to good absolute reliability (ALoA range: −1.3 ± 7.0 to −2.5 ± 15.7; CV range: 15%–32%). Kinetic variables showed moderate to almost perfect relative reliability for most recovery kinetics variables (ICC range: 0.54–0.86) with fair to good absolute reliability (ALoA range: 0.4 ± 12.2 to 3.9 ± 37.9; CV range: 18%–27%). Particularly, kinetic variables showed significant differences between patients and healthy subjects. NIRS is found to be a reliable method for examining muscle tissue oxygenation variables. Given the significant differences in especially recovery kinetics between normal subjects and patients, NIRS may contribute to diagnosing FLIA in endurance athletes.
Collapse
Affiliation(s)
- Martijn Hooff
- Department of Sports and Exercise Máxima Medical Centre Veldhoven Noord‐Brabant The Netherlands
- Department of Movement and Nutrition Sciences, Faculty of Health, Medicine and Life Sciences Maastricht University Maastricht Maastricht The Netherlands
| | - Eduard J. Meijer
- Department of Clinical Physics Máxima Medical Centre Veldhoven Noord‐Brabant The Netherlands
| | - Marc R. M. Scheltinga
- Department of Clinical Physics Máxima Medical Centre Veldhoven Noord‐Brabant The Netherlands
- Department of Vascular Surgery Máxima Medical Centre Veldhoven Noord‐Brabant The Netherlands
| | - Hans H. C. M. Savelberg
- Department of Movement and Nutrition Sciences, Faculty of Health, Medicine and Life Sciences Maastricht University Maastricht Maastricht The Netherlands
| | - Goof Schep
- Department of Sports and Exercise Máxima Medical Centre Veldhoven Noord‐Brabant The Netherlands
| |
Collapse
|
14
|
The influence of cardiovascular risk factors on near-infrared spectroscopy-derived muscle oxygen saturation during exercise recovery in older adults. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Weston EB, Alizadeh M, Hani H, Knapik GG, Souchereau RA, Marras WS. A physiological and biomechanical investigation of three passive upper-extremity exoskeletons during simulated overhead work. ERGONOMICS 2022; 65:105-117. [PMID: 34338595 DOI: 10.1080/00140139.2021.1963490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to evaluate three passive upper-extremity exoskeletons relative to a control condition. Twelve subjects performed an hour-long, simulated occupational task in a laboratory setting. Independent measures of exoskeleton, exertion height (overhead, head height), time, and their interactions were assessed. Dependent measures included changes in tissue oxygenation (ΔTSI) in the anterior deltoid and middle trapezius, peak resultant lumbar spine loading, and subjective discomfort in various body regions. A statistically significant reduction in ΔTSI between exoskeleton and control was only observed in one instance. Additionally, neither increases in spinal loading nor increases in subjective discomfort ratings were observed for any of the exoskeletons. Ultimately, the exoskeletons offered little to no physiological benefit for the conditions tested. However, the experimental task was not highly fatiguing to the subjects, denoted by low ΔTSI values across conditions. Results may vary for tasks requiring constant arm elevation or higher force demands. Practitioner summary This study quantified the benefits of upper-extremity exoskeletons using NIRS, complementary to prior studies using EMG. The exoskeletons offered little to no physiological benefit for the conditions tested. However, the experimental task was not highly fatiguing, and results may vary for an experimental task with greater demand on the shoulders. Abbreviations: WMSD: work-related musculoskeletal disorder; EMG: electromyography; NIRS: near-infrared spectroscopy; NIR: near-infrared; Hb: haemoglobin; Mb: myoglobin; TSI: tissue saturation index; ATT: adipose tissue thickness.
Collapse
Affiliation(s)
- Eric B Weston
- Spine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| | - Mina Alizadeh
- Spine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| | - Hamed Hani
- Spine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| | - Gregory G Knapik
- Spine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| | - Reid A Souchereau
- Spine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| | - William S Marras
- Spine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Effect of Climbing Speed on Pulmonary Oxygen Uptake and Muscle Oxygen Saturation Dynamics in the Finger Flexors. Int J Sports Physiol Perform 2021; 17:176-184. [PMID: 34560669 DOI: 10.1123/ijspp.2021-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Although sport climbing is a self-paced whole-body activity, speed varies with climbing style, and the effect of this on systemic and localized oxygen responses is not well understood. Therefore, the aim of the present study was to determine muscle and pulmonary oxygen responses during submaximal climbing at differing speeds of ascent. METHODS Thirty-two intermediate and advanced sport climbers completed three 4-minute-long ascents of the same route at 4, 6, and 9 m·min-1 on a motorized climbing ergometer (treadwall) on separate laboratory visits. Gas analysis and near-infrared spectroscopy were used to determine systemic oxygen uptake (V˙O2) and muscle oxygen saturation (StO2) of the flexor digitorum profundus. RESULTS Increases in ascent speed of 1 m·min-1 led to increases of V˙O2 by 2.4 mL·kg-1·min-1 (95% CI, 2.1 to 2.8 mL·kg-1·min-1) and decreases in StO2 by -1.3% (95% CI, 1.9% to -0.7%). There was a significant interaction of climbing ability and speed for StO2 (P < .001, ηp2=.224). The results revealed that the decrease of StO2 was present for intermediate but not advanced climbers. CONCLUSIONS In this study, the results suggest that V˙O2 demand during climbing was largely determined by climbing speed; however, the ability level of the climber appeared to mitigate StO2 at a cellular level. Coaches and instructors may prescribe climbing ascents with elevated speed to improve generalized cardiorespiratory fitness. To stimulate localized aerobic capacity, however, climbers should perhaps increase the intensity of training ascents through the manipulation of wall angle or reduction of hold size.
Collapse
|
17
|
Baláš J, Gajdošík J, Giles D, Fryer S, Krupková D, Brtník T, Feldmann A. Isolated finger flexor vs. exhaustive whole-body climbing tests? How to assess endurance in sport climbers? Eur J Appl Physiol 2021; 121:1337-1348. [PMID: 33591426 DOI: 10.1007/s00421-021-04595-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/10/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Sport climbing requires high-intensity finger flexor contractions, along with a substantial whole-body systemic oxygen uptake ([Formula: see text]O2) contribution. Although fatigue is often localised to the finger flexors, the role of systemic ̇[Formula: see text]O2 and local aerobic mechanisms in climbing performance remains unclear. As such, the primary purpose of this study was to determine systemic and local muscle oxygen responses during both isolated finger flexion and incremental exhaustive whole-body climbing tests. The secondary aim was to determine the relationship of isolated and whole-body climbing endurance tests to climbing ability. METHODS Twenty-two male sport climbers completed a series of isometric sustained and intermittent forearm flexor contractions, and an exhaustive climbing test with progressive steepening of the wall angle on a motorised climbing ergometer. Systemic [Formula: see text]O2 and flexor digitorum profundus oxygen saturation (StO2) were recorded using portable metabolic analyser and near-infra red spectroscopy, respectively. RESULTS Muscle oxygenation breakpoint (MOB) was identifiable during an incremental exhaustive climbing test with progressive increases in angle (82 ± 8% and 88 ± 8% [Formula: see text]O2 and heart rate climbing peak). The peak angle from whole-body treadwall test and impulse from isolated hangboard endurance tests were interrelated (R2 = 0.58-0.64). Peak climbing angle together with mean [Formula: see text]O2 and StO2 from submaximal climbing explained 83% of variance in self-reported climbing ability. CONCLUSIONS Both systemic and muscle oxygen kinetics determine climbing-specific endurance. Exhaustive climbing and isolated finger flexion endurance tests are interrelated and suitable to assess climbing-specific endurance. An exhaustive climbing test with progressive wall angle allows determination of the MOB.
Collapse
Affiliation(s)
- Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic.
| | - Jan Gajdošík
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | | | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Dominika Krupková
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Tomáš Brtník
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Reliability of Low-Cost Near-Infrared Spectroscopy in the Determination of Muscular Oxygen Saturation and Hemoglobin Concentration during Rest, Isometric and Dynamic Strength Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238824. [PMID: 33261036 PMCID: PMC7730940 DOI: 10.3390/ijerph17238824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Background: The objective of this study was to establish the reliability of the Humon Hex near-infrared reflectance spectroscopy (NIRS) in determining muscle oxygen saturation (SmO2) and hemoglobin concentration (Hgb) at rest and during isometric and dynamic strength exercises using a functional electromechanical dynamometer (FEMD). Methods: The SmO2 and Hgb values of sixteen healthy adults (mean ± standard deviation (SD): Age = 36.1 ± 6.4 years) were recorded at rest and during isometry (8 s), dynamic strength I (initial load of 40% of the average isometric load, with 2 kg increments until muscle failure) and dynamic strength II (same as I, but with an initial load of 40% of the maximum isometric load) activity. To evaluate the reliability in the determination of SmO2 and Hgb of this device, intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of variation (CV) were obtained. Results: The main results obtained are SmO2 at rest (CV = 5.76%, SEM = 3.81, ICC = 0.90), isometric strength (CV = 3.03%, SEM = 2.08, ICC = 0.92), dynamic strength I (CV = 10.6, SEM = 7.17, ICC = 0.22) and dynamic strength II (CV = 9.69, SEM = 6.75, ICC = 0.32); Hgb at rest (CV = 1.97%, SEM = 0.24, ICC = 0.65), isometric strength (CV = 0.98%, SEM = 0.12, ICC = 0.96), dynamic strength I (CV = 3.25, SEM = 0.40, ICC = 0.54) and dynamic strength II (CV = 2.74, SEM = 0.34, ICC = 0.65). Conclusions: The study shows that Humon Hex is a reliable device to obtain SmO2 and Hgb data in healthy adult subjects at rest and during isometric strength, providing precision for measurements made with this device.
Collapse
|
19
|
Fryer S, Giles D, Bird E, Stone K, Paterson C, Baláš J, Willems MET, Potter JA, Perkins IC. New Zealand blackcurrant extract enhances muscle oxygenation during repeated intermittent forearm muscle contractions in advanced and elite rock climbers. Eur J Sport Sci 2020; 21:1290-1298. [PMID: 33201779 DOI: 10.1080/17461391.2020.1827048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anthocyanin-rich New Zealand blackcurrant (NZBC) may improve forearm muscle oxygenation and enhance performance in high-level rock climbers. As such, using a double-blind, randomised, cross-over design study, twelve participants performed an oxidative capacity assessment, and two successive exhaustive exercise trials (submaximal forearm muscle contractions at 60% of their maximal volitional contraction). Each visit was conducted following 7-days intake of 600 mg·day-1 NZBC extract or placebo. Oxidative capacity was estimated by calculating the oxygen half time recovery using near infrared spectroscopy. Time to exhaustion (s), impulse (kg·s), and minimum tissue saturation index (min-TSI %) were assessed during both the exercise trials. Muscle oxidative capacity was greater with NZBC (mean difference [MD] = 5.3 s, 95% confidence intervals [95% CI] = 0.4-10.2 s; p = 0.036; Cohen's d = 0.94). During the exercise trials, there was an interaction for min-TSI % (time x condition, p = 0.046; ηp2 = 0.372), which indicated a greater level of oxygen extraction during trial two with NZBC extract (MD = 9%, 95% CI = 2-15%) compared to the placebo (MD = 2%, 95% CI = 1-7%). There was a decrease in time to exhaustion (p <0.001, ηp2 = 0.693) and impulse (p = 0.001, ηp2 = 0.672) in exercise trial two, with no effect of NZBC extract. In high-level rock climbers 7-days NZBC extract improves forearm muscle oxygenation with no effect on isolated forearm muscle performance.
Collapse
Affiliation(s)
- Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | | | - Ellis Bird
- Institute of Sport, University of Chichester, West Sussex, UK
| | - Keeron Stone
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Craig Paterson
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Jiří Baláš
- Faculty of Physical Education and Sport, Prague, Czech Republic
| | | | - Julia A Potter
- Institute of Sport, University of Chichester, West Sussex, UK
| | - Ian C Perkins
- Institute of Sport, University of Chichester, West Sussex, UK
| |
Collapse
|
20
|
Dietary nitrate improves skeletal muscle microvascular oxygenation in HIV-infected patients receiving highly active antiretroviral therapy: a randomised, double-blind, cross-over, placebo-controlled study. Br J Nutr 2020; 124:1277-1284. [PMID: 32576320 DOI: 10.1017/s0007114520002226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HIV-1 proteins and highly active antiretroviral therapy (HAART) have been associated with microvascular endothelial dysfunction. Although nitrate-rich beetroot juice (NR-BJ) consumption has been shown to improve endothelial function in clinical population, its effects in HIV-infected patients has not been addressed. We investigated the effect of a single dose of NR-BJ on muscle oxygen saturation parameters in response to a handgrip exercise in HIV-infected patients. Fifteen HIV-infected patients received NR-BJ or nitrate-depleted beetroot juice (ND-BJ) in a double-blind cross-over design. Near-IR spectroscopy was utilised to assess muscle oxygen saturation parameters during rhythmic handgrip exercise after NR-BJ or ND-BJ supplementation. A significant faster muscle oxygen desaturation rate during exercise (-7·97 (sd 5·00) v. -5·45 (3·94) %/s, P = 0·005) and muscle oxygen resaturation rate during exercise recovery (0·43 (0·24) v. 0·28 (0·24) %/s, P = 0·030) after NR-BJ ingestion was found. However, no significant difference in exercise time until fatigue was observed. Salivary nitrite and urinary nitrate concentration were analysed after NR-BJ or ND-BJ. A significant increase in salivary nitrite and urinary nitrate in NR-BJ was observed compared with ND-BJ (P < 0·05). Our findings suggest that NR-BJ consumption may acutely improve muscle oxygen saturation during exercise and exercise recovery in HIV-infected patients undergoing HAART and who are expected to present microvascular damage. Thus, future studies investigating the chronic effects of NR-BJ are warranted to delineate a better nutritional strategy based on nitrate-rich foods.
Collapse
|
21
|
New Zealand Blackcurrant Extract Enhances Muscle Oxygenation During Forearm Exercise in Intermediate-Level Rock Climbers. Int J Sport Nutr Exerc Metab 2020; 30:258-263. [PMID: 32460241 DOI: 10.1123/ijsnem.2019-0365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022]
Abstract
The delivery to and utilization of oxygenated hemoglobin to the forearm muscles are key determinants of rock-climbing performance. Anthocyanin-rich New Zealand blackcurrant (NZBC) has been suggested to improve blood flow and may enhance forearm endurance performance. As such, a double-blind, randomized crossover design study with 12 participants performed submaximal intermittent contractions (at 40% maximal voluntary contraction) to failure after a 7-day intake of 600 mg/day NZBC extract or placebo. Minimum tissue saturation index (TSI%) was assessed during the contractions. During recovery, time to half recovery of TSI% and brachial artery blood flow were assessed. There was no difference in time to exhaustion between NZBC and placebo. Minimum TSI% was lower with NZBC extract (43 ± 8 vs. 50 ± 11 TSI%; p = .007; Cohen's d = 1.01). During recovery, there was no effect on brachial artery blood flow. However, time to half recovery was faster with NZBC (26 ± 17 vs. 42 ± 26 s; p = .001; Cohen's d = 1.3) following exhaustive contractions. Seven days of NZBC extract appears to improve muscle oxygenation during and following contractions with no change in either arterial blood flow or forearm endurance performance.
Collapse
|
22
|
Baláš J, Kodejška J, Krupková D, Giles D. Males benefit more from cold water immersion during repeated handgrip contractions than females despite similar oxygen kinetics. J Physiol Sci 2020; 70:13. [PMID: 32138641 PMCID: PMC7058574 DOI: 10.1186/s12576-020-00742-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/24/2020] [Indexed: 11/16/2022]
Abstract
The purpose of the present study was to assess the effect of different water immersion temperatures on handgrip performance and haemodynamic changes in the forearm flexors of males and females. Twenty-nine rock-climbers performed three repeated intermittent handgrip contractions to failure with 20 min recovery on three separate laboratory visits. For each visit, a randomly assigned recovery strategy was applied: cold water immersion (CWI) at 8 °C (CW8), 15 °C (CW15) or passive recovery (PAS). While handgrip performance significantly decreased in the subsequent trials for the PAS (p < 0.05), there was a significant increase in time to failure for the second and third trial for CW15 and in the second trial for CW8; males having greater performance improvement (44%) after CW15 than females (26%). The results indicate that CW15 was a more tolerable and effective recovery strategy than CW8 and the same CWI protocol may lead to different recovery in males and females.
Collapse
Affiliation(s)
- Jiří Baláš
- Faculty of Physical Education and Sport, Charles University Prague, José Martího 31, 16252, Prague 6, Czech Republic.
| | - Jan Kodejška
- Faculty of Physical Education and Sport, Charles University Prague, José Martího 31, 16252, Prague 6, Czech Republic
| | - Dominika Krupková
- Faculty of Physical Education and Sport, Charles University Prague, José Martího 31, 16252, Prague 6, Czech Republic
| | - David Giles
- Lattice Training Ltd., Chesterfield, Derbyshire, UK
| |
Collapse
|
23
|
Feldmann AM, Erlacher D, Pfister S, Lehmann R. Muscle oxygen dynamics in elite climbers during finger-hang tests at varying intensities. Sci Rep 2020; 10:3040. [PMID: 32080325 PMCID: PMC7033122 DOI: 10.1038/s41598-020-60029-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/03/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to measure muscle oxygen saturation (SmO2) dynamics during a climbing specific task until failure in varying conditions. Our prediction was that SmO2 should be a good marker to predict task failure. Eleven elite level climbers performed a finger-hang test on a 23 mm wooden rung under four different weighted conditions, 1. body weight (BW), 2. body weight +20% (BW +20), 3. body weight −20% (BW −20) and 4. body weight −40% (BW −40), maintaining half crimp grip until voluntary exhaustion. During each trial SmO2 and time to task failure (TTF) were measured. TTF was then compared to the minimally attainable value of SmO2 (SmO2min) and time to SmO2min (TTmin). There is a considerable degree of agreement between attainable SmO2min at high intensity conditions (MBW = 21.6% ± 6.4; MBW+20 = 24.0% ± 7.0; MBW−20 = 23.0% ± 7.3). Bland-Altman plot with an a priori set equivalency interval of ±5% indicate that these conditions are statistically not different (MBW-BW + 20 = −2.4%, 95% CI [1.4, −6.2]; MBW−Bw−20 = −1.3, 95% CI [2.5, −5.1]). The fourth and lowest intensity condition (MBW −40 = 32.4% ± 8.8) was statistically different and not equivalent (MBW-BW −40 = −8.8%, 95% CI [−5.0, −12.6]). The same agreement was found between TTF and TTmin for the high intensity conditions plotted via Bland-Altman. While the rate with which oxygen was extracted and utilised changed with the conditions, the attainable SmO2min remained constant at high intensity conditions and was related to TTF.
Collapse
Affiliation(s)
- Andri M Feldmann
- University of Bern, Institute of Sport Science, Bremgartenstrasse 145, 3012, Bern, Switzerland.
| | - Daniel Erlacher
- University of Bern, Institute of Sport Science, Bremgartenstrasse 145, 3012, Bern, Switzerland
| | - Sandro Pfister
- University of Bern, Institute of Sport Science, Bremgartenstrasse 145, 3012, Bern, Switzerland
| | - Remo Lehmann
- University of Bern, Institute of Sport Science, Bremgartenstrasse 145, 3012, Bern, Switzerland
| |
Collapse
|
24
|
Abstract
PURPOSE To determine the effect of 2 cold-water-immersion (CWI) temperatures (15°C and 8°C) on repeat handgrip performance to failure. METHODS A total of 32 participants completed 3 intermittent trials to failure on a climbing-specific handgrip dynamometer on 3 laboratory visits. For each visit, a different recovery strategy was employed: passive (PAS) recovery, CWI at 8°C (CW8), or CWI at 15°C (CW15). The force time integral (FTI: time of contraction multiplied by the force of contraction) was determined to assess handgrip performance. RESULTS There was no significant difference between recovery strategies at the end of trial 1. In response to the PAS recovery strategy, there were 10% and 22% decreases in FTI in the second and third trials, respectively. The PAS recovery-strategy FTI values were lower than both CWI strategies for trials 2 and 3 (P < .05). FTI increased in the second trial (↑32% and ↑38%; P < .05) for both immersion strategies (CW8 and CW15, respectively) compared with trial 1. During the third trial, FTI was significantly higher for CW15 than CW8 (↑27% and ↓4% with respect to baseline trial; P < .05). CONCLUSIONS The results suggest that CWI has potential performance advantages over PAS recovery for rock climbing. The data show that in events where multiple recoveries are required, 15°C CWI may be more beneficial for climbers than 8°C CWI. Future research should focus on the optimization of protocols for sport performance.
Collapse
|