1
|
Georgiou GD, Antoniou K, Antoniou S, Michelekaki EA, Zare R, Ali Redha A, Prokopidis K, Christodoulides E, Clifford T. Effect of Beta-Alanine Supplementation on Maximal Intensity Exercise in Trained Young Male Individuals: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2024; 34:397-412. [PMID: 39032921 DOI: 10.1123/ijsnem.2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Beta-alanine is a nonessential amino acid that is commonly used to improve exercise performance. It could influence the buffering of hydrogen ions produced during intense exercise and delay fatigue, providing a substrate for increased synthesis of intramuscular carnosine. This systematic review evaluates the effects of beta-alanine supplementation on maximal intensity exercise in trained, young, male individuals. Six databases were searched on August 10, 2023, to identify randomized, double-blinded, placebo-controlled trials investigating the effect of chronic beta-alanine supplementation in trained male individuals with an age range of 18-40 years. Studies evaluating exercise performance through maximal or supramaximal intensity efforts falling within the 0.5-10 min duration were included. A total of 18 individual studies were analyzed, employing 18 exercise test protocols and 15 outcome measures in 331 participants. A significant (p = .01) result was observed with an overall effect size of 0.39 (95% confidence interval [CI] [0.09, 0.69]), in favor of beta-alanine supplementation versus placebo. Results indicate significant effects at 4 weeks of supplementation, effect size 0.34 (95% CI [0.02, 0.67], p = .04); 4-10 min of maximal effort, effect size 0.55 (95% CI [0.07, 1.04], p = .03); and a high beta-alanine dosage of 5.6-6.4 g per day, effect size 0.35 (95% CI [0.09, 0.62], p = .009). The results provide insights into which exercise modality will benefit the most, and which dosage protocols and durations stand to provide the greatest ergogenic effects. This may be used to inform further research, and professional or recreational training design, and optimization of supplementation strategies.
Collapse
Affiliation(s)
| | | | | | | | - Reza Zare
- Meshkat Sports Complex, Karaj, Iran
- Arses Sports Complex, Karaj, Iran
| | - Ali Ali Redha
- University of Exeter, Exeter, United Kingdom
- The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Tom Clifford
- Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
2
|
Singh S, Sharma PC. 1H Nuclear Magnetic Resonance (NMR)-Based Metabolome Diversity of Seabuckthorn (H. rhamnoides L.) Berries Originating from Two Geographical Regions of Indian Himalayas. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Franco GS, Noronha NY, Oliveira BA, Ferreira FC, Pinto AP, Brandao CF, Papoti M, Nonino CB. Beta-alanine fails to improve on 5000 m running time despite increasing PAT1 expression in long-distance runners. J Sports Med Phys Fitness 2020; 61:1605-1612. [PMID: 33305552 DOI: 10.23736/s0022-4707.20.11946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Beta-alanine has become a dietary supplement widely used by athletes due to its ergogenic effect. However, there is still no consensus on the performance benefit of beta-alanine on exercise lasting longer than ten minutes. The present study aimed to evaluate the effect of beta-alanine supplementation on running performance and the expression of TauT and PAT1. METHODS This double-blind, randomized study enrolled 16 long-distance runners (37±8 years) who were randomly allocated to two groups: placebo (PLA) and beta-alanine (BA) (4.8 g/day 1) for four weeks. Maximal oxygen consumption, anthropometry, body composition, and food intake were determined. Before and after the intervention, the athletes undertook a 5000 m running time trial. Venous blood (TauT and PAT1 expressions) and ear lobe capillary blood (lactate) collected before and after exercise. Between tests, we monitored the training variables. RESULTS The results were analyzed by t-tests and an ANOVA of repeated measures, with Sidak's post hoc (P<0.05). PLA exhibited lower body fat than BA (8.7±2.2 vs. 11.5±2.8%, P=0.04). After supplementation, there was an increase in PAT1 expression in BA when compared to PLA (1.17±0.47 vs. 0.77±0.18, P=0.04). No significant differences were shown for the 5000 m running time in PLA (PRE: 1128±72; POST: 1123±72s) and BA (PRE: 1107±95; POST: 1093±86s). CONCLUSIONS Although beta-alanine supplementation increased PAT1 expression, there was no statistically significant improvement in 5000 m running performance. However, individual responses should be considered as the BA showed a higher delta than the PLA.
Collapse
Affiliation(s)
- Gabriel S Franco
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil - .,Departament of Nutrition, University of Franca, Franca, Brazil -
| | - Natália Y Noronha
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno A Oliveira
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávia C Ferreira
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana P Pinto
- Ribeirão Preto School of Physical Education and Sport, Laboratory of Exercise Physiology and Metabolism, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila F Brandao
- Division of Nutrology, Department of Internal Medicine, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,State University of Minas Gerais, Divinópolis, Brazil
| | - Marcelo Papoti
- Ribeirão Preto School of Physical Education and Sport, Laboratory of Water Activities, University of São Paulo, Ribeirão Preto, Brazil
| | - Carla B Nonino
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Zandona BA, Ramos RA, de Oliveira CDS, McAnulty SR, Ferreira LHB, Smolarek AC, Enes AAN, Urbinati KMDSS, Aragon AA, Schoenfeld BJ, de Souza Junior TP. Reduced Dose of Beta-Alanine Is Sufficient to Maintain Performance in Repeated Sprints. J Strength Cond Res 2020; 36:1636-1642. [PMID: 32833890 DOI: 10.1519/jsc.0000000000003715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zandona, BA, Ramos, RA, de Oliveira, CdS, McAnulty, SR, Ferreira, LHB, Smolarek, AC, Enes, AAN, Urbinati, KMdSS, Aragon, AA, Schoenfeld, BJ, and de Souza Junior, TP. Reduced Dose of Beta-Alanine Is Sufficient to Maintain Performance in Repeated Sprints. J Strength Cond Res XX(X): 000-000, 2020-Beta-alanine (BA) supplementation has been shown to be effective in improving physical performance by increasing carnosine concentration. However, it is still necessary to know the effect of a maintenance dose on performance. Thus, this study aimed to investigate the effects of a maintenance dose of BA supplementation on performance. Forty-four anaerobically trained men with 23.9 ± 3.8 years of age, 176.0 ± 0.05 cm height, 81.2 ± 7.5 kg body mass, and 15.5 ± 2.9% of body fat performed a cycle ergometer test consisting of 4 sprints of 30 s with 4 minutes of active recovery. The study comprised 3 phases: (a) presupplementation, (b) supplementation with 6.4 g·d BA or placebo, and (c) postsupplementation with a maintenance dose of 1.2 g·d of BA or interruption of supplementation. Data were analyzed using generalized estimated equations with a priori 0.05 level of significance. The placebo group and interruption group presented a lower power (7.28 ± 0.66 and 7.71 ± 0.42 W·kg vs. 8.04 ± 0.84 and 9.25 ± 1.18 W·kg, respectively; p < 0.05) during the third sprint in postsupplementation, whereas the maintenance group maintained the required power (7.47 ± 1.03 vs. 8.74 ± 1.07 W·kg; p > 0.05). The placebo group also presented higher percentage of fatigue (44.5% ± 12.3 and 44.8% ± 7.7 vs. 37.6 ± 7.2%; p = 0.021) and higher subjective perception of exertion (8.92 ± 0.90 vs. 8.00 ± 1.60; p = 0.028). Therefore, the maintenance dose of 1.2 g·d BA was effective in maintaining performance, whereas a reduction in performance was observed after supplementation interruption.
Collapse
Affiliation(s)
- Bruna A Zandona
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, Brazil
| | - Renan A Ramos
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, Brazil
| | | | - Steven R McAnulty
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Luis H B Ferreira
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, Brazil.,Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Irati, Brazil
| | - Andre C Smolarek
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, Brazil.,Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Irati, Brazil
| | - Alysson A N Enes
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronkx, New York
| | - Tácito P de Souza Junior
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, Brazil.,Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| |
Collapse
|
5
|
Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic-Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092490. [PMID: 32824885 PMCID: PMC7551186 DOI: 10.3390/nu12092490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Beta-alanine supplementation (BA) has a positive impact on physical performance. However, evidence showing a benefit of this amino acid in aerobic-anaerobic transition zones is scarce and the results controversial. The aim of this systematic review and meta-analysis is to analyze the effects of BA supplementation on physical performance in aerobic-anaerobic transition zones. At the same time, the effect of different dosages and durations of BA supplementation were identified. The search was designed in accordance with the PRISMA® guidelines for systematic reviews and meta-analyses and performed in Web of Science (WOS), Scopus, SPORTDiscus, PubMed, and MEDLINE between 2010 and 2020. The methodological quality and risk of bias were evaluated with the Cochrane Collaboration tool. The main variables were the Time Trial Test (TTT) and Time to Exhaustion (TTE) tests, the latter separated into the Limited Time Test (LTT) and Limited Distance Test (LDT). The analysis was carried out with a pooled standardized mean difference (SMD) through Hedges' g test (95% CI). Nineteen studies were included in the systematic review and meta-analysis, revealing a small effect for time in the TTT (SMD, -0.36; 95% CI, -0.87-0.16; I2 = 59%; p = 0.010), a small effect for LTT (SMD, 0.25; 95% CI, -0.01-0.51; I2 = 0%; p = 0.53), and a large effect for LDT (SMD, 4.27; 95% CI, -0.25-8.79; I2 = 94%; p = 0.00001). BA supplementation showed small effects on physical performance in aerobic-anaerobic transition zones. Evidence on acute supplementation is scarce (one study); therefore, exploration of acute supplementation with different dosages and formats on physical performance in aerobic-anaerobic transition zones is needed.
Collapse
|
6
|
Black MI, Jones AM, Morgan PT, Bailey SJ, Fulford J, Vanhatalo A. The Effects of β-Alanine Supplementation on Muscle pH and the Power-Duration Relationship during High-Intensity Exercise. Front Physiol 2018. [PMID: 29515455 PMCID: PMC5826376 DOI: 10.3389/fphys.2018.00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: To investigate the influence of β-alanine (BA) supplementation on muscle carnosine content, muscle pH and the power-duration relationship (i.e., critical power and W′). Methods: In a double-blind, randomized, placebo-controlled study, 20 recreationally-active males (22 ± 3 y, V°O2peak 3.73 ± 0.44 L·min−1) ingested either BA (6.4 g/d for 28 d) or placebo (PL) (6.4 g/d) for 28 d. Subjects completed an incremental test and two 3-min all-out tests separated by 1-min on a cycle ergometer pre- and post-supplementation. Muscle pH was assessed using 31P-magnetic resonance spectroscopy (MRS) during incremental (INC KEE) and intermittent knee-extension exercise (INT KEE). Muscle carnosine content was determined using 1H-MRS. Results: There were no differences in the change in muscle carnosine content from pre- to post-intervention (PL: 1 ± 16% vs. BA: −4 ± 25%) or in muscle pH during INC KEE or INT KEE (P > 0.05) between PL and BA, but blood pH (PL: −0.06 ± 0.10 vs. BA: 0.09 ± 0.13) during the incremental test was elevated post-supplementation in the BA group only (P < 0.05). The changes from pre- to post-supplementation in critical power (PL: −8 ± 18 W vs. BA: −6 ± 17 W) and W′ (PL: 1.8 ± 3.3 kJ vs. BA: 1.5 ± 1.7 kJ) were not different between groups. No relationships were detected between muscle carnosine content and indices of exercise performance. Conclusions: BA supplementation had no significant effect on muscle carnosine content and no influence on intramuscular pH during incremental or high-intensity intermittent knee-extension exercise. The small increase in blood pH following BA supplementation was not sufficient to significantly alter the power-duration relationship or exercise performance.
Collapse
Affiliation(s)
- Matthew I Black
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Paul T Morgan
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, Sale C, Gualano B. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med 2016; 51:658-669. [PMID: 27797728 DOI: 10.1136/bjsports-2016-096396] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. DESIGN This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. DATA SOURCES 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('β-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). ELIGIBILITY CRITERIA FOR SELECTING STUDIES Inclusion/exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. RESULTS 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly (p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant (p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI -0.201 to 0.416)). There was no moderating effect of training status (p=0.559), intermittent or continuous exercise (p=0.436) or total amount of β-alanine ingested (p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). SUMMARY/CONCLUSIONS β-alanine had a significant overall effect while subgroup analyses revealed a number of modifying factors. These data allow individuals to make informed decisions as to the likelihood of an ergogenic effect with β-alanine supplementation based on their chosen exercise modality.
Collapse
Affiliation(s)
- Bryan Saunders
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Kirsty Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Guilherme G Artioli
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, Kreider RB, Jäger R, Earnest CP, Bannock L, Campbell B, Kalman D, Ziegenfuss TN, Antonio J. International society of sports nutrition position stand: Beta-Alanine. J Int Soc Sports Nutr 2015; 12:30. [PMID: 26175657 PMCID: PMC4501114 DOI: 10.1186/s12970-015-0090-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/10/2023] Open
Abstract
The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine.
Collapse
Affiliation(s)
- Eric T Trexler
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Abbie E Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Jeffrey R Stout
- Department of Sport and Exercise Science, University of Central Florida, Orlando, FL USA
| | - Jay R Hoffman
- Department of Sport and Exercise Science, University of Central Florida, Orlando, FL USA
| | - Colin D Wilborn
- Human Performance Laboratory, Department of Exercise Science, University of Mary Hardin-Baylor, Belton, TX USA
| | - Craig Sale
- Health and Performance Enhancement Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Ralf Jäger
- Increnovo LLC, 2138 E Lafayette Pl, Milwaukee, WI USA
| | - Conrad P Earnest
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA.,Nutrabolt International, Bryan, TX USA
| | | | - Bill Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | - Douglas Kalman
- Department of Nutrition & Endocrinology, Miami Research Associates, QPS-MRA, Miami, FL USA
| | - Tim N Ziegenfuss
- The Center for Applied Health Sciences, 4302 Allen Rd, STE 120 Stow, OH USA
| | - Jose Antonio
- Exercise and Sports Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
9
|
Abstract
β-alanine supplementation has become a common practice among competitive athletes participating in a range of different sports. Although the mechanism by which chronic β-alanine supplementation could have an ergogenic effect is widely debated, the popular view is that β-alanine supplementation augments intramuscular carnosine content, leading to an increase in muscle buffer capacity, a delay in the onset of muscular fatigue, and a facilitated recovery during repeated bouts of high-intensity exercise. β-alanine supplementation appears to be most effective for exercise tasks that rely heavily on ATP synthesis from anaerobic glycolysis. However, research investigating its efficacy as an ergogenic aid remains equivocal, making it difficult to draw conclusions as to its effectiveness for training and competition. The aim of this review was to update, summarize, and critically evaluate the findings associated with β-alanine supplementation and exercise performance with the most recent research available to allow the development of practical recommendations for coaches and athletes. A critical review of the literature reveals that when significant ergogenic effects have been found, they have been generally shown in untrained individuals performing exercise bouts under laboratory conditions. The body of scientific data available concerning highly trained athletes performing single competition-like exercise tasks indicates that this type of population receives modest but potentially worthwhile performance benefits from β-alanine supplementation. Recent data indicate that athletes may not only be using β-alanine supplementation to enhance sports performance but also as a training aid to augment bouts of high-intensity training. β-alanine supplementation has also been shown to increase resistance training performance and training volume in team-sport athletes, which may allow for greater overload and superior adaptations compared with training alone. The ergogenic potential of β-alanine supplementation for elite athletes performing repeated high-intensity exercise bouts, either during training or during competition in sports which require repeated maximal efforts (e.g., rugby and soccer), needs scientific confirmation.
Collapse
Affiliation(s)
- Phillip M Bellinger
- School of Rehabilitation Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
10
|
Lily E, Papandreou D. The role and effects of carnosine and β-alanine on exercise: an updated mini review. ACTA ACUST UNITED AC 2014. [DOI: 10.1108/nfs-04-2013-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
– The paper aims to describe the role and effects of carnosine and β-alanine on exercise.
Design/methodology/approach
– The review includes the most updated studies found in Pub-Med all of which are in relation to carnosine and β-alanine on exercise performance.
Findings
– The use of β-alanine in recent research has shown to increase muscle carnosine concentrations in as short as two weeks, with increasing levels with longer supplementation periods. Although there is strong support that β-alanine supplementation during training possesses ergogenic value, the specific mechanism of action and ergogenic value remains to be fully examined.
Originality/value
– The paper gives information to nutritionists, clinical dietitians and sports nutritionists on the newest data about the role and effects of carnosine and β-alanine on exercise performance.
Collapse
|
11
|
Abstract
Sprint exercise ability has been critical for survival. The remarkably high-power output levels attained during sprint exercise are achieved through strong activation of anaerobic, and to a lesser extent, aerobic energy supplying metabolic reactions, which generate reactive oxygen and nitrogen species (RONS). Sprint exercise may cause oxidative stress leading to muscle damage, particularly when performed in severe acute hypoxia. However, with training oxidative stress is reduced. Paradoxically, total plasma antioxidant capacity increases during the subsequent 2 h after a short sprint due to the increase in plasma urate concentration. The RONS produced during and immediately after sprint exercise play a capital role in signaling the adaptive response to sprint. Antioxidant supplementation blunts the normal AMPKα and CaMKII phosphorylation in response to sprint exercise. However, under conditions of increased glycolytic energy turnover and muscle acidification, as during sprint exercise in severe acute hypoxia, AMPKα phosphorylation is also blunted. This indicates that an optimal level of RONS-mediated stimulation is required for the normal signaling response to sprint exercise. Although RONS are implicated in fatigue, most studies convey that antioxidants do not enhance sprint performance in humans. Although currently controversial, it has been reported that antioxidant ingestion during training may jeopardize some of the beneficial adaptations to sprint training.
Collapse
Affiliation(s)
- D Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n , Las Palmas de Gran Canaria, Canary Island , Spain
| | | |
Collapse
|
12
|
Tobias G, Benatti FB, de Salles Painelli V, Roschel H, Gualano B, Sale C, Harris RC, Lancha AH, Artioli GG. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids 2013; 45:309-17. [PMID: 23595205 PMCID: PMC3714561 DOI: 10.1007/s00726-013-1495-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/04/2013] [Indexed: 12/04/2022]
Abstract
We examined the isolated and combined effects of beta-alanine (BA) and sodium bicarbonate (SB) on high-intensity intermittent upper-body performance in judo and jiu-jitsu competitors. 37 athletes were assigned to one of four groups: (1) placebo (PL)+PL; (2) BA+PL; (3) PL+SB or (4) BA+SB. BA or dextrose (placebo) (6.4 g day−1) was ingested for 4 weeks and 500 mg kg−1 BM of SB or calcium carbonate (placebo) was ingested for 7 days during the 4th week. Before and after 4 weeks of supplementation, the athletes completed four 30-s upper-body Wingate tests, separated by 3 min. Blood lactate was determined at rest, immediately after and 5 min after the 4th exercise bout, with perceived exertion reported immediately after the 4th bout. BA and SB alone increased the total work done in +7 and 8 %, respectively. The co-ingestion resulted in an additive effect (+14 %, p < 0.05 vs. BA and SB alone). BA alone significantly improved mean power in the 2nd and 3rd bouts and tended to improve the 4th bout. SB alone significantly improved mean power in the 4th bout and tended to improve in the 2nd and 3rd bouts. BA+SB enhanced mean power in all four bouts. PL+PL did not elicit any alteration on mean and peak power. Post-exercise blood lactate increased with all treatments except with PL+PL. Only BA+SB resulted in lower ratings of perceived exertion (p = 0.05). Chronic BA and SB supplementation alone equally enhanced high-intensity intermittent upper-body performance in well-trained athletes. Combined BA and SB promoted a clear additive ergogenic effect.
Collapse
Affiliation(s)
- Gabriel Tobias
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carnosine: from exercise performance to health. Amino Acids 2013; 44:1477-91. [PMID: 23479117 DOI: 10.1007/s00726-013-1476-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 12/27/2022]
Abstract
Carnosine was first discovered in skeletal muscle, where its concentration is higher than in any other tissue. This, along with an understanding of its role as an intracellular pH buffer has made it a dipeptide of interest for the athletic population with its potential to increase high-intensity exercise performance and capacity. The ability to increase muscle carnosine levels via β-alanine supplementation has spawned a new area of research into its use as an ergogenic aid. The current evidence base relating to the use of β-alanine as an ergogenic aid is reviewed here, alongside our current thoughts on the potential mechanism(s) to support any effect. There is also some emerging evidence for a potential therapeutic role for carnosine, with this potential being, at least theoretically, shown in ageing, neurological diseases, diabetes and cancer. The currently available evidence to support this potential therapeutic role is also reviewed here, as are the potential limitations of its use for these purposes, which mainly focusses on issues surrounding carnosine bioavailability.
Collapse
|
14
|
Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, Ziegenfuss TN, Lopez HL, Hoffman JR, Stout JR, Schmitz S, Collins R, Kalman DS, Antonio J, Kreider RB. International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr 2013; 10:1. [PMID: 23281794 PMCID: PMC3538552 DOI: 10.1186/1550-2783-10-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/18/2022] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9. Diabetics and individuals with pre-existing cardiovascular, metabolic, hepatorenal, and neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should avoid use of ED and/or ES unless approved by their physician.
Collapse
Affiliation(s)
- Bill Campbell
- Exercise and Performance Nutrition Laboratory, Dept. of Physical Education and Exercise Science, University of South Florida, 4202 E. Fowler Avenue, PED 214, Tampa, FL, 33620, USA
| | - Colin Wilborn
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Paul La Bounty
- Department of Health, Human Performance, and Recreation, Baylor University, Box 97313, Waco, TX, 76798, USA
| | - Lem Taylor
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Mike T Nelson
- Department of Health and Human Performance, University of St.Thomas, St. Paul, MN, 55105, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| | | | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, 44224, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Stephen Schmitz
- Medical Surveillance and Risk Management, Shire HGT, 300 Shire Way, Lexington, MA, 02421, USA
| | | | - Doug S Kalman
- Miami Research Associates, Endocrinology & Nutrition Department, 6141 Sunset Drive - Suite 301, Miami, FL, 33143, USA
| | - Jose Antonio
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| |
Collapse
|
15
|
Invernizzi PL, Benedini S, Saronni S, Merati G, Bosio A. The Acute Administration of Carnosine and Beta-Alanine Does Not Improve Running Anaerobic Performance and has No Effect on the Metabolic Response to Exercise. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ape.2013.34028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients 2012; 4:585-601. [PMID: 22852051 PMCID: PMC3407982 DOI: 10.3390/nu4070585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022] Open
Abstract
β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.
Collapse
Affiliation(s)
- John Caruso
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-918-631-2924; Fax: +1-918-631-2068
| | - Jessica Charles
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Kayla Unruh
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Rachel Giebel
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Lexis Learmonth
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - William Potter
- Department of Chemistry & Biochemistry, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|